JPH09310448A - Concrete structure and work execution method thereof - Google Patents

Concrete structure and work execution method thereof

Info

Publication number
JPH09310448A
JPH09310448A JP12752996A JP12752996A JPH09310448A JP H09310448 A JPH09310448 A JP H09310448A JP 12752996 A JP12752996 A JP 12752996A JP 12752996 A JP12752996 A JP 12752996A JP H09310448 A JPH09310448 A JP H09310448A
Authority
JP
Japan
Prior art keywords
concrete
main
concrete structure
strength
steel fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12752996A
Other languages
Japanese (ja)
Other versions
JP3759995B2 (en
Inventor
Toshio Hayashi
敏 夫 林
Takuo Moriya
谷 卓 雄 森
Masaharu Saito
藤 雅 春 斎
Shigeru Matsuoka
岡 茂 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tekken Corp
Original Assignee
Tekken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekken Corp filed Critical Tekken Corp
Priority to JP12752996A priority Critical patent/JP3759995B2/en
Publication of JPH09310448A publication Critical patent/JPH09310448A/en
Application granted granted Critical
Publication of JP3759995B2 publication Critical patent/JP3759995B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase tensile strength, bending strength, and shearing strength of a concrete structure by burying main reinforcements without restriction, and arranging steel fiber in the structure uniformly and dispersedly. SOLUTION: A plurality of main reinforcements are standingly provided on fixed positions of a base made of concrete without restriction. A formwork is assembled outside the main reinforcements 2, and concrete 6 mixed with a fixed quantity of steel fiber 5 of carbon steel, stainless steel, or the like is placed inside the formwork. After hardening of the concrete 6, the steel fiber 5 is arranged extending over the whole sectional territory of the pillar 7 of a concrete structure, uniformly and at random. Consequently, customary belt reinforcement restricting the main reinforcements is eliminated, customary steel fiber reinforced concrete is improved, and hence the tensile strength, the bending strength, and the shearing strength of the concrete structure can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は鋼繊維補強コンクリ
ートを改善し、構造物の曲げ強度と靭性を飛躍的に向上
するとともに、帯鉄筋を廃し、その配筋作業の煩雑を解
消して、施工の迅速化と工費の低減を図れ、しかも緻密
かつ平滑なコンクリート面を得られるコンクリート構造
物およびその施工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention improves steel fiber reinforced concrete, dramatically improves the bending strength and toughness of a structure, abolishes band reinforcing bars, and eliminates the complexity of bar arrangement work. The present invention relates to a concrete structure capable of speeding up the work, reducing the construction cost, and obtaining a dense and smooth concrete surface, and a construction method thereof.

【0002】[0002]

【従来の技術】従来、コンクリート構造物を構築する場
合、主鉄筋を組み立て、これに剪断力を補強する目的で
帯鉄筋を所定ピッチに配置し、この外側に型枠を組み立
て後、型枠内にコンクリートを打設していた。この場
合、帯鉄筋の量と配置については、一般に曲げ耐力より
も剪断耐力が大きくなるように施工され、したがってコ
ンクリート構造物は、曲げ破壊先行型の破壊形態とな
り、引張り力を補強する主鉄筋の引張り靭性によって、
降伏荷重に達した後も耐荷力を保持するようにされてい
る。
2. Description of the Related Art Conventionally, in the case of constructing a concrete structure, a main reinforcing bar is assembled, band reinforcing bars are arranged at a predetermined pitch for the purpose of reinforcing shearing force, and a mold is assembled on the outside of the main reinforcing bar. It was pouring concrete on. In this case, with respect to the amount and arrangement of the strip reinforcing bars, generally, the shear strength is larger than the bending strength, so that the concrete structure is in the failure mode of bending failure precedent type, and the tensile strength of the main reinforcing bars is strengthened. Depending on the tensile toughness,
It is designed to maintain the load bearing capacity even after reaching the yield load.

【0003】しかし、この従来のコンクリート構造物の
施工法は、帯鉄筋とその配筋を要し、帯鉄筋の製作と鉄
線またはクリップ等による緊結を要して、作業が煩雑か
つ手間が掛かり、しかもこうして構築したコンクリート
構造物も、その立地条件や帯鉄筋の量および施工の如何
によっては、帯鉄筋が剪断して構造物が剪断破壊する惧
れがあり、この点は先の阪神淡路大地震において例証さ
れている。
However, this conventional method for constructing a concrete structure requires a band reinforcing bar and its reinforcement, and requires the production of the band reinforcing bar and the tight binding with a wire or a clip, which makes the work complicated and troublesome. Moreover, the concrete structure constructed in this way may be damaged by the shearing of the reinforcing bars depending on the location conditions, the amount of reinforcing bars, and the construction.This point is related to the previous Great Hanshin-Awaji Earthquake. Is illustrated in.

【0004】そこで、コンクリート構造物の剪断力を強
化する手段として、帯鉄筋を増量するとともに、主鉄筋
との交差部を全て溶接する方法が考えられる。しかし、
この場合は帯鉄筋の配筋作業が著しく煩雑で手間が掛か
り、工費の高騰と工期の長期化を招くとともに、コンク
リート打設時にコンクリートの移動が帯鉄筋に遮られて
流動性が低下し、ジャンカを生じ易い、という問題が予
想される。
Therefore, as a means for strengthening the shearing force of a concrete structure, it is conceivable to increase the amount of reinforcing bars and weld all the intersections with the main reinforcing bars. But,
In this case, the work of arranging the strips is extremely complicated and time-consuming, resulting in a high construction cost and a long construction period. Is likely to occur.

【0005】ところで、従来、道路や滑走路、トンネル
等において、コンクリートの引張強度や曲げ強度、ひび
割れ強度、靭性または耐衝撃性の改善を図るために、例
えば炭素鋼やステンレス鋼等の短い鋼繊維を均等に分散
配置した鋼繊維補強コンクリートが使用されている。
By the way, conventionally, in roads, runways, tunnels, etc., in order to improve the tensile strength, bending strength, crack strength, toughness or impact resistance of concrete, short steel fibers such as carbon steel and stainless steel are used. Steel fiber reinforced concrete is used in which are evenly distributed.

【0006】しかし、この従来の鋼繊維補強コンクリー
トは、主にひび割れの改善を目的とし、その強度は専ら
鋼繊維の強度に依存して低く、これを曲げと剪断力の双
方を受ける耐震構造物の柱や梁、壁に直ちに採用するこ
とはできない。
However, this conventional steel fiber reinforced concrete is mainly for the purpose of improving cracks, and its strength is low depending solely on the strength of the steel fiber. It cannot be immediately applied to pillars, beams and walls.

【0007】[0007]

【発明が解決しようとする課題】本発明はこのような問
題を解決し、鋼繊維補強コンクリートを改善し、構造物
の曲げ強度と靭性率を飛躍的に向上するとともに、帯鉄
筋を廃し、その配筋作業の煩雑を解消して、施工の迅速
化と工費の低減を図れ、しかも緻密かつ平滑なコンクリ
ート面を得られるコンクリート構造物およびその施工法
を提供することを目的とする。
The present invention solves such problems, improves steel fiber reinforced concrete, dramatically improves the bending strength and toughness of a structure, and abolishes strip reinforcing bars. An object of the present invention is to provide a concrete structure which can eliminate the complexity of arranging work, speed up the construction and reduce the construction cost, and can obtain a dense and smooth concrete surface, and a construction method thereof.

【0008】[0008]

【課題を解決するための手段】このため、請求項1の発
明は、内部に主鉄筋を配置したコンクリート構造物にお
いて、主鉄筋を無拘束に埋設し、該構造物の内部に鋼繊
維を均一に分散配置し、帯鉄筋を廃するとともに、鋼繊
維補強コンクリートを改善し、構造物の曲げ強度と靭性
率を飛躍的に向上して、実用的な耐震構造物を提供する
ようにしている 請求項2の発明は、内部に主鉄筋を配置し、該鉄筋の外
側に型枠を組み立て、該型枠の内側にコンクリートを打
設するコンクリート構造物の施工法において、主鉄筋を
無拘束に組み立てるとともに、前記型枠内に所定量の鋼
繊維を混入したコンクリートを打設し、従来多用されて
いた帯鉄筋を廃し、その配筋作業の煩雑を解消して、施
工の迅速化と工費の低減を図り、緻密かつ平滑なコンク
リート面を得られるようにしている。
Therefore, according to the invention of claim 1, in a concrete structure in which main reinforcing bars are arranged, the main reinforcing bars are buried without restraint, and the steel fibers are uniformly distributed inside the structure. In order to provide a practical seismic resistant structure, the steel fiber reinforced concrete is improved and the bending strength and toughness rate of the structure are dramatically improved while the steel bars are abandoned. According to the invention of Item 2, in a construction method of a concrete structure in which a main reinforcing bar is arranged inside, a mold is assembled outside the reinforcing bar, and concrete is placed inside the mold, the main reinforcing bar is unconstrainedly assembled. At the same time, concrete containing a prescribed amount of steel fibers is placed in the formwork, the strip bar that has been frequently used in the past is abolished, and the complexity of the bar arrangement work is eliminated, speeding up the construction and reducing the construction cost. For precise and smooth concrete I'm trying to get a better look.

【0009】[0009]

【発明の実施の形態】以下、本発明をコンクリート構造
物であるビルやマンション等の建造物の柱に適用した図
示の実施の形態について説明すると、図1乃至図6にお
いて1はコンクリート製の基台で、その上部に複数の主
鉄筋2が所定位置に無拘束状態、つまり該鉄筋2を従来
の帯鉄筋で拘束することなく立設されている。この場
合、主鉄筋2の材質、寸法、配置、数量等は柱に作用す
る最大荷重および安全率を考慮し、その建築設計基準に
基いて決定されている。なお、図2のように主鉄筋2に
帯鉄筋3を粗ピッチに配置し、これを適宜拘束してもよ
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a description will be given of an illustrated embodiment in which the present invention is applied to a pillar of a building such as a building or a condominium which is a concrete structure. In FIGS. 1 to 6, 1 is a concrete base. On a table, a plurality of main reinforcing bars 2 are erected on predetermined positions in a predetermined position in an unrestrained state, that is, without reinforcing the conventional reinforcing bars 2 by the conventional band reinforcing bars. In this case, the material, size, arrangement, quantity and the like of the main rebar 2 are determined based on the architectural design standard in consideration of the maximum load acting on the column and the safety factor. Note that, as shown in FIG. 2, the reinforcing bars 3 may be arranged on the main reinforcing bars 2 at a coarse pitch and may be restrained as appropriate.

【0010】基台1上には主鉄筋2の外側に型枠4が組
み立てられ、該枠4の内側に鋼繊維5を所定量混入した
コンクリート6が打設されている。鋼繊維5は、直径は
0.6mmの炭素鋼またはステンレス鋼を30mm(ア
スペクト比50)の長さに切断し、その表面を鋸歯状ま
たは波状に形成して構成され、その混入率は全打設コン
クリート容積の約1.0%に設定されている。
A mold 4 is assembled on the outside of the main rebar 2 on the base 1, and concrete 6 containing a predetermined amount of steel fibers 5 is placed inside the frame 4. The steel fiber 5 is formed by cutting carbon steel or stainless steel having a diameter of 0.6 mm into a length of 30 mm (aspect ratio 50), and forming the surface thereof in a sawtooth shape or a wavy shape, and the mixing ratio thereof is the total It is set to about 1.0% of the installed concrete volume.

【0011】コンクリート6の硬化後の状況は図4のよ
うで、鋼繊維5がコンクリート構造物である柱7の断面
の全域に亙って、均一かつランダムな方向に配置されて
いる
The state after hardening of the concrete 6 is as shown in FIG. 4, in which the steel fibers 5 are arranged in a uniform and random direction over the entire cross section of the pillar 7 which is a concrete structure.

【0012】このように構成した柱7はビルやマンショ
ン等建造物の建造時に構築され、これは先ず造成した土
地にコンクリートを打設して基台1を作成し、同時に基
台1に複数の主鉄筋2を所定間隔に配置して組み立て
る。柱以外の梁や壁を構築する場合は、それらの長さ方
向に主鉄筋2を所定間隔に配置して組み立てる。
The pillar 7 thus constructed is constructed at the time of constructing a building such as a building or a condominium. First, concrete is placed on the constructed land to form the base 1, and at the same time, a plurality of bases 1 are formed. The main rebars 2 are arranged at predetermined intervals and assembled. When constructing beams and walls other than columns, the main rebars 2 are arranged at predetermined intervals in the length direction of the beams and assembled.

【0013】この場合、必要に応じて少量の帯鉄筋3を
使用して、主鉄筋2の所定位置を拘束してもよく、その
ようにすることで主鉄筋2の動揺と、占有スペースの広
がりを防止し得るとともに、柱7に作用する剪断力を帯
鉄筋3に負担させ、その剪断強度を強化することができ
る。このように本発明は、従来多用されていた帯鉄筋3
を廃し、帯鉄筋3の製作とその煩雑な配筋作業から解消
され、施工の迅速化と工費の低減を図れる。
In this case, if necessary, a small amount of the band reinforcing bar 3 may be used to restrain the predetermined position of the main reinforcing bar 2, and by doing so, the main reinforcing bar 2 is shaken and the occupied space is expanded. It is possible to prevent the above-mentioned phenomenon and to make the strip reinforcing bar 3 bear the shearing force acting on the column 7 to enhance the shearing strength thereof. As described above, the present invention is a band reinforcing bar 3 which has been widely used in the past.
Is eliminated, and the production of the band reinforcing bar 3 and its complicated bar arrangement work are eliminated, and the construction can be speeded up and the construction cost can be reduced.

【0014】こうして主鉄筋2の組み立て後、それらの
外側位置に型枠4を組み立て、該型枠4の内側にコンク
リート6を打設する。コンクリート6には所定量の鋼繊
維5が混入され、その混入率は全打設コンクリート容積
の約1.0%に設定され、これがコンクリート6と一緒
に投入されて、型枠4内を移動し填充する。
After assembling the main rebars 2 in this way, the mold 4 is assembled at the outer positions thereof, and the concrete 6 is placed inside the mold 4. A certain amount of steel fiber 5 is mixed in the concrete 6, and the mixing rate is set to about 1.0% of the total pouring concrete volume, and this is put together with the concrete 6 and moved in the form 4 Fill.

【0015】この場合、型枠4内には複数の主鉄筋2だ
けが配置されているから、主鉄筋2に多数の帯鉄筋3を
取付けたものに比べて、コンクリート6の回り込みや流
動性が良く、型枠4内を緻密かつ確実に填充する。した
がって、ジャンカの発生が防止され、またコンクリート
面が平滑に形成されて、それらの補修の手間をなくせ
る。
In this case, since only a plurality of main rebars 2 are arranged in the form 4, the wraparound and flowability of the concrete 6 are better than those of the main rebar 2 to which a large number of strip rebars 3 are attached. Well, the inside of the mold 4 is filled up precisely and surely. Therefore, the occurrence of junkers is prevented, and the concrete surface is formed smoothly to save the trouble of repairing them.

【0016】コンクリート6の硬化後、型枠4を取外
し、適宜その表面を仕上げれば、柱7の一連の構築作業
が終了する。こうして構築した柱7の横断面は図4のよ
うで、鋼繊維5が柱7の全域に亙って均一に分散配置さ
れ、かつその方向はランダムに配置されている。
After the concrete 6 is hardened, the form 4 is removed and the surface thereof is appropriately finished, whereby a series of construction work of the pillar 7 is completed. The cross section of the pillar 7 constructed in this way is as shown in FIG. 4, and the steel fibers 5 are uniformly dispersed and arranged over the entire area of the pillar 7, and the directions thereof are randomly arranged.

【0017】こうして構築した柱7について、その剪断
耐力を調べるため、出願人はこれと同様な供試体を作成
して実験した。この剪断耐力実験は、上記供試体を垂直
に保持し、その上端部に一定の軸圧縮応力を作用し、そ
の上部に水平荷重、つまり剪断荷重を交番して作用さ
せ、該荷重は主鉄筋2の降伏荷重、180kN以上に設
定され、これを漸次降伏荷重の整数倍に増加して、柱7
の変位と水平荷重との関係を求め、一方、水平荷重が降
伏荷重の80%以下になるか、または前記圧縮荷重を保
持できなくなった時点で、実験を終了することとした。
Regarding the column 7 thus constructed, in order to examine the shear strength, the applicant made a test piece similar to this and conducted an experiment. In this shear strength test, the specimen was held vertically, a constant axial compressive stress was applied to the upper end of the specimen, and a horizontal load, that is, a shear load was alternately applied to the upper portion of the specimen, and the load was applied to the main rebar 2 The yield load of the column is set to 180 kN or more, and this is gradually increased to an integral multiple of the yield load of the column 7
The relationship between the displacement and the horizontal load was determined. On the other hand, the experiment was terminated when the horizontal load became 80% or less of the yield load or when the compression load could not be maintained.

【0018】そこで、この実験において、先ず前記降伏
荷重相当の水平荷重を上記供試体に負荷させると、供試
体表面の数カ所に約0.1mm程度のひび割れが軸方向
と略直角方向に発生し、これらは供試体の上下位置に斜
状に分散していて、これらが水平荷重の増加に伴って剪
断方向、つまり供試体の軸方向と略45°に次第に成長
し、その割れ幅を広げるとともに、供試体の内部に徐々
に進行する。
Therefore, in this experiment, first, when a horizontal load equivalent to the yield load is applied to the specimen, cracks of about 0.1 mm are generated at several places on the surface of the specimen in a direction substantially perpendicular to the axial direction, These are distributed obliquely in the upper and lower positions of the test piece, and as the horizontal load increases, they gradually grow in the shearing direction, that is, approximately 45 ° with the axial direction of the test piece, widening the crack width, Gradually progress inside the specimen.

【0019】この場合、上記ひび割れが連通しても、主
鉄筋2と鋼繊維5とが健全に介在している間は、これら
が前記荷重を保持し、この後主鉄筋2が自身の曲げ耐力
に抗し破断したところで、供試体がその軸方向と直角方
向の切断面に沿って曲げ破壊する。このときの水平荷重
は約200kNであった。したがって、この場合の破壊
形態は曲げ破壊先行型となり、この破壊に至るまでに主
鉄筋2と鋼繊維5とが剪断エネルギーを吸収して持ち堪
え、破壊の速度を抑制する。
In this case, even if the cracks communicate with each other, the main rebar 2 and the steel fiber 5 retain the load while the main rebar 2 and the steel fiber 5 are soundly interposed, and thereafter the main rebar 2 has its own bending resistance. At the point of breakage, the specimen bends and breaks along the cutting plane perpendicular to its axial direction. The horizontal load at this time was about 200 kN. Therefore, the fracture mode in this case is a bending fracture precedent type, and the main reinforcing bar 2 and the steel fibers 5 absorb and sustain the shearing energy until this fracture, and suppress the rate of fracture.

【0020】図5は上記実験結果を示すもので、主鉄筋
2の降伏後、荷重があまり増加しないにも拘らず変位が
増加し、したがってエネルギーの吸収能力が大きく、そ
の靭性および靭性率(荷重ー変位曲線と横軸とで囲まれ
る面積の大きさ)が大きいことを示唆している。実験結
果では、主鉄筋2の降伏変位の10倍で降伏水平荷重の
80%を下回り、靭性率は10程度まで期待できること
が判明した。
FIG. 5 shows the results of the above experiment. After the yield of the main rebar 2, the displacement increases despite the load not increasing so much, so that the energy absorption capacity is large and its toughness and toughness ratio (load -The size of the area enclosed by the displacement curve and the horizontal axis is large. From the experimental results, it was found that 10 times the yield displacement of the main reinforcing bar 2 was below 80% of the yield horizontal load, and a toughness rate of about 10 could be expected.

【0021】次に主鉄筋2を配置しない供試体を作成
し、該供試体について同様な実験を行なったところ、そ
の靭性率は零で、破壊時の水平荷重は約100kNであ
った。したがって、鋼繊維5のみを配置したコンクリー
ト構造物は、これに主鉄筋2を配置した構造物に比べ
て、靭性は期待できず略脆性部材に相当し、また曲げ強
度は後者の約1/6であった。これは、鋼繊維5とコン
クリート6との結合が連続性と方向性とを欠き、結果的
にモザイク状の結合体を形成していることによるものと
考えられる。
Next, a test piece without the main rebar 2 was prepared, and a similar experiment was conducted. The toughness was zero and the horizontal load at the time of fracture was about 100 kN. Therefore, the concrete structure in which only the steel fibers 5 are arranged has less toughness than that of the structure in which the main reinforcing bars 2 are arranged, and corresponds to a substantially brittle member, and the bending strength is about 1/6 of the latter. Met. It is considered that this is because the connection between the steel fiber 5 and the concrete 6 lacks continuity and directionality, and as a result forms a mosaic-shaped combined body.

【0022】更に、同様な実験をプレーンコンクリート
で行なったところ、図6の結果を得た。この実験では、
主鉄筋2が降伏変位に達した後、早い段階で剪断力によ
るものと推定される斜めひび割れが供試体に発生し、こ
れが成長して水平荷重が急速に失われていった。
Further, when a similar experiment was conducted on plain concrete, the results shown in FIG. 6 were obtained. In this experiment,
After the main rebar 2 reached the yield displacement, diagonal cracks presumably due to shearing force occurred in the specimen at an early stage, which grew and the horizontal load was rapidly lost.

【0023】このように鋼繊維5に主鉄筋2を配置した
本発明の構造物は、鋼繊維5のみを配置したコンクリー
ト構造物に比べて、靭性率が飛躍的に向上し、またその
破壊形態は曲げ破壊先行型であるから、耐震強度が大幅
に向上し、剪断荷重を受ける建造物の柱、壁、床、橋脚
等に好適である。
As described above, in the structure of the present invention in which the main rebars 2 are arranged in the steel fibers 5, the toughness rate is remarkably improved as compared with the concrete structure in which only the steel fibers 5 are arranged, and the fracture mode thereof. Since is a bending fracture type, it has significantly improved seismic strength and is suitable for columns, walls, floors, piers, etc. of buildings subject to shear load.

【0024】したがって、上記柱7を構築後に例えば大
地震が発生し、柱7が水平方向に剪断力を受けた場合、
主鉄筋2と鋼繊維5とが剪断力と曲げに対抗し、柱7の
ひび割れを防止するとともに、ひび割れの分散を促し
て、柱7の変形と破壊を抑制する。
Therefore, if, for example, a large earthquake occurs after the pillar 7 is constructed and the pillar 7 is subjected to a shearing force in the horizontal direction,
The main rebars 2 and the steel fibers 5 resist shearing force and bending, prevent cracks in the columns 7, promote dispersion of the cracks, and suppress deformation and destruction of the columns 7.

【0025】また、鋼繊維5の混入によって柱7の靭性
が向上し、地震による衝撃ないし剪断荷重を吸収して、
柱7の変形と破壊速度を抑制する。そして、地震の衝撃
および振幅が次第に増加すると、ひび割れが分散して発
生し始め、これが成長して開口幅が増加し、遂に主鉄筋
2が降伏して曲げ破壊する この場合、ひび割れが成長して柱7が曲げ破壊するまで
の間、鋼繊維5と主鉄筋2が地震の衝撃、振動に堪え、
主鉄筋2が降伏し破断したところで、柱7が曲げ破壊す
る。しかも、ひび割れ面では鋼繊維5によって引張応力
を伝達されるため、コンクリート6自体の剪断耐力が向
上し、曲げ破壊先行型の破壊形態を促して、耐震強度を
増進する。
Further, the toughness of the column 7 is improved by mixing the steel fiber 5, and the shock or shear load due to the earthquake is absorbed,
The deformation and the breaking speed of the pillar 7 are suppressed. Then, when the shock and amplitude of the earthquake gradually increase, cracks start to be dispersed and start to grow, and the opening width increases, and finally the main rebar 2 yields and bends. In this case, cracks grow and grow. The steel fiber 5 and the main rebar 2 endure the shock and vibration of the earthquake until the pillar 7 bends and breaks,
When the main rebar 2 yields and breaks, the column 7 bends and breaks. In addition, since the tensile stress is transmitted by the steel fiber 5 on the cracked surface, the shear strength of the concrete 6 itself is improved, promoting the fracture mode of bending fracture precedent type and enhancing the seismic strength.

【0026】このように本発明は、剪断力を受けるコン
クリート構造物において、従来より多用されている帯鉄
筋を廃したから、該鉄筋の材料費の節減と工費の低減を
図れ、帯鉄筋の製作とその配筋作業の煩雑と手間を解消
して、これを迅速に施工でき、工期の短縮化と工費の低
減を図れるとともに、コンクリートを緻密かつ確実に打
設できる。
As described above, according to the present invention, in the concrete structure subjected to the shearing force, the strip rebar which has been frequently used conventionally is abolished, so that the material cost of the rebar and the construction cost can be reduced, and the strip rebar can be manufactured. And the complicated work and labor of the bar arrangement work can be eliminated, and this can be done quickly, the construction period can be shortened and the construction cost can be reduced, and the concrete can be densely and surely placed.

【0027】また、本発明は、帯鉄筋の代わりに鋼繊維
5をコンクリート6に分散配置し、該繊維5と主鉄筋2
とによって、構造物に作用する剪断力と曲げに抗するよ
うにしたから、構造物の靭性率と曲げ強度が飛躍的に向
上し、十分な耐震強度を有するコンクリート構造物を得
られる。しかも、鋼繊維5と主鉄筋2とを配置すること
によって、従来の鋼繊維補強コンクリートの強度、特に
靭性率が飛躍的に向上し、実用的な耐震コンクリート構
造物を提供できる。
Further, according to the present invention, steel fibers 5 are dispersed and arranged in concrete 6 instead of the strip reinforcing bars, and the fibers 5 and the main reinforcing bars 2 are
Since the shearing force and the bending acting on the structure are resisted by the above, the toughness and bending strength of the structure are dramatically improved, and a concrete structure having sufficient seismic strength can be obtained. Moreover, by arranging the steel fibers 5 and the main reinforcing bars 2, the strength of the conventional steel fiber reinforced concrete, particularly the toughness rate, is dramatically improved, and a practical earthquake-resistant concrete structure can be provided.

【0028】[0028]

【発明の効果】以上のように請求項1の発明は、主鉄筋
を無拘束に埋設し、構造物の内部に鋼繊維を均一に分散
配置したから、主鉄筋を拘束する従来の帯鉄筋を廃する
とともに、従来の鋼繊維補強コンクリートを改善し、コ
ンクリート構造物の引張強度と曲げ強度および剪断強度
を強化して、実用的な耐震構造物を提供でき、しかも靭
性率を飛躍的に向上して、曲げ破壊先行型の破壊形態を
促し、耐震強度を向上することができる。特に、主鉄筋
をコンクリート中に埋設することで、従来の鋼繊維補強
コンクリートに比べて、曲げ強度と靭性率とが飛躍的に
改善され、信頼性の高い耐震構造物を提供することがで
きる。請求項2の発明は、主鉄筋を無拘束に組み立てる
とともに、型枠内に所定量の鋼繊維を混入したコンクリ
ートを打設したから、従来多用されていた帯鉄筋の使用
を廃し、その配筋作業の煩雑を解消して、施工の迅速化
と工費の低減を図れるとともに、緻密かつ平滑なコンク
リート面を得ることができる。
As described above, according to the first aspect of the present invention, since the main rebars are embedded without restraint and the steel fibers are uniformly distributed inside the structure, the conventional strip rebars for restraining the main rebars are provided. While abolishing, the conventional steel fiber reinforced concrete was improved and the tensile strength, bending strength and shear strength of the concrete structure were strengthened to provide a practical seismic resistant structure, and the toughness rate was dramatically improved. As a result, it is possible to promote the pre-bending fracture type fracture mode and improve the earthquake resistance. In particular, by embedding the main rebar in concrete, the bending strength and toughness are dramatically improved as compared with the conventional steel fiber reinforced concrete, and a highly reliable seismic resistant structure can be provided. According to the invention of claim 2, since the main rebar is assembled without restraint and the concrete containing a predetermined amount of steel fibers is placed in the formwork, the use of the strip rebar, which has been widely used in the past, is eliminated, and the rebar is arranged. The complicated work can be eliminated, the construction can be speeded up and the construction cost can be reduced, and a dense and smooth concrete surface can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による施工法を順に示す斜視図である。FIG. 1 is a perspective view sequentially showing a construction method according to the present invention.

【図2】本発明による施工法の別の実施形態を示す斜視
図で、主鉄筋を少数の帯鉄筋で拘束した状態を示してい
る。
FIG. 2 is a perspective view showing another embodiment of a construction method according to the present invention, showing a state in which main reinforcing bars are restrained by a small number of strip reinforcing bars.

【図3】本発明による構築された構造物の状況を示す斜
視図である。
FIG. 3 is a perspective view showing a situation of a structure constructed according to the present invention.

【図4】図3のAーA線に沿う断面図である。4 is a sectional view taken along the line AA of FIG.

【図5】本発明を適用した柱の剪断耐力実験において、
荷重と変位との関係を示す実験図である。
[Fig. 5] In a shear strength test of a column to which the present invention is applied,
FIG. 4 is an experimental view showing a relationship between a load and a displacement.

【図6】プレーンコンクリートの剪断耐力実験におい
て、荷重と変位との関係を示す実験図である。
FIG. 6 is an experimental diagram showing the relationship between load and displacement in a shear strength test of plain concrete.

【符号の説明】[Explanation of symbols]

2 主鉄筋 5 鋼繊維 6 コンクリート 7 コンクリート構造物(柱)
2 Main rebar 5 Steel fiber 6 Concrete 7 Concrete structure (column)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松 岡 茂 東京都千代田区三崎町2丁目5番3号 鉄 建 建 設 株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shigeru Matsuoka 2-3-5 Misakicho, Chiyoda-ku, Tokyo Iron Building Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 内部に主鉄筋を配置したコンクリート構
造物において、主鉄筋を無拘束に埋設し、該構造物の内
部に鋼繊維を均一に分散配置したことを特徴とするコン
クリート構造物。
1. A concrete structure having a main reinforcing bar arranged therein, wherein the main reinforcing bar is embedded without restraint, and steel fibers are uniformly dispersed and arranged inside the structure.
【請求項2】 内部に主鉄筋を配置し、該鉄筋の外側に
型枠を組み立て、該型枠の内側にコンクリートを打設す
るコンクリート構造物の施工法において、主鉄筋を無拘
束に組み立てるとともに、前記型枠内に所定量の鋼繊維
を混入したコンクリートを打設したことを特徴とするコ
ンクリート構造物の施工法。
2. A method for constructing a concrete structure, in which a main rebar is arranged inside, a form is assembled outside the rebar, and concrete is placed inside the form, while the main rebar is assembled without restraint. A method for constructing a concrete structure, wherein concrete containing a predetermined amount of steel fibers is placed in the formwork.
JP12752996A 1996-05-22 1996-05-22 Concrete structure Expired - Fee Related JP3759995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12752996A JP3759995B2 (en) 1996-05-22 1996-05-22 Concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12752996A JP3759995B2 (en) 1996-05-22 1996-05-22 Concrete structure

Publications (2)

Publication Number Publication Date
JPH09310448A true JPH09310448A (en) 1997-12-02
JP3759995B2 JP3759995B2 (en) 2006-03-29

Family

ID=14962281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12752996A Expired - Fee Related JP3759995B2 (en) 1996-05-22 1996-05-22 Concrete structure

Country Status (1)

Country Link
JP (1) JP3759995B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644082B1 (en) * 2005-06-28 2006-11-10 삼성물산 주식회사 The reinforced concrete column improved fire resistance
JP2009114695A (en) * 2007-11-05 2009-05-28 Ohbayashi Corp Underground structure
CN109098446A (en) * 2018-10-17 2018-12-28 中交第公路工程局有限公司 Concrete component constructing device and concrete component construction method
JP2020012252A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Concrete column

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644082B1 (en) * 2005-06-28 2006-11-10 삼성물산 주식회사 The reinforced concrete column improved fire resistance
JP2009114695A (en) * 2007-11-05 2009-05-28 Ohbayashi Corp Underground structure
JP2020012252A (en) * 2018-07-13 2020-01-23 清水建設株式会社 Concrete column
CN109098446A (en) * 2018-10-17 2018-12-28 中交第公路工程局有限公司 Concrete component constructing device and concrete component construction method

Also Published As

Publication number Publication date
JP3759995B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
US9765521B1 (en) Precast reinforced concrete construction elements with pre-stressing connectors
US20170058479A1 (en) Reinforcement, structure and method for underground reinforced concrete constructions
US6718723B1 (en) Method and apparatus for strengthening the concrete elements using prestressing confinement
Yan et al. Compressive behaviours of steel-UHPC-steel sandwich composite walls using novel EC connectors
JP3834637B2 (en) Permanent and emergency seismic reinforcement method for wall columns
JPH09310448A (en) Concrete structure and work execution method thereof
KR20210068270A (en) Reinforcing structure for Column and Beam
AU2021102873A4 (en) A system and a method to provide ductile detailing in reinforced concrete wall–flat slab joint
RU2347047C2 (en) Method for building floor panel reconstruction
JP7157401B2 (en) Joint structure of column-center-column assembly type restraint
JPH0996197A (en) Structure of support wall and construction method therefor
JP2729129B2 (en) Core pillar
KR200263281Y1 (en) Apparatus for reinforcing a construction by enlarging its' size
KR20210104484A (en) Thrust piles with prestressing and construction method
JPH08338104A (en) Reinforced concrete pillar and its reinforcing method
KR20030006681A (en) Apparatus and method for reinforcing a construction by enlarging its' size
CN217232861U (en) Anti-seismic reinforcing structure of masonry structure wall
JP2885397B2 (en) Seismic concrete structure and its construction method
JPH0718877A (en) Method for preventing wall joint from cracking
JPH0960194A (en) Precast concrete structure
KR102639094B1 (en) Steel Column Foundation Connection Structure with Improved Resistance to Cone Breakage and its Construction Method
KR20200040596A (en) Mushroom construction using reinforced concrete and construction method thereof
JP3229249B2 (en) Construction method of reinforced concrete shear walls
JP2004124522A (en) Earthquake-resistant reinforcing structure
JP2023125216A (en) Bridge pier structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041227

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Effective date: 20050715

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees