JPS5825519B2 - Improved methane fermentation method - Google Patents

Improved methane fermentation method

Info

Publication number
JPS5825519B2
JPS5825519B2 JP52068936A JP6893677A JPS5825519B2 JP S5825519 B2 JPS5825519 B2 JP S5825519B2 JP 52068936 A JP52068936 A JP 52068936A JP 6893677 A JP6893677 A JP 6893677A JP S5825519 B2 JPS5825519 B2 JP S5825519B2
Authority
JP
Japan
Prior art keywords
sludge
tank
methane fermentation
flocculant
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52068936A
Other languages
Japanese (ja)
Other versions
JPS543802A (en
Inventor
広明 久野
郁一郎 白倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP52068936A priority Critical patent/JPS5825519B2/en
Publication of JPS543802A publication Critical patent/JPS543802A/en
Publication of JPS5825519B2 publication Critical patent/JPS5825519B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Description

【発明の詳細な説明】 本発明は有機系廃棄物および有機系廃液の処理に有効な
メタン発酵法、特に発酵槽内のメタン菌汚泥の改質とメ
タン菌汚泥濃度のコントロールに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a methane fermentation method that is effective in treating organic waste and organic waste liquid, and in particular to a method for improving methane bacteria sludge in a fermenter and controlling the concentration of methane bacteria sludge.

メタン発酵法の普及は下水汚泥処理やし尿処理の分野で
著しいが、発酵槽内の汚泥管理、例えば汚泥濃度の維持
についてはほとんど為されておらず、ましてや槽内の汚
泥組成(活性を有するメタン菌群の占有率)は研究段階
であって、これを実践に応用した例はない。
The spread of methane fermentation is remarkable in the fields of sewage sludge treatment and night soil treatment, but little has been done to manage the sludge inside the fermentation tank, for example, to maintain the sludge concentration. The occupancy rate of bacterial groups) is still at the research stage, and there are no examples of its practical application.

それ故、メタン発酵法の対象が今日までに行なわれてい
た下水汚泥やし尿などと、組成、BOD濃度等で著しく
異なった場合、従来法を適用すると槽内のメタン菌の環
境条件が最適条件から外れるため効率が著しく悪い。
Therefore, if the target of methane fermentation is significantly different in composition, BOD concentration, etc. from the sewage sludge or human waste that has been used to date, applying the conventional method will ensure that the environmental conditions for methane bacteria in the tank are optimal. Since it deviates from the target, efficiency is extremely low.

一例を挙げると、製餡工場の廃水(有機物濃度4500
ppm1BOD3000 ppm 、)のような希薄
廃水の場合、従来法ではメタン菌汚泥の溢流とメタン菌
汚泥の生成のバランスがとれなくなり、槽内の汚泥濃度
が低下し発酵能力がなくなってしまう。
To give an example, wastewater from an bean paste factory (with an organic matter concentration of 4500
In the case of dilute wastewater such as ppm 1 BOD 3000 ppm, ), the conventional method fails to balance the overflow of methane bacteria sludge and the production of methane bacteria sludge, resulting in a decrease in the sludge concentration in the tank and a loss of fermentation ability.

このためメタン発酵の処理水中に溢流する汚泥を回収し
、これを槽内に再び返送する方式を採るようになる。
For this reason, a method has been adopted in which the sludge that overflows into the treated water for methane fermentation is collected and returned to the tank.

しかも槽内の汚泥濃度を110000pp 以上に維持
すること(従来法)がごく普通のことになっている。
Moreover, it has become common practice to maintain the sludge concentration in the tank at 110,000 pp or more (conventional method).

しかし、この場合、処理水中に溢流するメタン菌汚泥と
処理水を固液分離することは次の点で困難である。
However, in this case, it is difficult to perform solid-liquid separation between the methane bacteria sludge that overflows into the treated water and the treated water due to the following points.

(1)汚泥濃度が110000pp 以上になると、沈
降速度(LV=m/h)が0.01〜0.1 m/ h
程度となり、表面積の非常に大きな沈殿槽が必要であり
、従来の2槽方式の後段がこの役目を果たしている。
(1) When the sludge concentration is 110,000 pp or more, the settling velocity (LV = m/h) is 0.01 to 0.1 m/h.
This requires a sedimentation tank with a very large surface area, and the second stage of the conventional two-tank system fulfills this role.

(2)強制的に汚泥脱水する場合、脱水のための助剤が
必要となり、しかも通常大気開放下で行なうため、この
脱水汚泥を槽内に返送しても効果はうすい。
(2) When sludge is forcibly dehydrated, an auxiliary agent is required for dewatering, and it is usually carried out in the open to the atmosphere, so even if the dehydrated sludge is returned to the tank, it is not very effective.

このため処理対象の廃水中に含まれる有機物のメタン発
酵槽容量に対する負荷を0.2〜4に9/m・日程度に
とり、しかも槽内の汚泥濃度を2000〜8000pp
m程度で運転し、通常の沈殿槽で固液分離するか、また
はバッチ方式で発酵槽と沈殿槽を兼用する方法が考えら
れている。
Therefore, the load of organic matter contained in the wastewater to be treated on the methane fermentation tank capacity is set to about 0.2 to 4 to 9/m/day, and the sludge concentration in the tank is set to 2000 to 8000 pp.
A method is being considered, in which the fermenter is operated at a speed of about 100 m and solid-liquid separation is carried out in an ordinary settling tank, or a batch system is used in which both a fermenter and a settling tank are used.

しかしながらメタン菌の増殖率△Sは △5=aXLa a=0.05〜0.3 La:分解された有機物量 程度で、通常の活性汚泥法に比べて低い。However, the growth rate △S of methane bacteria is △5=aXLa a=0.05~0.3 La: amount of decomposed organic matter This is lower than the normal activated sludge method.

その為、沈殿槽で固液分離する際、できる限り汚泥を捕
獲し処理水中への溢流を防いで、生成と溢流のバランス
をとる必要がある。
Therefore, when performing solid-liquid separation in a sedimentation tank, it is necessary to capture as much sludge as possible and prevent it from overflowing into the treated water to maintain a balance between production and overflow.

ところがメタン発酵槽内ではCO□ガスが遊離した状態
で多量に溶は込んでおり、沈殿槽が開放型の場合CO2
の一時的な大気放散が起こり、しかも分解途中の有機物
が沈殿槽中でガス化し汚泥の比重を見かけ上軽くするた
めスカムの多量な発生が起ることが多々あり、活性汚泥
法のようにすみやかな固液分離ができない。
However, in a methane fermentation tank, a large amount of CO□ gas is dissolved in a free state, and if the settling tank is an open type, CO2
Temporary atmospheric dissipation occurs, and organic matter in the process of decomposition gasifies in the settling tank, making the specific gravity of the sludge appear lighter, which often results in the generation of a large amount of scum. solid-liquid separation is not possible.

また汚泥を含んだ状態でメタン発酵処理水を沈殿槽に送
り込んだ場合、発泡性があり、これが固液分離の際に阻
害を与えることが多々ある。
Furthermore, when methane fermentation treated water containing sludge is sent to a settling tank, it has foaming properties, which often impedes solid-liquid separation.

又、メタン発酵槽と固液分離槽を兼用する方式%式% 号参照)も提案されているが、単にこの方式を採用する
だけでは、固液分離をメタン発酵槽で行なうため次のよ
うな欠点がある。
In addition, a system that combines a methane fermentation tank and a solid-liquid separation tank (see % formula %) has been proposed, but simply adopting this system would require the following: There are drawbacks.

■ 槽内では固液分離中にもガスが発生し、みかけの汚
泥沈降速度(LV)が非常に低くなり、従来法のような
高い汚泥濃度では固液分離時間が極端に長くなって、1
日、5〜20時間の固液分離時間が必要となる。
■ Gas is generated in the tank during solid-liquid separation, and the apparent sludge settling velocity (LV) becomes extremely low, and with the high sludge concentration as in the conventional method, the solid-liquid separation time becomes extremely long, resulting in
Solid-liquid separation time of 5 to 20 hours per day is required.

■ その為発酵の反応時間がとれずに酸生成反応が先行
し、槽内pHの低下、ガス発生率の低下につながり、最
終的にメタン発酵ができなくなる。
(2) As a result, the fermentation reaction time is not sufficient and the acid production reaction takes precedence, leading to a decrease in the pH in the tank and a decrease in the gas generation rate, ultimately making it impossible to carry out methane fermentation.

■ 単槽式の場合、流出するSSキャリオーバーを捕獲
回収することが不可能であり、キャリオーバーの量によ
っては槽内汚泥濃度が激減し、メタン発酵が不可能とな
る。
■ In the case of a single tank type, it is impossible to capture and recover the SS carryover that flows out, and depending on the amount of carryover, the sludge concentration in the tank decreases drastically, making methane fermentation impossible.

■ 汚泥濃度2000〜8000ppmの低濃度域にお
いては、単槽方式の固液分離では圧密濃度が低いため、
槽内でガス発生が起こると汚泥が浮上し、SSのキャリ
オーバーは起こり易い状態になる。
■ In the low concentration range of sludge concentration of 2000 to 8000 ppm, single-tank solid-liquid separation has a low consolidated concentration;
When gas is generated in the tank, sludge floats to the surface, making SS carryover more likely.

そこで、本発明者等はメタン菌の有機物分解条件を最適
とし、しかも固液分離をも容易に行なえ、上記のような
従来のメタン発酵法の欠点を解消できる方法について研
究を重ねた結果、次のような条件を組合わせることによ
ってこの目的が達成できることを見出して本発明に到達
したものである。
Therefore, the present inventors have conducted repeated research on a method that can optimize the organic matter decomposition conditions for methane bacteria, easily perform solid-liquid separation, and eliminate the drawbacks of the conventional methane fermentation method as described above. The present invention was achieved by discovering that this object can be achieved by combining the following conditions.

即ち、その条件とは、 ■ 原水中にあらかじめ無機凝集助剤を100〜200
0ppm(重量比で1/10’〜115×102)添加
する。
That is, the conditions are as follows: (1) Adding 100 to 200% of an inorganic coagulation aid to the raw water in advance.
Add 0 ppm (1/10' to 115 x 102 by weight).

■ 槽内の汚泥濃度を2000〜8000ppmにコン
トロールする。
■ Control the sludge concentration in the tank to 2,000 to 8,000 ppm.

■ 無機凝集剤によって凝集する汚泥中の無機物/汚泥
中の有機物の割合を0.01〜0.5の範囲に制御する
(2) The ratio of inorganic matter in sludge to organic matter in sludge that is flocculated by an inorganic flocculant is controlled within the range of 0.01 to 0.5.

ことである。That's true.

上記無機凝集剤はpH6,0〜8.0の中性域で凝集能
力があり、メタン菌に対し毒性を示さないことが必要で
あり、塩化第二鉄F e C13やA4 (S 04.
’) 3等が用いられる。
The above-mentioned inorganic flocculant must have flocculating ability in the neutral pH range of 6.0 to 8.0 and must not be toxic to methane bacteria, and must not be toxic to methane bacteria, such as ferric chloride F e C13 or A4 (S 04.
') 3rd grade is used.

本発明を第1図にしたがって更に詳しく説明する。The present invention will be explained in more detail with reference to FIG.

メタン発酵の対象となる原水はライン11から調整槽1
に導かれる。
Raw water for methane fermentation is supplied from line 11 to adjustment tank 1
guided by.

この調整槽1は十分な撹拌機構(機械式あるいはガス式
)を有しており、その周辺に栄養タンク4、pH調調整
用薬液クック5無機凝集剤溶解クンクロがあり、それぞ
れライン15.16,17から調整槽1に入るようにな
っている。
This adjustment tank 1 has a sufficient stirring mechanism (mechanical or gas type), and around it there are a nutrient tank 4, a pH adjustment chemical cook 5, an inorganic coagulant dissolving tank, and lines 15, 16, and 16, respectively. It enters the adjustment tank 1 from 17 onwards.

調整槽1にはpH調整薬液、例えばNaOH1Ca(O
H)2のようなアルカリ剤、HCl1H2SO4のよう
な酸剤をライン16から導入し、原水のpHを6〜8に
調整する。
The adjustment tank 1 contains a pH adjustment chemical solution, for example, NaOH1Ca(O
An alkaline agent such as H)2 or an acidic agent such as HCl1H2SO4 is introduced through line 16 to adjust the pH of the raw water to 6-8.

次に尿素、リン酸アンモニウムのようなN、P源をライ
ン15から調整槽1に導き、原水中の有機物に対してN
、Pとしてそれぞれ1/10〜1/20.1150〜1
/200の範囲で投入する。
Next, N and P sources such as urea and ammonium phosphate are led from line 15 to adjustment tank 1, and the organic matter in the raw water is
, P is 1/10 to 1/20.1150 to 1, respectively.
Input within the range of /200.

更に原水量に対し重量比で1/10’〜115×102
の無機凝集剤をライン17から加える。
Furthermore, the weight ratio to the amount of raw water is 1/10' to 115 x 102
of inorganic flocculant is added through line 17.

このように調整した原水はライン12からメタン発酵槽
2に入り嫌気性下で分解される。
The raw water thus adjusted enters the methane fermentation tank 2 through the line 12 and is decomposed under anaerobic conditions.

このメタン発酵槽2で発生したメタンガスと炭酸ガスの
混合ガスはライン18を経てガスホルダー7に貯留する
A mixed gas of methane gas and carbon dioxide gas generated in the methane fermentation tank 2 is stored in the gas holder 7 via a line 18.

このガスは再びライン25を経て発酵槽に導き撹拌に供
することができ、また余剰の生成ガスはライン23から
ボイラー用あるいは乾燥用燃料として有効利用を計るこ
とができる。
This gas can be led back to the fermenter via the line 25 and used for stirring, and the excess generated gas can be effectively used as boiler or drying fuel through the line 23.

一方、メタン発酵処理水はライン13から沈殿槽3に入
り、メタン菌汚泥と清澄水に固液分離する。
On the other hand, the methane fermentation treated water enters the settling tank 3 from the line 13 and is separated into solid-liquid into methane bacteria sludge and clear water.

固液分離された汚泥はライン19から一部ライン20を
経てメタン発酵槽2に返送しメタン発酵槽の濃度を20
00〜8000ppmに維持する。
The solid-liquid separated sludge is partially returned to the methane fermentation tank 2 from line 19 through line 20, and the concentration of the methane fermentation tank is reduced to 20%.
Maintain between 00 and 8000 ppm.

それ以外の汚泥はライン21から脱水機8に入り、脱水
した後ライン22から排出する。
The remaining sludge enters the dehydrator 8 through line 21 and is discharged through line 22 after being dehydrated.

沈殿槽3からの清澄液は未分解の有機物を含んでいるた
め、活性汚泥法や凝集沈殿法などの二次処理をするため
ライン14から排出される。
Since the clarified liquid from the settling tank 3 contains undecomposed organic matter, it is discharged from the line 14 for secondary treatment such as activated sludge method or coagulation sedimentation method.

またバッチ方式の場合にはガスホルダー7と沈殿槽3を
メタン発酵槽2と合体させてコンパクト化することも可
能である。
In the case of a batch system, it is also possible to combine the gas holder 7 and the settling tank 3 with the methane fermentation tank 2 to make it more compact.

本発明方法はメタン発酵と固液分離を同一槽で行なうセ
ミバッチ方式に特に有効である。
The method of the present invention is particularly effective in a semi-batch system in which methane fermentation and solid-liquid separation are carried out in the same tank.

本発明方法により次のような効果が奏せられる。The method of the present invention provides the following effects.

■ 無機凝集剤添加により処理水の清澄度が高まり、微
細な浮遊物質(SS)も捕獲するため、処理水の水質が
向上する。
■ Adding an inorganic flocculant increases the clarity of treated water and captures fine suspended solids (SS), improving the quality of treated water.

■ メタン菌汚泥濃度を2.000〜8,000 pp
m に制御するため、固液分離が容易で、しかも■との
相乗効果によって汚泥沈降速度が向上し、固液分離時間
が短縮される。
■ Methane bacteria sludge concentration from 2,000 to 8,000 pp
Since solid-liquid separation is controlled to m, solid-liquid separation is easy, and the synergistic effect with (2) improves the sludge settling rate and shortens the solid-liquid separation time.

■ 汚泥のフロック化がいっそう進み、■の効果を推進
するとともに、メタン発酵槽内のスカムの発生が少なく
なる。
■ The sludge becomes more flocculent, which promotes the effect of ■ and reduces the generation of scum in the methane fermentation tank.

■ 汚泥中の組成割合として、(無機凝集剤によって凝
集する汚泥中の無機物)/(汚泥中の有機物)を0.0
1〜0.5の範囲に維持することによってメタン菌汚泥
の活性度を高く保持することができる。
■ As the composition ratio in sludge, (inorganic substances in sludge flocculated by inorganic flocculant)/(organic substances in sludge) is 0.0.
By maintaining the ratio within the range of 1 to 0.5, the activity of the methane bacteria sludge can be maintained at a high level.

なお■項のメタン菌汚泥の組成コントロールは、槽内の
汚泥濃度の選択と、無機凝集剤との添加率によって容易
に制御できる。
In addition, the composition control of the methane bacteria sludge in section (2) can be easily controlled by selecting the sludge concentration in the tank and the addition rate of the inorganic flocculant.

本発明方法は都市ゴミ、農畜産廃棄物、産業水のメタン
発酵装置等に適用できるが、ペクチン質等の高粘性高分
子物質を含有する廃水の処理に対して特に有用である。
Although the method of the present invention can be applied to methane fermentation equipment for municipal waste, agricultural and livestock waste, and industrial water, it is particularly useful for treating wastewater containing highly viscous polymeric substances such as pectin.

高粘性高分子物質含有廃液としてはミカン缶詰工場やジ
ュース工場から排出される、ペクチン質と呼ばれる高粘
性多糖類含有の廃液等があり、この廃液は微量の未分解
ペクチン質の畜積、糸状性細菌の繁殖などにより除々に
汚泥が膨潤して通常のメタン発酵法では固液分離が不可
能となるが、本発明方法の適用によりメタン発酵を十分
継続することができるものである。
Examples of waste liquids containing highly viscous polymeric substances include waste liquids containing highly viscous polysaccharides called pectic substances, which are discharged from mandarin orange canning factories and juice factories. The sludge gradually swells due to the proliferation of bacteria, making solid-liquid separation impossible with ordinary methane fermentation methods, but by applying the method of the present invention, methane fermentation can be continued sufficiently.

実施例 1 ミカン缶詰の薬品処理廃液(B、0.D、7000pp
m1有機物15000ppm)のメタン発酵試験を、槽
内汚泥濃度1000ppm、 2000 ppm。
Example 1 Chemical treatment waste liquid for canned mandarin oranges (B, 0.D, 7000pp
The methane fermentation test was carried out using 15,000 ppm of organic matter in the tank at a tank sludge concentration of 1,000 ppm and 2,000 ppm.

4000ppm、8000 ppm、12000ppm
の各点で、原水のまま(−・−)および原水中にFFe
C73300pp添加したもの(−ヘ−)について行な
った結果を第2〜5図に示す。
4000ppm, 8000ppm, 12000ppm
At each point, FFe is present in the raw water (-・-) and in the raw water.
The results for the sample to which 300 pp of C73 was added (-he-) are shown in Figures 2-5.

第2図は対COD発生ガス量に関し、FeCl3を添加
しても対COD発生ガス量は変らず、凝集剤添加の悪影
響はないことが判り、また槽内pHを示した第3図から
は、凝集剤添加によりpHが変化しないことが判る。
Figure 2 shows the amount of gas generated against COD, and it is clear that the addition of FeCl3 does not change the amount of gas generated against COD, indicating that there is no adverse effect of adding a flocculant. Also, from Figure 3, which shows the pH in the tank, It can be seen that the pH does not change due to the addition of the flocculant.

第4図は処理水のSSキャリオーバーに関し、凝集剤添
加によってSSキャリオーバーは減少しているが、槽内
汚泥濃度が上昇すると凝集剤添加の効果がなくなること
を示している。
FIG. 4 shows that the SS carryover of treated water is reduced by adding a coagulant, but as the sludge concentration in the tank increases, the effect of adding a coagulant disappears.

第5図は汚泥沈降速度に関し、凝集剤添加によって汚泥
沈降速度が高くなり沈降分離が有利となるが、汚泥濃度
110000pp以上では効果がなくなることを示して
いる。
Regarding the sludge settling rate, FIG. 5 shows that the addition of a coagulant increases the sludge settling rate and makes sedimentation separation advantageous, but it becomes ineffective when the sludge concentration exceeds 110,000 pp.

本発明において処理水の清澄度が高まり、浮遊物質の捕
獲が可能で水質が向上する理由としては、凝集剤添加に
よって水酸化物フロックを生成し、微細な浮遊物質と共
に沈殿する為と考えられる。
The reason why the clarity of the treated water increases and the quality of the water improves by being able to capture suspended solids in the present invention is thought to be that the addition of a flocculant generates hydroxide flocs, which precipitate together with fine suspended solids.

実施例 2 実施例1と同様の廃水について、実施例1と同様の条件
下でメタン発酵のビーカーテストを実施したところ第6
図のような結果が得られた。
Example 2 A beaker test for methane fermentation was conducted on the same wastewater as in Example 1 under the same conditions as in Example 1.
The results shown in the figure were obtained.

図中の記号は、凝集剤添加の場合のC0D(−〇−一)
、5S(−含−)、pH(−()−)、凝集剤無添加の
場合のC0D(−・−)、5S(−&−)、pH(+)
を表わす。
The symbol in the figure is C0D (-〇-1) when flocculant is added.
, 5S (-contains-), pH (-()-), COD (-・-) without flocculant added, 5S (-&-), pH (+)
represents.

この図から明らかなようにpHについては汚泥濃度20
00ppm以下では酸性側への移行が著しく、メタン発
酵の最適条件である。
As is clear from this figure, when it comes to pH, the sludge concentration is 20
Below 0.00 ppm, the shift to the acidic side is significant, which is the optimum condition for methane fermentation.

6 (pH(8の範囲を外れることになる。6 (pH (out of the range of 8).

この理由は増殖率の違いによりメタンガス生成菌と通性
嫌気性菌とのバランスがくずれ、通性嫌気性菌による酸
生成が先行して酸の畜積が起こる為である。
The reason for this is that the balance between methane gas-producing bacteria and facultative anaerobes is disrupted due to differences in growth rates, and acid production by facultative anaerobes precedes acid accumulation.

処理水のSSについては8000ppm の汚泥濃度を
超えると急激にSS除去率が低下してSSのキャリオー
バーが増加し、同時にSSによってCOD値の除去率も
低下する。
As for SS in the treated water, when the sludge concentration exceeds 8000 ppm, the SS removal rate rapidly decreases, SS carryover increases, and at the same time, the COD value removal rate decreases due to SS.

またCODについては汚泥濃度が2000ppm以下に
なると、酸生成のみが進み、除去率の低下が起こること
が判った。
Regarding COD, it was found that when the sludge concentration was 2000 ppm or less, only acid production proceeded and the removal rate decreased.

一方、凝集剤無添加の場合には、CODおよびSSの除
去率とも本発明の場合に比べて著しく悪G)。
On the other hand, when no coagulant was added, both COD and SS removal rates were significantly worse than in the case of the present invention.

汚泥濃度2000 ppm 〜8000 ppmの領域
で凝集剤添加の効果があられれている。
The effect of adding a flocculant was found in the sludge concentration range of 2000 ppm to 8000 ppm.

この結果から、従来、汚泥濃度が非常に低い領域でメタ
ン発酵法が実施できなかった大きな理由の1つとして、
汚泥のキャリオーバーがあることが判る。
From this result, one of the major reasons why the methane fermentation method could not be implemented in areas where the sludge concentration was extremely low is that
It is clear that there is sludge carryover.

一例として4000ppm の汚泥濃度を採ると増殖汚
泥量は(1)式で表示できる。
As an example, if a sludge concentration of 4000 ppm is taken, the amount of grown sludge can be expressed by equation (1).

△S= a XL a−b XF (1
)△S:増殖汚泥量(kg/ day ) a:メタン菌汚泥の増殖率(ky/ky)La:原液中
の有機物あるいはBOD(kg/day ) b:汚泥のキャリオーバー濃度(kg/ m’ )F:
原液の流入量(m/ day ’) いま、実施例1のデータをみると、凝集剤無添加の場合
、a=0.15、La=400、b=o、s、F=80
であるから△5=−4となる。
△S= a XL a-b XF (1
)ΔS: Amount of propagated sludge (kg/day) a: Growth rate of methane bacteria sludge (ky/ky) La: Organic matter or BOD in the stock solution (kg/day) b: Carryover concentration of sludge (kg/m') )F:
Inflow amount of stock solution (m/day') Looking at the data of Example 1, when no flocculant is added, a=0.15, La=400, b=o, s, F=80
Therefore, Δ5=-4.

即ち、槽内汚泥濃度は4kg/dayずつ減少し、最終
的には汚泥濃度が11000pp以下となってメタン発
酵ができなくなるために、低濃度域でのメタン発酵は通
常では殆んど不可能であった。
In other words, the sludge concentration in the tank decreases by 4 kg/day, and eventually the sludge concentration becomes less than 11,000 pp, making methane fermentation impossible. Therefore, methane fermentation is normally almost impossible in the low concentration range. there were.

一方、凝集剤添加の場合にはb=0.25となり(1)
式の△5−40で、汚泥濃度を維持する為には40 k
g/ dayの汚泥を槽内から引き抜けば正常なメタン
発酵が維持できるようになる。
On the other hand, in the case of adding a flocculant, b=0.25 (1)
According to the formula △5-40, 40 k is required to maintain the sludge concentration.
Normal methane fermentation can be maintained by removing g/day of sludge from the tank.

したがって汚泥のキャリオーバーは低汚泥濃度でメタン
発酵する場合、非常に重要なファクターとなることが判
る。
Therefore, it can be seen that sludge carryover is a very important factor when performing methane fermentation at low sludge concentrations.

また凝集剤無添加の対照区の汚泥濃縮時間を1として凝
集剤添加(原液に対してFeC11s 500ppm添
加)の場合の比較を行なったところ、第7図のようにな
り2000〜8000ppmの汚泥濃度の領域で凝集剤
添加の効果がすぐれていることが判った。
In addition, when we set the sludge concentration time of the control area without flocculant as 1, we compared the case with flocculant addition (adding 500 ppm of FeC11s to the stock solution), as shown in Figure 7. It was found that the effect of adding a flocculant was excellent in this area.

実施例 3 実施例1と同様なサンプルを用いて、原水中のFeCl
3添加量を変え、槽内の汚泥濃度を4000ppmでメ
タン発酵を行なったところ、対COD発生ガス量につい
ては第8図の結果が得られた。
Example 3 Using the same sample as in Example 1, FeCl in raw water was
When methane fermentation was carried out at a sludge concentration in the tank of 4000 ppm by changing the amount of 3 added, the results shown in Fig. 8 were obtained regarding the amount of gas generated relative to COD.

この図から判るようにFeCl3の添加量が2000゜
ppmを越えるとガス生成量が著しく低下している。
As can be seen from this figure, when the amount of FeCl3 added exceeds 2000 ppm, the amount of gas produced decreases significantly.

またガス生成が低下した時点で汚泥を分析したところ、
Fe2O3/有機物が0.58であった。
We also analyzed the sludge when gas production decreased.
Fe2O3/organic matter was 0.58.

また凝集剤無添加の場合のガス発生量を1として凝集剤
添加の場合との比較データを第9図に示した。
Furthermore, data for comparison with the case where a flocculant was added is shown in FIG. 9, with the gas generation amount in the case where no flocculant was added being 1.

この結果、凝集剤2000ppm 添加までは無添加の
場合と同等ないし若干高いガス発生量を示しているが、
2000ppm(重量比115xlO2)を越えると逆
に低くなっていくので、凝集剤添加は2000ppm以
下に抑えなければいけないことが判る。
As a result, up to the addition of 2000 ppm of flocculant, the amount of gas generated was the same as or slightly higher than that without the addition of flocculant.
If it exceeds 2000 ppm (weight ratio 115xlO2), it becomes lower, so it is clear that the addition of flocculant must be kept below 2000 ppm.

またメタン発酵終了時の汚泥組成を分析して汚泥中の灼
熱減量を有機物量とし、凝集剤の主体金属酸化物(Fe
CAaであればFe20a )との比を求めて表示す
ると、Fe2O3/有機物が0.5以上でガス発生能力
が低下していることが判る。
In addition, the sludge composition at the end of methane fermentation was analyzed, and the loss on ignition in the sludge was taken as the amount of organic matter, and the main metal oxide (Fe
When the ratio of CAa to Fe20a) is calculated and displayed, it can be seen that the gas generation ability decreases when Fe2O3/organic matter is 0.5 or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示すフローシート、第2
〜6図は本発明法と従来法の効果を比較したグラフであ
り、第7〜9図は本発明における槽内汚泥濃度および凝
集剤の量の変化に対応した効果を示すグラフである。
FIG. 1 is a flow sheet showing one embodiment of the present invention;
6 are graphs comparing the effects of the method of the present invention and the conventional method, and FIGS. 7 to 9 are graphs showing the effects of the present invention corresponding to changes in the sludge concentration in the tank and the amount of flocculant.

Claims (1)

【特許請求の範囲】[Claims] 1 メタン発酵法において、原水中に無機凝集剤を重量
比で1710’〜115×102の割合で添加し、メタ
ン発酵槽内の汚泥濃度を2000〜8000ppm 、
無機凝集剤によって凝集する汚泥中の無機物/汚泥中の
有機物の割合を0.01〜0.5の範囲で運転すること
を特徴とするメタン発酵法。
1 In the methane fermentation method, an inorganic flocculant is added to raw water at a weight ratio of 1710' to 115 x 102, and the sludge concentration in the methane fermentation tank is adjusted to 2000 to 8000 ppm.
A methane fermentation method characterized by operating the ratio of inorganic matter in sludge to organic matter in sludge flocculated by an inorganic flocculant in a range of 0.01 to 0.5.
JP52068936A 1977-06-13 1977-06-13 Improved methane fermentation method Expired JPS5825519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52068936A JPS5825519B2 (en) 1977-06-13 1977-06-13 Improved methane fermentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52068936A JPS5825519B2 (en) 1977-06-13 1977-06-13 Improved methane fermentation method

Publications (2)

Publication Number Publication Date
JPS543802A JPS543802A (en) 1979-01-12
JPS5825519B2 true JPS5825519B2 (en) 1983-05-27

Family

ID=13388038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52068936A Expired JPS5825519B2 (en) 1977-06-13 1977-06-13 Improved methane fermentation method

Country Status (1)

Country Link
JP (1) JPS5825519B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776751A (en) * 2016-04-13 2016-07-20 太原理工大学 Process for efficient separation of organic carbon source in sewage and energy development and utilization

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115798A (en) * 1982-12-24 1984-07-04 Niigata Eng Co Ltd Treatment of organic treating material subjected to wet oxidation or heat treatment
BR8402087A (en) * 1984-05-04 1985-12-10 Vale Do Rio Doce Co PROCESS OF OBTAINING METALLIC TITANIUM FROM ANASTASIA CONCENTRATE, BY ALUMINOTERMIA AND MAGNESIOTERMIA
JPH03249999A (en) * 1990-02-28 1991-11-07 Kubota Corp Treatment of sludge
JP2542118B2 (en) * 1990-10-22 1996-10-09 動力炉・核燃料開発事業団 Method of converting uranium dioxide into metallic uranium lumps
JP4529554B2 (en) * 2004-06-18 2010-08-25 富士ゼロックス株式会社 Wastewater treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105776751A (en) * 2016-04-13 2016-07-20 太原理工大学 Process for efficient separation of organic carbon source in sewage and energy development and utilization

Also Published As

Publication number Publication date
JPS543802A (en) 1979-01-12

Similar Documents

Publication Publication Date Title
US7344643B2 (en) Process to enhance phosphorus removal for activated sludge wastewater treatment systems
US4292176A (en) Use of activated carbon in waste water treating process
US4173531A (en) Nitrification-denitrification of wastewater
JP3737410B2 (en) High concentration organic wastewater treatment method and apparatus using biomaker
US4073722A (en) Process for the purification of waste water
US4370233A (en) Chemical detoxification of sewage sludge
CA2057861C (en) Process for the treatment of water containing sulphur compounds
Moore Jr et al. Nutrient transformations in sediments as influenced by oxygen supply
JP3672117B2 (en) Organic wastewater treatment method and apparatus
Kostenbader et al. Biological oxidation of coke plant weak ammonia liquor
US4983297A (en) Waste water treating process scheme
US20130112617A1 (en) Redox wastewater biological nutrient removal treatment method
JP4925208B2 (en) Aerobic granule formation method, water treatment method and water treatment apparatus
EP0436254A1 (en) Treatment of aqueous waste streams
US6106717A (en) Method for treating organic waste water
US5160632A (en) Cyanide removal from coke oven wash waters
JPH09308895A (en) Method for treating selenium-containing waste water and apparatus therefor
JPH09122682A (en) Method for treating waste water
Johannes Pöpel et al. Influence of enhanced biological phosphorus removal on sludge treatment
JPH09108690A (en) Treatment of phosphorus containing sewage
JPS5825519B2 (en) Improved methane fermentation method
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
US5186837A (en) Method for biological purification of wastewater with no excess sludge
Franta et al. Effects of operation conditions on advanced COD removal in activated sludge systems
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water