JPS5824896B2 - Continuous wave magnetron for high power - Google Patents

Continuous wave magnetron for high power

Info

Publication number
JPS5824896B2
JPS5824896B2 JP4094180A JP4094180A JPS5824896B2 JP S5824896 B2 JPS5824896 B2 JP S5824896B2 JP 4094180 A JP4094180 A JP 4094180A JP 4094180 A JP4094180 A JP 4094180A JP S5824896 B2 JPS5824896 B2 JP S5824896B2
Authority
JP
Japan
Prior art keywords
output
anode
continuous wave
magnetron
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4094180A
Other languages
Japanese (ja)
Other versions
JPS56136431A (en
Inventor
岡部隆博
玉井秀昭
柴田長吉郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINNIPPON MUSEN KK
Original Assignee
SHINNIPPON MUSEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINNIPPON MUSEN KK filed Critical SHINNIPPON MUSEN KK
Priority to JP4094180A priority Critical patent/JPS5824896B2/en
Publication of JPS56136431A publication Critical patent/JPS56136431A/en
Publication of JPS5824896B2 publication Critical patent/JPS5824896B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/36Coupling devices having distributed capacitance and inductance, structurally associated with the tube, for introducing or removing wave energy

Landscapes

  • Microwave Tubes (AREA)

Description

【発明の詳細な説明】 本発明は連続波マグネトロンに関し、特に100KWを
越える発振出力が可能な新規な高出力用連続波マグネト
ロンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous wave magnetron, and more particularly to a novel high-power continuous wave magnetron capable of generating an oscillation output exceeding 100 KW.

連続波マグネトロンは物質の誘電加熱用として発振出力
数100KWの通常の電子レンジ用から数10KWの工
業加熱用まで種々の用途に応じて使い分けられている。
Continuous wave magnetrons are used for dielectric heating of materials, and are used for various purposes, ranging from ordinary microwave ovens with an oscillation output of several 100 kW to industrial heating with an oscillation output of several tens of kW.

これらマグネトロンは発振効率が高く、物質の内部から
加熱できるため加熱効率が非常に良いことから利用範囲
が段々広がり、最近では原子力発電所等から発生する放
射性廃棄物を含んだ焼却灰等の処理や都市ゴミ、産業廃
棄物等の処理にマイクロ波を利用して廃棄物を燃焼、溶
融、固化して体積を非常に小さくし廃棄処理を容易にす
る研究が進められている。
These magnetrons have high oscillation efficiency and can heat materials from within, so their range of use is gradually expanding, and recently they have been used to treat incinerated ash containing radioactive waste generated from nuclear power plants, etc. Research is underway to use microwaves to treat municipal garbage, industrial waste, etc. to burn, melt, and solidify the waste, reducing its volume to a very small size and making it easier to dispose of.

これに伴ない処理物が非常に多く々るためマグネトロン
の高出力化が要望され、1100Kを越える高出力連続
波マグネトロンが要求されてきている。
As a result of this, the number of objects to be processed increases, and therefore a high output magnetron is required, and a high output continuous wave magnetron exceeding 1100K is required.

しかしながら、今世界で現存する高出力の連続波マグネ
トロンは出力100KWのものが1種類あるのみで、こ
れ以上の高出力化を達成するためには、マグネトロンに
用いる材料の限界(温度上昇に伴なうものなど)等から
従来通りの設計では高出力化を達成することは不可能で
ある。
However, there is only one type of high-output continuous wave magnetron that currently exists in the world, which has an output of 100 KW. It is impossible to achieve high output with conventional design due to the problems such as vegetative damage, etc.

即ち、例えば陰極にしても、陽極直流電力(発振出力/
発振効率)の2係程度は陰極に逆衝撃として加わり、発
振出力を大きくしようとすると、陰極に加わる電力も大
きくなり、通常の陰極の大きさのままでは陰極で発生す
る熱を完全に放散させることができず溶断することにな
る。
That is, for example, even if the cathode is used, the anode DC power (oscillation output/
The factor of 2 (oscillation efficiency) is applied to the cathode as a reverse shock, and if you try to increase the oscillation output, the power applied to the cathode will also increase, and if the cathode is of a normal size, the heat generated at the cathode will not be completely dissipated. It will not be possible to do so and it will melt.

そのため陰極の大きさを大きくしなければなら々いが、
陰極の長さを長くして大きくすれば陽極片の長さも長く
しなければならず、陽極片を長くすると両端部での電位
が異なり不都合が生じてくる。
Therefore, the size of the cathode must be increased,
If the length of the cathode is increased, the length of the anode piece must also be increased, and if the anode piece is lengthened, the potentials at both ends will differ, causing problems.

また陰極径を大きくして陰極を大きくすると陽極径も大
きくし々ければなら人が一般に陽極電圧Va、陽極半径
γ8、陰極半径γ。
In addition, if the cathode diameter is increased to make the cathode larger, the anode diameter must also be increased, and generally speaking, the anode voltage Va, the anode radius γ8, and the cathode radius γ.

、γC/γ8=σ、分割数2n、波長λ、磁界Bの間に
は次式の関係がある。
, γC/γ8=σ, the number of divisions 2n, the wavelength λ, and the magnetic field B have the following relationship.

従って、σ、λ、Bを一定にしたままでγaを増大させ
ると陽極電圧Vaは陽極半径γaの2乗に比例して増大
し、1100K出力のマグネトロンではVaが23.5
KVで済むものの、出力が1001@を越えると実用上
の限界である50KVをはるかに越え、好ましくない。
Therefore, if γa is increased while σ, λ, and B are kept constant, the anode voltage Va increases in proportion to the square of the anode radius γa, and in a magnetron with an output of 1100K, Va is 23.5.
Although only KV can be used, if the output exceeds 1001@, it will far exceed the practical limit of 50 KV, which is not preferable.

そのため分割数2nを増やして陽極電圧の低下を試みる
と、空胴の容量が増加し、インダクダンスが減少するた
め、例えば分割数2nを2倍にすると無負荷の空胴のQ
は約%に低下し、負荷時のQを同程度に維持しようとす
ると、回路効率が約10%低下することにカリ好ましく
ない。
Therefore, if you try to lower the anode voltage by increasing the number of divisions 2n, the capacitance of the cavity increases and the inductance decreases. For example, if you double the number of divisions 2n, the Q of the unloaded cavity increases.
%, and if we try to maintain the same Q under load, the circuit efficiency will drop by about 10%, which is undesirable.

また出力アンテナを覆って真空外囲器とするドームも従
来のようなセラミックを使用すると、マイクロ波損失に
より発生する熱を充分冷却しきれず破壊する可能性が強
く、通常のセラミックでは真空外囲気とすることが困難
である。
Furthermore, if a conventional ceramic dome is used to cover the output antenna to form a vacuum envelope, there is a strong possibility that the heat generated by microwave loss will not be sufficiently cooled and the dome will be destroyed. difficult to do.

本発明の目的は、これらの欠点を排除した新規な数10
0藺連続波マグネトロンを提供することにあり、具体的
には陽極分割数を増やして陰極、陽極径を大きくすると
共に、Qの高い外部空胴をQの低い内部空胴に電気的結
合させて空胴全体のQを上昇させ、且つ出力アンテナを
陽極片から導出して真空外囲器の一部とした結合用導波
管に直接結合させて回路効率を向上させた構成としたも
のである。
The object of the present invention is to create a new number 10 that eliminates these drawbacks.
The objective is to provide a zero continuous wave magnetron, specifically by increasing the number of anode divisions to increase the cathode and anode diameters, and electrically coupling a high Q external cavity to a low Q internal cavity. This configuration increases the Q of the entire cavity and improves circuit efficiency by leading out the output antenna from the anode piece and directly coupling it to the coupling waveguide that is part of the vacuum envelope. .

以下図面により詳細に説明する。This will be explained in detail below with reference to the drawings.

第1図は本発明の一実施例であるマグネトロンの断面図
で、1は例えば、純タングステンの直熱型陰極、2は陽
極片により囲まれた内部空胴、3は陽極片、4は外部空
胴、5は入力側磁極片、6は出力側磁極片、7は出力ア
ンテナ、8は内部空胴2の外壁となる陽極筒、9は外部
空胴4の外壁とし真空壁としたシェル、10は陰極1を
具備した入力部、11,12は入力部10の液冷用パイ
プ、13は入力部からのマイクロ波漏洩を防止するチョ
ーク、14は不要モード防止用吸収体、15は出力アン
テナ7からの出力を結合させて伝送線路に直結できるよ
うにした結合用導波管、16は真空気密壁とする窓、1
7は磁気回路を構成するだめのヨークで、ねじ1Bによ
り入力側磁極片5および出力側磁極片6に連結できる構
成になっている。
FIG. 1 is a cross-sectional view of a magnetron that is an embodiment of the present invention, in which 1 is a directly heated cathode made of, for example, pure tungsten, 2 is an internal cavity surrounded by an anode piece, 3 is an anode piece, and 4 is an external A cavity, 5 is an input side magnetic pole piece, 6 is an output side magnetic pole piece, 7 is an output antenna, 8 is an anode tube serving as the outer wall of the inner cavity 2, 9 is a shell that is the outer wall of the outer cavity 4 and is a vacuum wall, 10 is an input section equipped with the cathode 1, 11 and 12 are pipes for liquid cooling of the input section 10, 13 is a choke that prevents microwave leakage from the input section, 14 is an absorber for preventing unnecessary modes, and 15 is an output antenna. A coupling waveguide that combines the outputs from 7 and can be directly connected to the transmission line, 16 a window with a vacuum-tight wall, 1
Reference numeral 7 denotes a spare yoke constituting a magnetic circuit, which can be connected to the input side magnetic pole piece 5 and the output side magnetic pole piece 6 with screws 1B.

19は電磁石用のコイルである。このマグネトロンで、
真空壁は入力部10、入力側磁極片5、シェル9、出力
側磁極片6、結合用導波管15、窓16により形成され
、電磁石コイル19は真空壁外に配置しである。
19 is a coil for an electromagnet. With this magnetron,
The vacuum wall is formed by the input section 10, the input side magnetic pole piece 5, the shell 9, the output side magnetic pole piece 6, the coupling waveguide 15, and the window 16, and the electromagnetic coil 19 is arranged outside the vacuum wall.

とのマグネトロンの特徴は前述したように入力電力の増
加に伴なう陰極の熱放散を助けるため陰極径を大きくし
て陰極面積を増大させ、それに伴ない陽極径も大きくし
てこの実施例では分割数を通常の倍の24分割にしであ
る。
As mentioned above, the characteristics of the magnetron are that the cathode diameter is increased to increase the cathode area to help dissipate heat from the cathode as the input power increases, and the anode diameter is also increased accordingly. The number of divisions is doubled to 24.

その結果、空胴のQが低下するため外部空胴4を設けて
いる。
As a result, the Q of the cavity is reduced, so the external cavity 4 is provided.

このよう人外部空胴を設けたマグネトロンはパルスマグ
ネトロンで特にレーダでの分解能を上げるためQを高く
したい場合に用いられているが、この場合には出力の取
り出しは外部空胴から行なっており、本発明のように通
常のQが得られれば良い目的で補助的に外部空胴を設け
た例はない。
A magnetron with such an external cavity is a pulsed magnetron and is used especially when it is desired to increase the Q to improve resolution in radar, but in this case, the output is extracted from the external cavity. There is no example of providing an auxiliary external cavity for the purpose of obtaining a normal Q as in the present invention.

即ち本発明では空胴の廻りに電磁石用コイルを配置する
ため(電磁石の方が安定した磁界が得られ易いこと、ま
た発振出力を可変にする場合、陽極電圧を調整して発振
出力を調整すると犬き々電力を制御する必要があるが、
電磁石の電流を制御して発振出力を調整すれば、前者の
1/1000程度の電力で済み実用的に有利であること
のため)また、出力結合をできるだけ高くするため、外
部空胴を保有しているにもかかわらず陽極片からの出力
アンテナで出力を取り出す構成にしである。
That is, in the present invention, since the electromagnetic coil is arranged around the cavity (an electromagnet is easier to obtain a stable magnetic field, and when the oscillation output is made variable, it is possible to adjust the oscillation output by adjusting the anode voltage. It is necessary to control the dog's power,
If the oscillation output is adjusted by controlling the current of the electromagnet, the power required will be about 1/1000 of the former, which is practical. Despite this, the structure is such that the output is extracted from the output antenna from the anode piece.

更に本発明の他の特徴は出力ドームの温度上昇に伴なう
破壊(複雑な形状の出力ドームでは、ドーム近傍におい
て高次モードの発生に伴ない、異常にドーム(セラミッ
ク)が加熱され冷却しても冷却しきれず割れることがあ
る危険性を防ぐため、真空壁の金属性の結合導波管15
を直接出力部に固着し、出力アンテナ7と結合導波管1
5とを真空領域内で結合させたことにある。
Another feature of the present invention is that the output dome is destroyed due to temperature rise (in output domes with complex shapes, the dome (ceramic) is abnormally heated and cooled due to the generation of higher-order modes near the dome). In order to prevent the risk of cracking due to insufficient cooling, the vacuum-walled metallic coupling waveguide 15
is fixed directly to the output part, and the output antenna 7 and the coupling waveguide 1 are connected directly to the output part.
5 are combined in a vacuum region.

この出力アンテナ7と結合導波管15との結合部の構造
の拡大図を第2図に示す。
An enlarged view of the structure of the coupling portion between the output antenna 7 and the coupling waveguide 15 is shown in FIG.

第2図で出力アンテナ7は電位の異々る二個の陽極片3
に連結されており、発振と共に高周波電流が流れる。
In Figure 2, the output antenna 7 has two anode pieces 3 with different potentials.
The high-frequency current flows along with the oscillation.

(本発明に係るマグネトロンも含め通常のマグネトロン
はπモードで発振するように構成され、偶数個の陽極片
がπラジアンずつ位相が異なるようにしであるため、位
相の異なる陽極片を連結すれば最大電流が得られる。
(Ordinary magnetrons, including the magnetron according to the present invention, are configured to oscillate in the π mode, and the even number of anode pieces has a phase difference of π radians. Therefore, if the anode pieces with different phases are connected, the maximum Current can be obtained.

)この出力アンテナ7に電流が流れることによりアンテ
ナ線7の廻りに磁界が発生する。
) When a current flows through this output antenna 7, a magnetic field is generated around the antenna wire 7.

この発生した磁界を出力側磁極片6により囲まれた円筒
部(第2図の20で示した部分)で形成される円形導波
管に結合して(いわゆる磁界結合)マイクロ波電力は円
筒部20を伝搬し、この円筒部20(円形導波管)は結
合用導波管15と通常の導波管結合の方法で結合される
This generated magnetic field is coupled (so-called magnetic field coupling) to the circular waveguide formed by the cylindrical part (the part indicated by 20 in Fig. 2) surrounded by the output side magnetic pole piece 6, and the microwave power is transferred to the cylindrical part. 20, and this cylindrical portion 20 (circular waveguide) is coupled to the coupling waveguide 15 by a normal waveguide coupling method.

この結合用導波管15は円形導波管でも矩形導波管でも
構わなへまた円筒部20(円形導波管)を出力側磁極片
6により囲まれた部分で形成する例を示したが必ずしも
出力側磁極片6で構成する必要はなく、陽極筒8で構成
しても良い。
This coupling waveguide 15 may be a circular waveguide or a rectangular waveguide, and an example is shown in which a cylindrical portion 20 (circular waveguide) is formed in a portion surrounded by the output side magnetic pole piece 6. It does not necessarily have to be composed of the output side magnetic pole piece 6, and may be composed of the anode tube 8.

第3図は、出力アンテナ7と結合用導波管15との結合
方法の他の実施例を示す出力結合部の拡大断面図である
FIG. 3 is an enlarged sectional view of an output coupling section showing another embodiment of a coupling method between the output antenna 7 and the coupling waveguide 15.

この実施例では同電位の陽極片3から導出した複数個の
出力アンテナ7を途中あるいは先端で結合し、直接結合
用導波管15に結合したものである。
In this embodiment, a plurality of output antennas 7 derived from anode pieces 3 having the same potential are coupled in the middle or at the tips, and are coupled to a direct coupling waveguide 15.

この実施例ではπモードに対して同電位の陽極片3から
導出しているためこの出力アンテナ7には循還電流は流
れず、接合部の位置は問題なく、先端迄の長さが結合用
導波管15との結合効率が一番高く得られるように調整
すれば良いので、複数個の陽極片3から導出しなくても
一個の陽極片からだけ導出しても良い。
In this embodiment, since the output antenna 7 is derived from the anode piece 3 which has the same potential as the π mode, no circulating current flows through the output antenna 7, and there is no problem with the position of the joint, and the length up to the tip is for coupling. Since the adjustment may be made so that the highest coupling efficiency with the waveguide 15 can be obtained, the light may not be led out from a plurality of anode pieces 3 but may be led out from only one anode piece.

しかしπモード以外の高次モードについては同電位とな
らず、これら高次モード抑制を考慮すれば複数個の陽極
片3から複数個の出力アンテナ線7を導出して高次モー
ドに対し負荷と々るよう々寸法で接合すれば高次モード
抑制のために効果がある。
However, higher-order modes other than the π mode do not have the same potential, and considering suppression of these higher-order modes, multiple output antenna wires 7 are derived from multiple anode pieces 3 to reduce the load for the higher-order modes. It is effective to suppress higher-order modes if they are joined with the same dimensions.

上述した如く本発明によるマグネトロンは従来の連続波
マグネトロンに比し、高出力を高能率で得ることができ
、また温度上昇による真空壁の破壊の恐れがないため信
頼性が高り、シかも小型な装置で大出力のマイクロ波電
力を発生できるという利点を有しており、その結果都市
ゴミ、産業廃棄物の処理などに有効に利用され、環境保
全等に偉力を発揮する効果がある。
As mentioned above, the magnetron according to the present invention can obtain high output power with high efficiency compared to conventional continuous wave magnetrons, has high reliability because there is no fear of vacuum wall destruction due to temperature rise, and is also compact and compact. It has the advantage of being able to generate high-output microwave power with a simple device, and as a result, it can be effectively used for processing municipal garbage, industrial waste, etc., and has a great effect on environmental conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるマグネトロンの断面図
、第2図は第1図の出力結合部の拡大断面図、第3図は
本発明の他の実施例である出力結合部の拡大断面図であ
る。 1・・・陰極、2・・・内部空胴、3・・・陽極片、4
・・・外部空胴、5・・・入力側磁極片、6・・・出力
側磁極片、7・・・出力アンテナ、8・・・陽極筒、9
・・・シェル、10・・・入力部、15・・・結合用導
波管、16・・・窓。
FIG. 1 is a sectional view of a magnetron that is an embodiment of the present invention, FIG. 2 is an enlarged sectional view of the output coupling section of FIG. 1, and FIG. 3 is an enlarged sectional view of the output coupling section that is another embodiment of the present invention. It is an enlarged sectional view. 1... Cathode, 2... Internal cavity, 3... Anode piece, 4
... External cavity, 5... Input side magnetic pole piece, 6... Output side magnetic pole piece, 7... Output antenna, 8... Anode tube, 9
...Shell, 10...Input section, 15...Coupling waveguide, 16...Window.

Claims (1)

【特許請求の範囲】 1 陰極と、該陰極と同心状の陽極筒と、該陽極筒の内
面に配設される複数の陽極片と、該陽極片と前記陽極筒
とにより形成される内部空胴と電気的に結合した外部空
胴と、少々くとも2個の前記陽極片から導出される出力
アンテナと、該出力アンテナが結合する開口を有し一端
が封止され他端に誘電体窓部があり少なくとも前記内部
空胴と共に真空々間を形成する導波管とを有することを
特徴とする高出力用連続波マグネトロン。 2 前記出力アンテナは電位の異なる二個の陽極片から
導出してループ状に形成された上、該外部空胴の内側円
筒に囲まれた空間に構成される円形導波管に磁界結合し
、該円形導波管を通して該結合用導波管に結合されるこ
とを特徴とする特許請求の範囲第1項記載の高出力用連
続波マグネトロン。 3 前記出力アンテナを同電位の複数個の陽極片から導
出して少なくとも先端で接合し、該結合用導波管と電界
結合さぜたことを特徴とする特許請求の範囲第1項記載
の高出力用連続波マグネトロン。
[Scope of Claims] 1. A cathode, an anode tube concentric with the cathode, a plurality of anode pieces disposed on the inner surface of the anode tube, and an internal space formed by the anode pieces and the anode tube. an external cavity electrically coupled to the body, an output antenna derived from at least two of the anode pieces, and an opening to which the output antenna is coupled, one end of which is sealed and the other end of which is a dielectric window. 1. A continuous wave magnetron for high output, characterized in that the magnetron has a waveguide which forms a vacuum space together with at least the internal cavity. 2. The output antenna is formed in a loop shape by being derived from two anode pieces having different potentials, and is magnetically coupled to a circular waveguide configured in a space surrounded by an inner cylinder of the outer cavity, 2. The high-output continuous wave magnetron according to claim 1, wherein the high-output continuous wave magnetron is coupled to the coupling waveguide through the circular waveguide. 3. The antenna according to claim 1, characterized in that the output antenna is derived from a plurality of anode pieces having the same potential, joined at least at their tips, and electrically coupled to the coupling waveguide. Continuous wave magnetron for output.
JP4094180A 1980-03-28 1980-03-28 Continuous wave magnetron for high power Expired JPS5824896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4094180A JPS5824896B2 (en) 1980-03-28 1980-03-28 Continuous wave magnetron for high power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4094180A JPS5824896B2 (en) 1980-03-28 1980-03-28 Continuous wave magnetron for high power

Publications (2)

Publication Number Publication Date
JPS56136431A JPS56136431A (en) 1981-10-24
JPS5824896B2 true JPS5824896B2 (en) 1983-05-24

Family

ID=12594520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4094180A Expired JPS5824896B2 (en) 1980-03-28 1980-03-28 Continuous wave magnetron for high power

Country Status (1)

Country Link
JP (1) JPS5824896B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273200A (en) * 1988-04-25 1989-11-01 Nec Corp Maintenance warning display device
JPH0214400A (en) * 1988-07-01 1990-01-18 Yamatake Honeywell Co Ltd Alarm

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01273200A (en) * 1988-04-25 1989-11-01 Nec Corp Maintenance warning display device
JPH0214400A (en) * 1988-07-01 1990-01-18 Yamatake Honeywell Co Ltd Alarm

Also Published As

Publication number Publication date
JPS56136431A (en) 1981-10-24

Similar Documents

Publication Publication Date Title
JPH02247972A (en) Electrodeless low voltage discharge lamp
JPS609033A (en) Density modulation electron beam tube increased in gain
RU94040151A (en) Linear-output cathode-ray tube
JPS5824896B2 (en) Continuous wave magnetron for high power
JPS5824371Y2 (en) magnetron
JPS6041417B2 (en) resonant cavity magnetron
Piosczyk et al. 2.2 MW, 165 GHz coaxial cavity gyrotron
JP2856291B2 (en) High impedance circuit for injection-fixed magnetron
US6384537B2 (en) Double loop output system for magnetron
CN109755084A (en) X-band bimodulus multiple-beam klystron
US2564385A (en) Electronic transmitting valve of great power for ultra short waves
Scott et al. What's new in helix TWT's
Everleigh et al. Use of high-power traveling wave tubes as a microwave heating source
JPS59114730A (en) Gyrotron oscillator of multibore cavity for reducing mode bycompetition
Lopin et al. High-power millimeter-wave tubes
JP3133379B2 (en) Gyrotron oscillation tube
JP2002343262A (en) Magnetron
US3324337A (en) High frequency electron discharge device and focusing means therefor
KR100206796B1 (en) Filament of magnetron for microwave oven
JP2868807B2 (en) Magnetron for microwave oven
JP3828272B2 (en) Magnetron
JP3144882B2 (en) Gyrotron oscillation tube
KR100302916B1 (en) Choke structure on Magnetron for microwave oven
JP2868806B2 (en) Magnetron for microwave oven
JPH0777119B2 (en) Gyrotron device