JP2002343262A - Magnetron - Google Patents
MagnetronInfo
- Publication number
- JP2002343262A JP2002343262A JP2001147879A JP2001147879A JP2002343262A JP 2002343262 A JP2002343262 A JP 2002343262A JP 2001147879 A JP2001147879 A JP 2001147879A JP 2001147879 A JP2001147879 A JP 2001147879A JP 2002343262 A JP2002343262 A JP 2002343262A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- magnetron
- magnetic field
- radius
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Microwave Tubes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はマグネトロンに関す
る。さらに詳しくは、たとえば電子レンジなどのマイク
ロ波加熱機器またはレーダーなどに用いられるマグネト
ロンであって、陽極半径の寸法、陰極半径の寸法および
尖頭陽極電圧に対応した磁界強度を作り出す磁気回路を
配設するマグネトロンに関する。The present invention relates to a magnetron. More specifically, for example, a magnetron used for microwave heating equipment such as a microwave oven or a radar, and provided with a magnetic circuit for generating a magnetic field strength corresponding to the dimensions of the anode radius, the cathode radius, and the peak anode voltage. About magnetrons.
【0002】[0002]
【従来の技術】近年、地球環境問題により全世界的に省
エネルギー、省資源化が求められ、電機業界、電子レン
ジ業界においても、積極的に取り組んでいる。電子レン
ジでは、高周波加熱効率を改良する目的で負荷インピー
ダンスの整合や電子レンジの電源力率改善などを施す一
方で、マグネトロンとして発振効率を向上することが望
まれている。2. Description of the Related Art In recent years, energy saving and resource saving have been demanded worldwide due to global environmental problems, and the electric industry and the microwave oven industry have been actively working on them. In a microwave oven, it is desired to improve the oscillation efficiency as a magnetron while performing load impedance matching and improving the power factor of a microwave oven in order to improve the high-frequency heating efficiency.
【0003】前記電子レンジなどに用いられるマグネト
ロンとしては、たとえば図3〜4で示されるように、筒
状の陽極筒体51と、該陽極筒体51の内周面に放射状
に配列されたベイン52と、該ベイン52の先端にて囲
まれる空間に、前記陽極筒体51の中心軸上に配置され
る陰極体53と、前記ベイン52のいずれかの1枚に接
続され、たとえば2450MHzのマイクロ波を外部に
取り出すためのアンテナ導体54と、前記ベイン52の
上面と下面に配設されるとともに、1個おきにベイン5
2に接続し、πモード発振の安定化を図る内側ストラッ
プリング55および外側ストラップリング56と、前記
陽極筒体51の上下開口部の周縁に配設され、作用空間
に磁界を集中させる磁性材料の磁極片57、58と、一
端が前記陽極筒体51の上下開口部の周縁に固着される
封着金属59、60と、一端が絶縁筒体61を介して前
記封着金属59に接続される排気管62と、前記封着金
属60に固着され、前記陰極体53の陰極端子63を支
持する陰極ステム64とからなる真空管を備えている。As shown in FIGS. 3 and 4, for example, a magnetron used in a microwave oven or the like includes a cylindrical anode cylinder 51 and vanes radially arranged on the inner peripheral surface of the anode cylinder 51. 52, a cathode body 53 disposed on the center axis of the anode cylinder 51 in a space surrounded by the tip of the vane 52, and a cathode body connected to any one of the vanes 52, for example, a 2450 MHz micro An antenna conductor 54 for extracting a wave to the outside, and an antenna conductor 54 disposed on the upper and lower surfaces of the vane 52;
2 and an inner strap ring 55 and an outer strap ring 56 for stabilizing the π mode oscillation, and a magnetic material that is disposed at the periphery of the upper and lower openings of the anode cylinder 51 and concentrates the magnetic field in the working space. The pole pieces 57, 58, one end are connected to the sealing metal 59, 60 fixed to the periphery of the upper and lower openings of the anode cylinder 51, and one end is connected to the sealing metal 59 via the insulating cylinder 61. A vacuum tube comprising an exhaust pipe 62 and a cathode stem 64 fixed to the sealing metal 60 and supporting a cathode terminal 63 of the cathode body 53 is provided.
【0004】そして、マグネトロンは、かかる真空管
と、前記陽極筒体51の上下に配設された環状磁石65
と、陽極筒体51の外周面に固定される複数枚の放熱板
66と、前記陽極筒体51、環状磁石65および放熱板
66を取り囲むヨーク67と、該ヨーク67から突出し
た陰極ステム64を囲むシールドケース68と、該シー
ルドケース68内に収納され、一端が陰極端子63に接
続されるチョークコイル69と、前記シールドケース6
8に貫通して支持され、チョークコイル69の他端に接
続される貫通部コンデンサ70とから構成されている。[0004] The magnetron comprises such a vacuum tube and annular magnets 65 arranged above and below the anode cylinder 51.
A plurality of heat sinks 66 fixed to the outer peripheral surface of the anode cylinder 51, a yoke 67 surrounding the anode cylinder 51, the annular magnet 65 and the heat sink 66, and a cathode stem 64 protruding from the yoke 67. An enclosing shield case 68, a choke coil 69 housed in the shield case 68 and having one end connected to the cathode terminal 63,
8 and a through capacitor 70 connected to the other end of the choke coil 69.
【0005】このような構造のマグネトロンでは、陰極
体53とベイン52とのあいだの円筒状の作用空間内に
陰極体53より放出された熱電子が電界と垂直に加えら
れた磁界によって、電子が作用空間内を周回運動し、高
周波エネルギーのマイクロ波を発生させている。In the magnetron having such a structure, the thermoelectrons emitted from the cathode body 53 are injected into the cylindrical working space between the cathode body 53 and the vane 52 by a magnetic field applied perpendicular to the electric field. It circulates in the working space and generates microwaves of high-frequency energy.
【0006】ところで、マグネトロンの発振効率は一般
に、電子効率と回路効率との積で求められる。回路効率
は空洞共振器のQ(共振の鋭さを表す選択度)や材料物
性によって決まるが、真空管の材料としての適性やコス
ト面から制約を受けるため、無酸素銅が一般的に用いら
れている。一方、電子効率は、電子の位置エネルギーで
ある直流入力からマイクロ波への変換効率であり、図3
で示すように陰極半径をrc(mm)、陽極半径をra
(mm)とし、磁石の容量や磁性体の材質などや他に磁
極片などの磁気回路を構成する部品によって決定される
磁界強度をB(mT)、臨界磁界強度をBOH(mT)と
すると、電子効率ηeはつぎの式(1)で与えられるこ
とが「マイクロ波工学の基礎」(牧本利夫氏、松尾幸人
氏共著:廣川書店発行)などに説明されている。Incidentally, the oscillation efficiency of a magnetron is generally determined by the product of the electronic efficiency and the circuit efficiency. The circuit efficiency is determined by the Q (selectivity indicating resonance sharpness) of the cavity resonator and the material properties. However, oxygen-free copper is generally used because it is limited by suitability as a vacuum tube material and cost. . On the other hand, the electron efficiency is the conversion efficiency from the DC input, which is the potential energy of electrons, to microwaves.
The radius of the cathode is rc (mm) and the radius of the anode is ra
(Mm), and the magnetic field strength determined by the capacity of the magnet, the material of the magnetic material, and other components constituting the magnetic circuit such as the pole piece is B (mT), and the critical magnetic field strength is B OH (mT). The fact that the electron efficiency ηe is given by the following equation (1) is described in “Basics of Microwave Engineering” (by Toshio Makimoto and Yukito Matsuo: published by Hirokawa Shoten).
【0007】[0007]
【数2】 (Equation 2)
【0008】ここで、nは一般的にπモード発振のため
に陽極分割数/2であり、たとえば陽極10分割のマグ
ネトロンの場合は5である。また、λは波長(mm)で
あり、たとえば発振周波数2450MHzの場合は約1
22(mm)である。Here, n is generally the number of divided anodes / 2 for π mode oscillation, and is, for example, 5 for a magnetron with 10 divided anodes. Λ is a wavelength (mm). For example, in the case of an oscillation frequency of 2450 MHz, about 1
22 (mm).
【0009】したがって、前記式(1)式の理論式の曲
線より図5に示されるように、磁界強度Bが強くなれば
なるほど、電子効率ηeは増加することから、電子効率
ηeの増加に正比例し、マグネトロンの発振効率も増加
することが理論上考えられていた。Therefore, as shown in FIG. 5 from the curve of the theoretical equation of the above equation (1), as the magnetic field strength B increases, the electron efficiency ηe increases. However, it was theoretically thought that the oscillation efficiency of the magnetron also increased.
【0010】[0010]
【発明が解決しようとする課題】しかしながら、マグネ
トロンの発振効率を向上させるために、多くの実験を重
ねたところ、磁界強度Bを増していくと、マグネトロン
の発振効率が、横這いまたは低下し、前記理論式(2)
に合わない磁界強度領域が存在することが判明した。言
い換えれば、マグネトロンの発振効率増加の目的で磁石
の容量増加、強磁性体を利用する改良などの他に磁極片
などの部品に改良、たとえば断面積を大きくして抵抗を
下げる改良を施したとしても、実際のマグネトロンの発
振効率が増加しない。従来のマグネトロンは、今まで程
に高効率化を要望されなかったため、マグネトロンの発
振効率が横這いまたは低下する程の磁界強度が必要とさ
れておらず、このような現象が考慮されていなかった。However, in order to improve the oscillation efficiency of the magnetron, many experiments were conducted. As the magnetic field intensity B was increased, the oscillation efficiency of the magnetron became flat or decreased. Theoretical formula (2)
It was found that there was a magnetic field intensity region that did not match the above. In other words, in order to increase the oscillation efficiency of the magnetron, increase the capacity of the magnet, improve the use of ferromagnetic materials, and improve other parts such as pole pieces, for example, by increasing the cross-sectional area and reducing the resistance. However, the oscillation efficiency of the actual magnetron does not increase. Since the conventional magnetron has not been required to have higher efficiency than before, a magnetic field intensity is not required so that the oscillation efficiency of the magnetron is flat or lower, and such a phenomenon has not been considered.
【0011】本発明は、叙上の事情に鑑み、発振効率を
向上させることができるマグネトロンを提供することを
目的とする。The present invention has been made in view of the above circumstances, and has as its object to provide a magnetron that can improve oscillation efficiency.
【0012】[0012]
【課題を解決するための手段】本発明のマグネトロン
は、陽極筒体の中心部に陰極体が配置され、該陰極体の
周囲に陽極空洞を形成しているマグネトロンであって、
磁界強度を増しても、マグネトロンの発振効率が横這い
または低下する磁界強度の領域を避けるように、つぎの
式で与えられる磁界強度Bが、陰極半径rcの寸法(m
m)、陽極半径raの寸法(mm)、尖頭陽極電圧Va
(V)に基づいて設定されることを特徴とする。According to the present invention, there is provided a magnetron in which a cathode body is disposed at a center of an anode cylinder and an anode cavity is formed around the cathode body.
Even if the magnetic field strength is increased, the magnetic field strength B given by the following equation is set to the dimension (m) of the cathode radius rc so as to avoid the field of the magnetic field strength where the oscillation efficiency of the magnetron is leveled or reduced.
m), dimensions of the anode radius ra (mm), peak anode voltage Va
It is set based on (V).
【0013】[0013]
【数3】 (Equation 3)
【0014】ここで、σ=rc/ra、陽極分割数/2
をn、波長(mm)をλとする。Here, σ = rc / ra, anode division number / 2
Is n, and the wavelength (mm) is λ.
【0015】また、前記磁界強度Bが218(mT)以
上であるのが好ましい。Preferably, the magnetic field intensity B is 218 (mT) or more.
【0016】また、前記陽極半径raの寸法の範囲が
4.00〜5.05(mm)、陰極半径rcの寸法の範
囲が1.75〜2.15(mm)、尖頭陽極電圧Vaが
6910(V)以下に設定され、前記磁界密度Bが21
8(mT)以上であるのが好ましい。The dimension of the anode radius ra is 4.00 to 5.05 (mm), the dimension of the cathode radius rc is 1.75 to 2.15 (mm), and the peak anode voltage Va is 6910 (V) or less, and the magnetic field density B is 21
It is preferably 8 (mT) or more.
【0017】また、前記陽極筒体の陽極分割数が10で
あるのが好ましい。It is preferable that the anode cylinder has an anode division number of 10.
【0018】[0018]
【発明の実施の形態】以下、添付図面に基づいて本発明
のマグネトロンを説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a magnetron according to the present invention will be described with reference to the accompanying drawings.
【0019】図1に示すように、本発明の一実施の形態
にかかわるマグネトロンは、図3〜4に示す従来のマグ
ネトロンと同じであり、円筒状の陽極筒体1の中心部に
陰極体2が配置され、該陰極体2の周囲に陽極空洞を形
成しており、その他の基本的な構成、すなわち該陽極筒
体1の内周面に放射状に配列されたベイン3と、該ベイ
ン3の先端にて囲まれる空間に配置される陰極体2と、
前記ベイン3のいずれかの1枚に接続されるアンテナ導
体4と、前記ベイン3の上面と下面に配設される内側ス
トラップリング5および外側ストラップリング6と、前
記陽極筒体1の上下開口部の周縁に配設される磁極片7
と、一端が前記陽極筒体1の上下開口部の周縁に固着さ
れる封着金属と、一端が絶縁筒体を介して前記封着金属
に接続される排気管と、前記封着金属に固着され、前記
陰極体2の陰極端子を支持する陰極ステムとからなる真
空管を備えている。As shown in FIG. 1, a magnetron according to an embodiment of the present invention is the same as the conventional magnetron shown in FIGS. Are arranged around the cathode body 2 to form an anode cavity, and other basic configurations, that is, the vanes 3 radially arranged on the inner peripheral surface of the anode cylinder 1 and the vanes 3 A cathode body 2 arranged in a space surrounded by the tip,
An antenna conductor 4 connected to any one of the vanes 3; an inner strap ring 5 and an outer strap ring 6 disposed on the upper and lower surfaces of the vane 3; Pole piece 7 arranged on the periphery of
A sealing metal having one end fixed to the periphery of the upper and lower openings of the anode cylinder 1; an exhaust pipe having one end connected to the sealing metal via an insulating cylinder; and a sealing metal fixed to the sealing metal. A cathode tube for supporting the cathode terminal of the cathode body 2.
【0020】本実施の形態では、環状磁石の容量増加、
磁性体の改良および磁気回路を構成する部品に改良を施
すとともに、発振効率が一時的に横這いまたは低下する
磁界強度の領域を避けるように、該領域以上に磁界強度
を印加している。In this embodiment, the capacity of the annular magnet is increased,
In addition to the improvement of the magnetic material and the components constituting the magnetic circuit, the magnetic field strength is applied to a region higher than the magnetic field intensity so as to avoid the region of the magnetic field intensity at which the oscillation efficiency temporarily levels off or decreases.
【0021】すなわちマグネトロンの発振効率を向上さ
せるために、多くの実験を重ねたところ、磁界強度を増
していき、マグネトロンの発振効率が横這いまたは低下
しても、さらに磁界強度を増加していくと、式(1)の
理論式に沿って発振効率が増加する。このときの磁界強
度B(mT)は、前記「マイクロ波工学の基礎」の27
3頁における、電位分布が陽極半径の自乗に比例した場
合の動作直線を与える式から、つぎの式(3)のとおり
算出される。That is, when many experiments were conducted in order to improve the oscillation efficiency of the magnetron, the magnetic field intensity was increased, and even if the oscillation efficiency of the magnetron was flat or decreased, the magnetic field intensity was further increased. Oscillation efficiency increases according to the theoretical expression of Expression (1). At this time, the magnetic field strength B (mT) is 27
It is calculated as the following equation (3) from an equation that gives an operation straight line when the potential distribution is proportional to the square of the anode radius on page 3.
【0022】[0022]
【数4】 (Equation 4)
【0023】ここで、σ:最適の陽極の半径比(rc/
ra) ra:陽極半径(mm) rc:陰極半径(mm) n:陽極分割数/2 λ:波長(mm) Va:尖頭陽極電圧(V) である。Here, σ: the optimal anode radius ratio (rc /
ra) ra: anode radius (mm) rc: cathode radius (mm) n: anode division number / 2 λ: wavelength (mm) Va: peak anode voltage (V).
【0024】本実施の形態では、前記陽極半径raの寸
法を4.50(mm)、陰極半径rcの寸法を2.00
(mm)、σ=rc/ra=0.444、n(陽極分割
数を10とする)を5、波長λを122(mm)、尖頭
陽極電圧Vaを4000〜5900(V)とする条件に
基づいて、磁界強度Bを前記式(3)式より、180〜
257(mT)印加した。その結果、図2に示されるよ
うに、磁界強度Bが203〜218(mT)の範囲でマ
グネトロンの発振効率が横這いまたは低下する現象が確
認され、さらに磁界強度を増加していくと、理論に沿っ
て発振効率が増加する。In this embodiment, the dimension of the anode radius ra is 4.50 (mm) and the dimension of the cathode radius rc is 2.00.
(Mm), σ = rc / ra = 0.444, n (assuming that the number of anode divisions is 10) is 5, wavelength λ is 122 (mm), and peak anode voltage Va is 4000 to 5900 (V). From the above equation (3), the magnetic field intensity B is set to 180 to
257 (mT) was applied. As a result, as shown in FIG. 2, it was confirmed that the oscillation efficiency of the magnetron leveled off or decreased when the magnetic field intensity B was in the range of 203 to 218 (mT). Along, the oscillation efficiency increases.
【0025】つぎに本実施の形態では、前記磁界強度B
により発振効率が一時的に横這いまたは低下する現象を
生じる磁界強度の領域を求めるにあたり、陽極半径ra
の範囲が4.00〜5.05(mm)、陰極半径rcの
範囲が1.75〜2.15(mm)であるときに、最高
の磁界強度Bを257(mT)および最高の尖頭陽極電
圧Vaを6910(V)の広範囲にわたって調べた。そ
の結果、発振効率は、図2と同様に初期は理論曲線に沿
ってほぼ緩やかに上昇しているが、途中で下降したの
ち、理論曲線に向かって急激な上昇をして、ついで再度
緩やかに上昇して理論曲線に近づいていることが確認さ
れた。Next, in the present embodiment, the magnetic field intensity B
In order to obtain a region of magnetic field strength that causes a phenomenon in which the oscillation efficiency temporarily levels off or decreases, the anode radius ra
Is 4.00 to 5.05 (mm) and the range of the cathode radius rc is 1.75 to 2.15 (mm), the maximum magnetic field strength B is 257 (mT) and the maximum peak is The anode voltage Va was examined over a wide range of 6910 (V). As a result, the oscillation efficiency initially increased almost gently along the theoretical curve, as in FIG. 2, but then dropped halfway, then increased sharply toward the theoretical curve, and then gradually again. It was confirmed that the temperature rose and approached the theoretical curve.
【0026】したがって、本実施の形態では、磁石の容
量増加や磁性体の改良を施すとともに、発振熱率が一時
的に横這いまたは低下する領域以上に磁界強度を印加す
るように、陽極半径の寸法、陰極半径の寸法、尖頭陽極
電圧、陽極分割数および波長を設定することで、発振効
率の高いマグネトロンを得ることができる。Accordingly, in the present embodiment, the size of the anode radius is increased so that the magnet capacity is increased and the magnetic material is improved, and the magnetic field strength is applied to a region beyond the region where the oscillation heat rate temporarily levels off or decreases. By setting the dimensions of the cathode radius, the peak anode voltage, the number of divided anodes, and the wavelength, a magnetron with high oscillation efficiency can be obtained.
【0027】また、マグネトロンの発振効率の増加を磁
気回路の改良などによる磁界強度の増加によって達成す
ることができるため、全世界的に省エネルギーおよび省
資源化が求められる中で、発振効率の高いマグネトロン
を得ることができる。Further, since the oscillation efficiency of the magnetron can be increased by increasing the magnetic field strength by improving the magnetic circuit, etc., a magnetron having a high oscillation efficiency is required in a world where energy saving and resource saving are required. Can be obtained.
【0028】[0028]
【発明の効果】以上説明したとおり、本発明によれば、
陽極半径など磁気回路の改良による磁界強度の増加によ
って、発振効率の増加を達成することができる。As described above, according to the present invention,
An increase in the oscillation efficiency can be achieved by increasing the magnetic field strength by improving the magnetic circuit such as the anode radius.
【図1】本発明の一実施の形態にかかわるマグネトロン
を説明する要部断面図である。FIG. 1 is a cross-sectional view illustrating a main part of a magnetron according to an embodiment of the present invention.
【図2】磁界強度に対するマグネトロンの発振効率の実
測例である。FIG. 2 is an actual measurement example of a magnetron oscillation efficiency with respect to a magnetic field intensity.
【図3】従来のマグネトロンの構造例を示す断面図であ
る。FIG. 3 is a cross-sectional view illustrating a structural example of a conventional magnetron.
【図4】図3のマグネトロンの要部拡大図である。FIG. 4 is an enlarged view of a main part of the magnetron of FIG. 3;
【図5】磁界強度に対する理論上の電子効率の曲線であ
る。FIG. 5 is a curve of theoretical electron efficiency with respect to magnetic field strength.
1 陽極筒体 2 陰極体 3 ベイン 4 アンテナ導体 5 内側ストラップリング 6 外側ストラップリング DESCRIPTION OF SYMBOLS 1 Anode cylinder 2 Cathode 3 Bain 4 Antenna conductor 5 Inner strap ring 6 Outer strap ring
───────────────────────────────────────────────────── フロントページの続き (72)発明者 中井 聡 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5C029 FF09 FF12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Satoshi Nakai 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5C029 FF09 FF12
Claims (4)
該陰極体の周囲に陽極空洞を形成しているマグネトロン
であって、磁界強度を増しても、マグネトロンの発振効
率が横這いまたは低下する磁界強度の領域を避けるよう
に、つぎの式で与えられる磁界強度Bが、陰極半径rc
の寸法(mm)、陽極半径raの寸法(mm)、尖頭陽
極電圧Va(V)に基づいて設定されるマグネトロン。 【数1】 ここで、σ=rc/ra、陽極分割数/2をn、波長
(mm)をλとする。A cathode body disposed at a center of the anode cylinder;
A magnetron having an anode cavity formed around the cathode body. Even if the magnetic field strength is increased, a magnetic field given by the following formula is used so as to avoid a region where the oscillation efficiency of the magnetron is flat or decreases. The intensity B is the cathode radius rc
Is set based on the dimensions (mm), the dimensions (mm) of the anode radius ra, and the peak anode voltage Va (V). (Equation 1) Here, σ = rc / ra, the number of anode divisions / 2 is n, and the wavelength (mm) is λ.
ある請求項1記載のマグネトロン。2. The magnetron according to claim 1, wherein said magnetic field intensity B is 218 (mT) or more.
0〜5.05(mm)、陰極半径rcの寸法の範囲が
1.75〜2.15(mm)、尖頭陽極電圧Vaが69
10(V)以下に設定され、前記磁界密度Bが218
(mT)以上である請求項1記載のマグネトロン。3. The range of the dimension of the anode radius ra is 4.0.
0 to 5.05 (mm), the range of the dimension of the cathode radius rc is 1.75 to 2.15 (mm), and the peak anode voltage Va is 69.
10 (V) or less, and the magnetic field density B is 218
2. The magnetron according to claim 1, which is (mT) or more.
請求項3記載のマグネトロン。4. The magnetron according to claim 3, wherein the number of anode divisions of the anode cylinder is 10.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001147879A JP2002343262A (en) | 2001-05-17 | 2001-05-17 | Magnetron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001147879A JP2002343262A (en) | 2001-05-17 | 2001-05-17 | Magnetron |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002343262A true JP2002343262A (en) | 2002-11-29 |
Family
ID=18993295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001147879A Pending JP2002343262A (en) | 2001-05-17 | 2001-05-17 | Magnetron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002343262A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007335351A (en) * | 2006-06-19 | 2007-12-27 | Toshiba Hokuto Electronics Corp | Magnetron |
CN101853759A (en) * | 2009-03-30 | 2010-10-06 | 东芝北斗电子株式会社 | Magnetron for microwave oven |
US8525413B2 (en) | 2007-09-11 | 2013-09-03 | Toshiba Hokuto Electronics Corporation | Magnetron for microwave oven |
US9653246B2 (en) | 2014-12-03 | 2017-05-16 | Toshiba Hokuto Electronics Corporation | Magnetron |
-
2001
- 2001-05-17 JP JP2001147879A patent/JP2002343262A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007335351A (en) * | 2006-06-19 | 2007-12-27 | Toshiba Hokuto Electronics Corp | Magnetron |
US8525413B2 (en) | 2007-09-11 | 2013-09-03 | Toshiba Hokuto Electronics Corporation | Magnetron for microwave oven |
CN101853759A (en) * | 2009-03-30 | 2010-10-06 | 东芝北斗电子株式会社 | Magnetron for microwave oven |
JP2010232114A (en) * | 2009-03-30 | 2010-10-14 | Toshiba Hokuto Electronics Corp | Magnetron for microwave oven |
US9653246B2 (en) | 2014-12-03 | 2017-05-16 | Toshiba Hokuto Electronics Corporation | Magnetron |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6653788B2 (en) | Magnetron having a lowered oscillation frequency and processing equipment employing the same | |
Liu et al. | Design and experimental study of a Ka-band gyro-TWT with periodic dielectric loaded circuits | |
Chang et al. | Circuit design of a compact 5-kV W-band extended interaction klystron | |
JP2006278311A (en) | Magnetron | |
Ishihara et al. | Highly efficient operation of space harmonic peniotron at cyclotron high harmonics | |
KR20040044707A (en) | Magnetron for microwave oven | |
Neculaes et al. | Low-noise microwave oven magnetrons with fast start-oscillation by azimuthally varying axial magnetic fields | |
US3346766A (en) | Microwave cold cathode magnetron with internal magnet | |
JP2002343262A (en) | Magnetron | |
JPS589537B2 (en) | magnetron | |
JPH10241585A (en) | Plate type magnetron | |
JP2011070867A (en) | Microwave oven and magnetron for microwave oven | |
JP4233421B2 (en) | Magnetron | |
Joshi et al. | Identification and suppression of slot modes in a coaxial magnetron | |
US3379926A (en) | Coaxial magnetron having slot mode suppressing lossy material in anode resonators | |
Zhang et al. | A rising-sun anode magnetron with axial waveguide output in W-band | |
EP1113481A1 (en) | Magnetron | |
JPH08167383A (en) | Magnetron for microwave oven | |
KR100266604B1 (en) | Structure for preventing harmonic wave leakage in magnetron | |
Konrad | High efficiency, CW, high power klystrons for storage ring applications | |
US3444429A (en) | Anode structure for microwave frequency oscillators | |
US20040021421A1 (en) | Magnetron for microwave ovens | |
Verweel et al. | A range of pulsed magnetrons for centimetre and millimetre waves | |
US3290548A (en) | Reverse magnetron | |
KR100302916B1 (en) | Choke structure on Magnetron for microwave oven |