JPS5824447B2 - Manufacturing method of reverse osmosis membrane - Google Patents

Manufacturing method of reverse osmosis membrane

Info

Publication number
JPS5824447B2
JPS5824447B2 JP48103945A JP10394573A JPS5824447B2 JP S5824447 B2 JPS5824447 B2 JP S5824447B2 JP 48103945 A JP48103945 A JP 48103945A JP 10394573 A JP10394573 A JP 10394573A JP S5824447 B2 JPS5824447 B2 JP S5824447B2
Authority
JP
Japan
Prior art keywords
pei
film
support
reverse osmosis
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48103945A
Other languages
Japanese (ja)
Other versions
JPS49133282A (en
Inventor
エドワ−ド カドツト ジヨン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOOSU SUTAA RISAACHI ANDO DEV INST
Original Assignee
NOOSU SUTAA RISAACHI ANDO DEV INST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOOSU SUTAA RISAACHI ANDO DEV INST filed Critical NOOSU SUTAA RISAACHI ANDO DEV INST
Publication of JPS49133282A publication Critical patent/JPS49133282A/ja
Publication of JPS5824447B2 publication Critical patent/JPS5824447B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • B01D71/601Polyethylenimine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 逆浸透は塩水の精製淡水化の分野でかなりの興味がもた
れている。
DETAILED DESCRIPTION OF THE INVENTION Reverse osmosis is of considerable interest in the field of brine purification and desalination.

逆浸透法では、供給塩水溶液の浸透圧より大きい圧力を
、半透膜によって精製された水から分離される方の供給
溶液側にかける。
In reverse osmosis, a pressure greater than the osmotic pressure of the aqueous feed salt solution is applied to the side of the feed solution that is separated from the purified water by a semipermeable membrane.

これにより、純粋な水は押し出されて膜を通過して拡散
するが、塩分子その他の不純物は膜によってさえぎられ
て残る。
This forces pure water to diffuse through the membrane, while salt molecules and other impurities remain blocked by the membrane.

逆浸透法の効率は膜の性質にかなりの程度まで左右され
、数多くの膜の種類及びその製造法が従来技術において
も述べられてきた。
The efficiency of reverse osmosis depends to a large extent on the properties of the membrane, and numerous membrane types and methods of their manufacture have been described in the prior art.

これらの膜は、膜材料と溶媒とに水、膨潤剤等のさらに
他の成分を添加または添加しないでなる溶液から流し込
み成形されるのが普通である。
These membranes are typically cast from a solution of membrane material and solvent with or without the addition of other ingredients such as water, swelling agents, and the like.

この膜は逆浸透法において多孔性支持物質上に沈着させ
たフィルムとしてで使用される。
This membrane is used in reverse osmosis as a film deposited on a porous support material.

しかし、これらの従来技術の膜は一般に欠陥があり、た
とえば収縮または化学的もしくは生物学的劣化によって
有効寿命が短かすぎたり、また流量もしくは塩をはねの
ける力があまりに低いために運転が非効率的になる。
However, these prior art membranes generally have deficiencies, such as having a too short useful life due to shrinkage or chemical or biological degradation, and operating inefficiently due to flow rates or salt repelling forces that are too low. become a target.

本発明によって、優秀な流量及び塩拒絶性をもち、かつ
収縮もしくは劣化のない逆浸透膜が、ポリエチレンイミ
ンのフィルムと、このポリエチレンイミンのアミン基と
反応する官能基を有している架橋剤との反応により調製
されうろことがここに見い出された。
According to the present invention, a reverse osmosis membrane with excellent flow rate and salt rejection properties and without shrinkage or deterioration is produced by combining a polyethyleneimine film and a crosslinking agent having a functional group that reacts with the amine groups of the polyethyleneimine. It has now been discovered that a wax can be prepared by the reaction of

ポリエチレンイミン(以下、PEIと略記)はエチレン
イミンの重合によって製造され、接着剤、凝集剤、イオ
ン交換樹脂、錯化剤、吸収剤等の広範な工業的用途が従
来からあった。
Polyethyleneimine (hereinafter abbreviated as PEI) is produced by polymerizing ethyleneimine, and has traditionally been used in a wide range of industrial applications such as adhesives, flocculants, ion exchange resins, complexing agents, and absorbents.

これは、第1級:第2級:第3級の比率が約1:2:1
のアミノ窒素をもつ高度に枝分れしたポリアミンである
This means that the ratio of 1st class: 2nd class: 3rd class is approximately 1:2:1.
It is a highly branched polyamine with several amino nitrogens.

その分子量は約600ないし100000の広範な分子
量のものが入手でき、そのいずれもが水溶性で、わずか
に曇った外観の溶液を生ずる。
It is available in a wide range of molecular weights, from about 600 to 100,000, all of which are water soluble and produce solutions with a slightly cloudy appearance.

PEIの分子量は本発明の決定的な要素ではないが、そ
の最適値は支持体の種類、供給塩水の性質、所望の塩拒
絶性及び流量の大きさ等の各種の因子によって変る。
The molecular weight of the PEI is not a critical factor in the present invention, but its optimum value will depend on various factors such as the type of support, the nature of the brine feed, the desired salt rejection and the magnitude of the flow rate.

一般に、約600ないしi oooooの分子量が適当
であり、約12000ないし1oooooが通常は好ま
しい。
Generally, molecular weights of about 600 to ioooooo are suitable, with about 12,000 to 1ooooo usually preferred.

PEIのフィルムはこのポリマーの水溶液から調製する
A film of PEI is prepared from an aqueous solution of this polymer.

この溶液は、所望の濃度が得られるまで干EIを水で徐
々に希釈することによって調製するのが普通最も容易で
ある。
This solution is usually easiest to prepare by gradually diluting the dried EI with water until the desired concentration is obtained.

均一な曇ってみえる溶液が得られるまで混合を続け、次
いで溶液を口過するのが好ましい。
Preferably, mixing is continued until a uniform, cloudy-looking solution is obtained, and then the solution is sipped.

水溶液のPEIの最適濃度はPEIの分子量により異な
る。
The optimum concentration of PEI in an aqueous solution varies depending on the molecular weight of PEI.

PEIの濃度は0.033ないし2.7重量%がよ(,
0,33ないし1.0重量%の濃度が普通は好ましい。
The concentration of PEI is preferably 0.033 to 2.7% by weight.
A concentration of 0.33 to 1.0% by weight is usually preferred.

PEIフィルムは慣用の方法によって調製でき、たとえ
ばPEIの水溶液を支持体上に流し込み成形する、或い
は支持体を溶液中に浸漬する等の方法がある。
PEI films can be prepared by conventional methods, such as casting an aqueous PEI solution onto a support or immersing the support in the solution.

しかし、一般にはフィルムの生成は、支持体をPEI溶
液中に支持体上に溶液の薄膜が吸着されるのに充分な時
間のあいだ単に浸漬することにより行なうのが最も好都
合で有効である。
However, it is generally most convenient and effective to form the film by simply immersing the support in the PEI solution for a time sufficient to adsorb a thin film of the solution onto the support.

一般に、この浸漬接触時間は決定的な要素ではな(、数
秒から24時間までの時間のいずれもが良好な膜を生成
することがわかった。
In general, the immersion contact time is not a critical factor (any time from a few seconds to 24 hours has been found to produce good films.

支持体は逆浸透法で汎用されている種類のものでよい。The support may be of a type commonly used in reverse osmosis.

これには、多孔性ガラス、焼結金属、陶磁器、並びに有
機重合体材料(例、セルロースエステル、スチレン、ビ
ニルブチラール、ポリスルホン等)がある。
These include porous glasses, sintered metals, ceramics, as well as organic polymeric materials (eg, cellulose esters, styrene, vinyl butyral, polysulfone, etc.).

ポリスルホンフィルムは本発明の膜に対する特に効果的
な支持体材料であることがわかった。
Polysulfone film has been found to be a particularly effective support material for the membranes of the invention.

この支持体フィルムの製造については、0ffice
of 5aline Water Re5earch
andDevelopment Progress R
eport(塩水研究間発局進展報告)A359、(1
968年10月)に記載されている。
For the production of this support film,
of 5aline Water Re5earch
andDevelopment Progress R
eport (Salt water research inter-bureau progress report) A359, (1
(October 968).

この製造法はポリスルホンのジメチルホルムアミド(D
MF)溶液をガラス板上に流し込み成形し、その後2重
量%DMF水溶液中に浸漬してフィルムをゲル化させる
ことから本。
This production method uses polysulfone dimethylformamide (D
MF) solution is poured onto a glass plate to form it, and then immersed in a 2% by weight DMF aqueous solution to gel the film.

質的になる。Be qualitative.

流し込み成形中に空気にさらされていた方のポリスルホ
ンフィルムの面を″前面11と言い、これは大部分が直
径100Å以下の微細な孔を有している。
The side of the polysulfone film exposed to air during casting is referred to as the "front face 11" and has fine pores, most of which are less than 100 Å in diameter.

ガラス板と接触している方のフィルムの“裏面パは非常
に粗大な孔を有している。
The back surface of the film that is in contact with the glass plate has very large pores.

逆浸透脱塩処理で有効な結果を得るためには、PEI被
覆をポリスルホン支持体フィルムの前面の方に施こさな
ければならない。
To obtain effective results in reverse osmosis desalination, the PEI coating must be applied toward the front side of the polysulfone support film.

本発明の逆浸透膜は次いでPEIフィルムを架橋剤と反
応させることにより調製される。
The reverse osmosis membrane of the present invention is then prepared by reacting the PEI film with a crosslinking agent.

この架・橋剤は2官能性または3官能性有機化合物、す
なわちPEI中のアミン基と反応することのできる2ま
たは3個の官能基を含有している化合物からなる。
The cross-linking agent consists of a di- or tri-functional organic compound, ie a compound containing two or three functional groups capable of reacting with the amine groups in PEI.

塩化物及びインシアネート官能基がPEIの架橋に特に
有効であることがわかった。
Chloride and incyanate functional groups have been found to be particularly effective in crosslinking PEI.

しかし、酸無水物、エポキシ及び極性置換基で活性化さ
れているオレフィンのような他の慣用の架橋性官能基も
好適である。
However, other conventional crosslinking functional groups such as acid anhydrides, epoxies and olefins activated with polar substituents are also suitable.

架橋剤は芳香族または複素環式化合物であるのが好まし
い。
Preferably, the crosslinking agent is an aromatic or heterocyclic compound.

なぜなら、このような化合物は、優秀な逆浸透特性、特
に収縮に対する耐性を与えることが判明したからである
This is because such compounds have been found to provide excellent reverse osmosis properties, particularly resistance to shrinkage.

このような架橋剤の優秀性に対する説明は正確にはわか
らないが、PEI構造を結合しているその環状架橋基が
膜の堅固さに太き(寄与して、圧縮に対する良好な抵抗
を発揮するものと考えられる。
Although the exact explanation for the superiority of such cross-linking agents is not known, it is believed that the cyclic cross-linking groups that connect the PEI structures contribute to the stiffness of the membrane and exhibit good resistance to compression. it is conceivable that.

塩化物及びイソシアネート官能基並びに芳香族及び複素
環式結合基の優秀性は後出の実施例に例示しである。
The superiority of chloride and isocyanate functional groups and aromatic and heterocyclic linking groups is illustrated in the Examples below.

実施例のデータに示されているように、4種の化合物、
すなわちトリレン−2・4−ジイソシアネート、塩化シ
アヌール、塩化テレフタロイル及ヒシフェニルエーテル
ジスルホニルクロリドは逆浸透法に非常に有効であるこ
とが判明した。
As shown in the data of the examples, four compounds,
That is, tolylene-2,4-diisocyanate, cyanuric chloride, terephthaloyl chloride and hisiphenyl ether disulfonyl chloride were found to be very effective in reverse osmosis.

これらの化合物とPEIとの反応により、PEI構造構
造水リアミド及びポリウレア結合ができる。
Reaction of these compounds with PEI produces PEI structural aqueous amide and polyurea bonds.

他の好適な架橋剤には二塩化イソフタロイル、アンヒド
ロトリメリット酸塩化物及びメタベンゼンジスルホニル
クロリドがある。
Other suitable crosslinking agents include isophthaloyl dichloride, anhydrotrimellitic acid chloride and metabenzenedisulfonyl chloride.

PEIフィルムと架橋剤との反応はフィルムを架橋剤の
溶液に浸漬して行なうのが都合よい。
The reaction between the PEI film and the crosslinking agent is conveniently carried out by immersing the film in a solution of the crosslinking agent.

架橋剤を溶解するのに用いる溶媒はPEI及び支持体材
料のどちらも溶解してはならない。
The solvent used to dissolve the crosslinker must not dissolve either the PEI or the support material.

n−ヘキサン、ヘプタン、オクタンまたはシクロヘキサ
ンのような炭化水素系溶媒が一般に最も実用的である。
Hydrocarbon solvents such as n-hexane, heptane, octane or cyclohexane are generally the most practical.

溶媒中の架橋剤の最適濃度はその架橋剤、溶媒、支持体
等によってかなり変わってくるので、実験的に決定する
のが最良である。
The optimal concentration of crosslinking agent in the solvent varies considerably depending on the crosslinking agent, solvent, support, etc., and is best determined experimentally.

しかし。約0.1ないし5,0重量%の濃度が一般に良
好である。
but. Concentrations of about 0.1 to 5.0% by weight are generally good.

約90℃ないし130℃、好ましくは約110−115
℃の高温が架橋反応を完了させるためには通常必要であ
る。
about 90°C to 130°C, preferably about 110-115
High temperatures of 0.degree. C. are usually required to complete the crosslinking reaction.

反応は上記の溶媒溶液中で完了させて行なうこともでき
(1工程反応)、その場合この溶媒溶液と必要な温度に
加熱する。
The reaction can also be carried out to completion in the abovementioned solvent solution (one-step reaction), in which case this solvent solution and heating to the required temperature are performed.

または、PEIフィルムを、たとえば約10秒ないし1
0分の短期間経過後に取り出して、必要な温度の加熱器
に入れ、反応を完了させてもよい(2工程反応)。
Alternatively, the PEI film may be heated for about 10 seconds to 1 hour, for example.
After a short period of 0 minutes, it may be taken out and placed in a heater at the required temperature to complete the reaction (two-step reaction).

最適反応時間も上記の変動要素によって変わりうるが、
約5ないし30分の時間が普通はよい。
The optimal reaction time may also change depending on the above variables, but
A time of about 5 to 30 minutes is usually good.

架橋剤が水によって容易に加水分解される場合には、架
橋剤との反応の前にPEIフィルムを乾燥して遊離の水
を除去することが必要である。
If the crosslinking agent is easily hydrolyzed by water, it is necessary to dry the PEI film to remove free water before reaction with the crosslinking agent.

通常は空気乾燥でよいが、輻射型ガスヒーターまたは赤
外線ランプ等により熱を加えることも乾燥を促進するた
めに使用しうる。
Air drying is usually sufficient, but application of heat, such as by a radiant gas heater or an infrared lamp, may also be used to accelerate drying.

しかし、−架橋剤が水で容易に加水分解されない種類の
ものの場合には、乾燥を省略することができる。
However, if the crosslinking agent is of a type that is not easily hydrolyzed with water, drying can be omitted.

たとえば、ポリスルホン支持体フィルム上の低分子量P
EI(分子量12000)をトリレンジイソシアネート
と反応させる場合、乾燥工程を使用しないでも非常によ
い結果(実施例参照)が得られた。
For example, low molecular weight P on a polysulfone support film
When reacting EI (molecular weight 12,000) with tolylene diisocyanate, very good results (see Examples) were obtained without the use of a drying step.

PEI被覆ポリスルホン支持体を乾燥する場合、熱をポ
リスルホンフィルムの裏側からあてて、水蒸気がフィル
ムの裏面の粗大孔を通って逃げることによって、フィル
ムの前面のPEI層が乱されないようにする。
When drying a PEI-coated polysulfone support, heat is applied from the back side of the polysulfone film so that water vapor escapes through the large pores on the back side of the film and does not disturb the PEI layer on the front side of the film.

便宜上及び膜生成物の逆浸透特性の両見地からみて最適
の結果は、膜を支持体上で現場形成することによって通
常得られる。
Optimal results, both from the standpoint of convenience and the reverse osmosis properties of the membrane product, are usually obtained by forming the membrane in situ on the support.

この方法による場合には、上記のようにして支持体をP
EIの水溶液と接触させることによりPEIフィルムを
支持体材料上にまず吸着させる。
When this method is used, the support is coated with P as described above.
The PEI film is first adsorbed onto the support material by contacting with an aqueous solution of EI.

PEIは多孔性物質上に吸着され易い陽イオン性の高分
子電解質であるので、多孔性支持体材料上での膜の現場
形成に特に適している。
PEI is a cationic polyelectrolyte that is easily adsorbed onto porous materials and is therefore particularly suitable for in situ formation of membranes on porous support materials.

吸着されたPEIを次いで上記のように架橋剤と反応さ
せると、支持体上で膜の現場形成が起る。
The adsorbed PEI is then reacted with a crosslinking agent as described above, resulting in in situ formation of a membrane on the support.

ここでも、PEIは架橋剤との高度の反応性並びに上記
の顕著な被吸収性において独特の効果を発揮する。
Here too, PEI exhibits a unique effect in its high degree of reactivity with crosslinking agents as well as its pronounced absorbability.

PEIのアミン基と架橋剤との反応により生ずる厚みが
約1000ないし10000人の範囲の本発明の膜は水
または溶剤に不溶性で、現場形成した場合には支持体か
ら機械的にはがしとることはできないのが普通である。
The membranes of the present invention, having a thickness in the range of about 1000 to 10000 membranes, resulting from the reaction of PEI's amine groups with a crosslinking agent, are insoluble in water or solvents and, if formed in situ, can be mechanically peeled from the support. It is normal that you cannot.

上記の種類のポリスルホン支持体フィルムは、圧縮抵抗
が高(、孔径が小さく(ポリスルホンフィルムの前面の
)かつ乾燥の影響に耐えるために、本発明の膜の現場形
成に特に有効であることが判明した。
Polysulfone support films of the above type have been found to be particularly effective for the in-situ formation of the membranes of the present invention because of their high compressive resistance, small pore size (on the front side of the polysulfone film) and resistance to drying effects. did.

下記の実施例は本発明をさらに詳しく説明するために役
立つだろう。
The following examples will serve to further explain the invention.

実施例 1−6 本実施例においては、支持体は上記のようにして調製さ
れたポリスルホンフィルムで、その厚みは0.038な
いし0.051朋(1,5ないし2.0ミル)で、分子
量20000ないし40000のポリスルホンでできて
いる。
Examples 1-6 In this example, the support was a polysulfone film prepared as described above, with a thickness of 0.038 to 0.051 mm (1.5 to 2.0 mil) and a molecular weight of Made of 20,000 to 40,000 polysulfone.

PE■被覆を次の3工程によりポリスルホンフィルムの
前面に施こした。
The PE■ coating was applied to the front side of the polysulfone film by the following three steps.

(H) 0.33ないし1重量%のPEI(分子量1
2000)溶液を所望の濃度が得られるまでPEIを水
で徐々に希釈することにより調製した。
(H) 0.33 to 1% by weight PEI (molecular weight 1
(2000) solutions were prepared by gradually diluting PEI with water until the desired concentration was obtained.

均一な曇ってみえる溶液が得られるまで混合を続けてか
ら、溶液を口過した。
Mixing was continued until a uniform, cloudy-looking solution was obtained, and then the solution was passed through the mouth.

(ii) ポリスルホン支持体フィルムがまだ湿って
いる間に、これを前面を下にしてPEI溶液の液面上に
1分間置いた。
(ii) While the polysulfone support film was still wet, it was placed face down on the surface of the PEI solution for 1 minute.

(1**) 支持体フィルムをPEI溶液から引き上
げ、クランプで垂直になるようにはさんで、水分を約0
.2%に減らすために約10分間空気乾燥した。
(1**) Pull the support film out of the PEI solution, hold it vertically with clamps, and remove the moisture to about 0.
.. Air dried for approximately 10 minutes to reduce to 2%.

こうして得たPEI被覆ポリスルホン支持体フィルムを
、90℃の温度に保たれている架橋剤のn−へブタン溶
液の中に浸漬した。
The PEI-coated polysulfone support film thus obtained was immersed in a solution of the crosslinker in n-hebutane maintained at a temperature of 90°C.

反応は10分間続けた。The reaction continued for 10 minutes.

その後でき上った膜−支持体複合体を反応媒体から取り
出し、ヘプタンで洗浄し、25℃で30分間空気乾燥し
た。
The resulting membrane-support complex was then removed from the reaction medium, washed with heptane, and air-dried for 30 minutes at 25°C.

これをその後下記の試験条件下で逆浸透試験槽の中で試
験した。
This was then tested in a reverse osmosis test tank under the test conditions described below.

圧 カニ103気圧(i 500 psig )流
量:11/分 供給原料:3.5%NaC1 温 度:25℃ 試験時間:20−24時間 水溶液中のPEI濃度、使用した架橋剤、及び溶媒中の
架橋剤の濃度は第1表に示しである。
Pressure 500 psig Flow rate: 11/min Feedstock: 3.5% NaCl Temperature: 25°C Test time: 20-24 hours PEI concentration in aqueous solution, crosslinker used, and The concentrations of crosslinking agents are shown in Table 1.

結果、すなわち1日当り1平方フィート当りの通過した
水のガロン(gfd)或いは1日当り1平方センチメー
トル当りの水のリットルで表わされた流量(膜を通過し
た水生成物の流量)、並びに供給原料中の全塩分に対す
る膜によって通過できないで残った塩分の%とじて表わ
された塩拒絶率も第1表に示しである。
The results, i.e., the flow rate in gallons of water passed per square foot per day (gfd) or liters of water per square centimeter per day (the flow rate of water product through the membrane), as well as the flow rate in the feedstock. The salt rejection rate, expressed as % of the salt remaining unable to pass through the membrane relative to the total salt of the sample, is also shown in Table 1.

実施例 7−11 本実施例では、架橋剤との反応は支持体を予じめ乾燥さ
せないで行なった。
Examples 7-11 In this example, the reaction with the crosslinking agent was carried out without drying the support beforehand.

支持体は実施例1−6で使用したポリスルホンフィルム
である。
The support is the polysulfone film used in Examples 1-6.

支持体フィルムを分子量12000のPEIの0.66
重量%水溶液と接触させた。
The support film is made of PEI with a molecular weight of 12,000 and 0.66
wt% aqueous solution.

フィルムを取り出して、垂直になるように約1分間型い
て過剰のPEIがきれるようにした。
The film was removed and molded vertically for about 1 minute to remove excess PEI.

湿ったフィルムを平たいバットの中に置いて、室温下で
TDIのヘキサン溶液で3分間覆った。
The wet film was placed in a flat vat and covered with a hexane solution of TDI for 3 minutes at room temperature.

次いでフィルムを取り出し、液体分をきって、加熱器の
中で約115℃の温度で10分間硬化させた。
The film was then removed, drained and cured in a heater for 10 minutes at a temperature of about 115°C.

支持体フィルムの前面にでき上ったPEI被覆の厚みは
6000λであった。
The thickness of the finished PEI coating on the front side of the support film was 6000λ.

これを次いで下記の条件下で逆浸透試1験槽で試験した
This was then tested in a reverse osmosis test tank under the following conditions.

圧 カニ103気圧(1500psig)流 量:
1.51/分 供給原料:3.5%NaC1 温 度:25℃ 試験時間:20−24時間 TDI濃度及び結果は第2表に示しである。
Pressure: Crab 103 atm (1500 psig) Flow rate:
1.51/min Feedstock: 3.5% NaCl Temperature: 25°C Test time: 20-24 hours TDI concentrations and results are shown in Table 2.

本発明の方法により調製した各種の膜でさらに逆浸透試
験をしたところ、200時間の運転中に流量の低下は認
められなかった。
When various membranes prepared by the method of the present invention were further subjected to reverse osmosis tests, no decrease in flow rate was observed during 200 hours of operation.

このことは耐圧縮性が高度であることを示している。This shows that the compression resistance is high.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性高分子フィルムから成る支持体上にポリエチ
レンイミンの層を形成し、続いてこのポリエチレンイミ
ンのアミン基と塩化物あるいはイソシアネート官能基を
もつ多官能性架橋剤との反応によって架橋することから
なる逆浸透膜の製造方法。
1 Forming a layer of polyethyleneimine on a support made of a porous polymer film, and then crosslinking by reacting the amine groups of this polyethyleneimine with a polyfunctional crosslinking agent having chloride or isocyanate functional groups. A method for manufacturing a reverse osmosis membrane.
JP48103945A 1972-09-19 1973-09-17 Manufacturing method of reverse osmosis membrane Expired JPS5824447B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US28759272A 1972-09-19 1972-09-19
US287592 1972-09-19

Publications (2)

Publication Number Publication Date
JPS49133282A JPS49133282A (en) 1974-12-20
JPS5824447B2 true JPS5824447B2 (en) 1983-05-21

Family

ID=23103566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48103945A Expired JPS5824447B2 (en) 1972-09-19 1973-09-17 Manufacturing method of reverse osmosis membrane

Country Status (8)

Country Link
JP (1) JPS5824447B2 (en)
AU (1) AU475380B2 (en)
CA (1) CA1030711A (en)
DE (1) DE2346659C2 (en)
DK (1) DK145526C (en)
FR (1) FR2200030B1 (en)
GB (1) GB1441014A (en)
IL (1) IL43201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105854U (en) * 1983-12-23 1985-07-19 本田技研工業株式会社 vaporizer float valve

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2293960A2 (en) * 1974-12-10 1976-07-09 Rhone Poulenc Ind Semi-permeable composite membranes for eg reverse osmosis - comprising polyelectrolyte skin contg sulphonic acid and quat ammonium gps and anisotropic membrane
US4226673A (en) * 1976-03-15 1980-10-07 Champion International Corporation Color removal from paper and pulp mill aqueous effluents
JPS52127481A (en) * 1976-04-19 1977-10-26 Uop Inc Complex semipermeable membrane and the manufacture
US4125462A (en) * 1977-08-30 1978-11-14 Rohm And Haas Company Coated membranes
JPS5443882A (en) * 1977-09-14 1979-04-06 Nippon Zeon Co Ltd Preparation of semipermeable membrane
US4259183A (en) * 1978-11-07 1981-03-31 Midwest Research Institute Reverse osmosis membrane
US4337154A (en) * 1979-04-04 1982-06-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Crosslinked composite semipermeable membrane
JPS55134607A (en) * 1979-04-06 1980-10-20 Nippon Shokubai Kagaku Kogyo Co Ltd Semipermeable composite membrane with excellent performance and preparation thereof
IL70415A (en) * 1982-12-27 1987-07-31 Aligena Ag Semipermeable encapsulated membranes,their manufacture and their use
JPS6028803A (en) * 1983-07-26 1985-02-14 Agency Of Ind Science & Technol Selective permeable membrane and its manufacture
US4761234A (en) * 1985-08-05 1988-08-02 Toray Industries, Inc. Interfacially synthesized reverse osmosis membrane
JPH07178327A (en) * 1993-11-12 1995-07-18 Nitto Denko Corp Composite semipermeable membrane and its production
WO2011097403A1 (en) 2010-02-04 2011-08-11 Dxv Water Technologies, Llc Water treatment systems and methods
JP5823761B2 (en) * 2011-07-26 2015-11-25 ダイセン・メンブレン・システムズ株式会社 NF membrane and manufacturing method thereof
US10513446B2 (en) 2014-10-10 2019-12-24 EcoDesal, LLC Depth exposed membrane for water extraction
CN112973460B (en) * 2021-03-15 2022-07-08 中国石油大学(北京) Crosslinked covalent organic framework desalting membrane and preparation method and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556305A (en) * 1968-03-28 1971-01-19 Amicon Corp Composite membrane and process for making same
FR2088598A5 (en) * 1970-04-17 1972-01-07 Anvar

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60105854U (en) * 1983-12-23 1985-07-19 本田技研工業株式会社 vaporizer float valve

Also Published As

Publication number Publication date
DK145526C (en) 1983-05-02
DK145526B (en) 1982-12-06
IL43201A0 (en) 1973-11-28
AU475380B2 (en) 1976-08-19
JPS49133282A (en) 1974-12-20
IL43201A (en) 1976-11-30
FR2200030A1 (en) 1974-04-19
DE2346659A1 (en) 1974-03-28
DE2346659C2 (en) 1981-09-24
FR2200030B1 (en) 1976-05-14
AU6034773A (en) 1975-03-20
GB1441014A (en) 1976-06-30
CA1030711A (en) 1978-05-09

Similar Documents

Publication Publication Date Title
US4039440A (en) Reverse osmosis membrane
JPS5824447B2 (en) Manufacturing method of reverse osmosis membrane
EP0316525B1 (en) Polyamide reverse osmosis membranes
US3926798A (en) Reverse osmosis membrane
US4814082A (en) Ultrafiltration thin film membranes
US4960517A (en) Treatment of composite polyamide membranes via substitution with amine reactive reagents
JPH06502116A (en) Reverse osmosis or nanofiltration membrane and its manufacturing method
US4107049A (en) Process for producing semipermeable membranes
JP2001520111A (en) Method for producing composite membrane having thin hydrophilic coating layer on hydrophobic support membrane
JPS6410241B2 (en)
EP0532687A1 (en) Semipermeable composite membrane.
JPS63130105A (en) Production of permselective composite membrane
JPH1128466A (en) Reverse osmosis treatment of water with reverse osmosis composite membrane
JPS62140608A (en) Composite semipermeable membrane, its production, and treatment of aqueous solution
KR100506537B1 (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
JPS6028803A (en) Selective permeable membrane and its manufacture
JPH0761432B2 (en) Method for producing highly functional asymmetric membrane
JPH0516290B2 (en)
JPH05293345A (en) Semipermeable dual membrane
JPS62262712A (en) Production of semipermeable membrane
US5221482A (en) Polyparabanic acid membrane for selective separation
JPH0232009B2 (en)
JPS6146203A (en) Composite semipermeable membrane and its manufacture
JPS62213806A (en) Semi-permeable composite membrane
JPH11179175A (en) Production of composite separation membrane