JPH0761432B2 - Method for producing highly functional asymmetric membrane - Google Patents

Method for producing highly functional asymmetric membrane

Info

Publication number
JPH0761432B2
JPH0761432B2 JP4024678A JP2467892A JPH0761432B2 JP H0761432 B2 JPH0761432 B2 JP H0761432B2 JP 4024678 A JP4024678 A JP 4024678A JP 2467892 A JP2467892 A JP 2467892A JP H0761432 B2 JPH0761432 B2 JP H0761432B2
Authority
JP
Japan
Prior art keywords
membrane
film
solution
polymer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4024678A
Other languages
Japanese (ja)
Other versions
JPH05184887A (en
Inventor
宏 柳下
大 北本
尭 中根
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP4024678A priority Critical patent/JPH0761432B2/en
Publication of JPH05184887A publication Critical patent/JPH05184887A/en
Publication of JPH0761432B2 publication Critical patent/JPH0761432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少なくとも1種以上の
溶質を含有する有機溶液、もしくは有機液体混合物、も
しくは気体混合物等を分離する膜分離プロセスで使用す
る分離膜の製造方法に関するものである。さらに詳しく
は、化学工業や石油産業を始め、食品、医薬品、醸造工
業等における濃縮、分離、精製プロセスに使用する耐有
機溶剤性を有する非多孔質型(拡散透過型)の非対称膜
(逆浸透膜、浸透気化膜、気体分離膜)の相転換法によ
る製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a separation membrane for use in a membrane separation process for separating an organic solution containing at least one solute, an organic liquid mixture, a gas mixture or the like. . More specifically, it is a non-porous (diffusion permeable) asymmetric membrane (reverse osmosis) with organic solvent resistance used in the concentration, separation and purification processes in the chemical industry, petroleum industry, food, pharmaceuticals, brewing industry, etc. Membranes, pervaporative membranes, gas separation membranes) by a phase conversion method.

【0002】[0002]

【従来の技術】各種膜分離プロセスのうちで現在工業的
規模で実用化されているのは、海水の淡水化、脱塩、超
純水の製造、廃水処理、酸・アルカリ等有用物質の回
収、飲料食品の濃縮等のいわゆる水溶液の分離と、水素
回収等の気体混合物の分離が主であって、有機液体混合
物等有機溶液系の膜分離プロセスに関してはまだ十分に
は実用化されていない。これは、耐溶剤性を発現するポ
リイミド、ポリアクリロニトリル等の耐熱性、耐薬品性
を有する高分子重合体からの製膜が一般にかなり困難で
あるため、実用的な分離膜がこれまで得られらなかった
ことによる。従来、水溶液系用の分離膜に広く使用され
ている酢酸セルロース、ポリスルホン、ポリ塩化ビニル
等の高分子素材は、比較的容易に相転換法等によって製
膜可能であるが、これらの高分子素材は実用的な意味で
の耐溶剤性を十分有していない。
2. Description of the Related Art Among various membrane separation processes, what is practically used on an industrial scale is desalination of seawater, desalination, production of ultrapure water, wastewater treatment, recovery of useful substances such as acids and alkalis. The main components are so-called aqueous solution separation such as concentration of beverages and foods, and gas mixture separation such as hydrogen recovery, and organic solution-based membrane separation processes such as organic liquid mixtures have not yet been put to practical use. This is because polyimide, which exhibits solvent resistance, heat resistance such as polyacrylonitrile, etc., and it is generally quite difficult to form a film from a high-molecular polymer having chemical resistance, so that a practical separation membrane has been obtained so far. Because it wasn't. Conventionally, polymer materials such as cellulose acetate, polysulfone, and polyvinyl chloride, which have been widely used for separation membranes for aqueous systems, can be relatively easily formed into a membrane by a phase conversion method. Does not have sufficient solvent resistance in a practical sense.

【0003】これまでに、有機性の溶質や溶媒等を含有
する有機溶液等の膜分離を目的とした多孔質型の限外濾
過膜の製造方法はいくつか報告されている。例えば、特
開昭54−71785号、特開昭54−61359号等
である。しかし、主に低分子物質を溶質として含む有機
溶液、あるいは有機液体混合物、あるいは気体混合物等
を分離対象とするものであり、実用的な耐溶剤性を有す
る非多孔質型の高機能分離膜、即ち非水系逆浸透膜、浸
透気化膜、気体分離膜等を相転換法で作製する方法はあ
まり報告されておらず、こうした分離膜の開発が強く要
請されている。
Up to now, several methods for producing a porous type ultrafiltration membrane for the purpose of membrane separation of an organic solution containing an organic solute or a solvent have been reported. For example, JP-A-54-71785 and JP-A-54-61359 are available. However, an organic solution mainly containing a low molecular weight substance as a solute, or an organic liquid mixture, or a gas mixture, etc. is to be separated, a non-porous high-performance separation membrane having practical solvent resistance, That is, a method for producing a non-aqueous reverse osmosis membrane, a pervaporation membrane, a gas separation membrane and the like by a phase inversion method has not been reported so much, and development of such a separation membrane is strongly demanded.

【0004】[0004]

【発明が解決しようとする課題】分離膜の製造方法とし
ては、高分子溶液のゾルからゲルへの相変化を利用して
活性層(緻密な表面層で、この部分の構造が分離機能を
大きく支配する)とそれを支える多孔質の支持層を同時
に一体的に形成させるいわゆる相転換法、あるいは既製
の多孔性高分子膜を支持体としてその表面に積層法やプ
ラズマ重合法等により活性層を別途形成させる複合膜法
が代表的なものである。しかし、これら従来の製膜方法
では、上記目的を達成しようとした場合、次のような問
題点が未解決のままである。
As a method for producing a separation membrane, an active layer (a dense surface layer, which has a dense surface layer, has a large separation function by utilizing a phase change of a polymer solution from sol to gel). Control) and a porous support layer that supports it at the same time by a so-called phase inversion method, or by using a ready-made porous polymer membrane as a support on the surface of which an active layer is formed by a lamination method or a plasma polymerization method. A typical example is a composite film method that is separately formed. However, in these conventional film forming methods, the following problems remain unsolved when trying to achieve the above object.

【0005】第一に、従来の相転換法で、緻密な活性層
を有する非対称膜を作製しようとする場合、製膜原液の
成分調整、膜特性の向上等の容易さ等から、膜素材とし
ては多くの場合粉末または顆粒状の固形の高分子重合体
が利用されている。この理由は、一般に溶液状で市販さ
れている高分子重合体には、高分子重合体自体、若しく
はこれを溶解している溶剤等低沸点有機化合物等の不
純物が含有されている場合が多く、製膜時に非常に緻密
で均一な構造を持つ活性層を形成させることが極めて困
難であるためであった。
First, when an asymmetric membrane having a dense active layer is to be produced by a conventional phase inversion method, it is easy to adjust the components of the membrane-forming stock solution and improve the membrane characteristics. In most cases, solid high-molecular polymers in the form of powder or granules are used. The reason for this is that, in general, high molecular weight polymers that are commercially available in the form of a solution often contain impurities such as low boiling point organic compounds in the high molecular weight polymer itself, or the solvent in which it is dissolved. , thereby forming an active layer with a very dense and uniform structure during the film was Tsu der because it is very difficult.

【0006】しかし、ポリイミド重合体等を始めとする
耐溶剤性を発現する膜素材は溶液状で市販されているこ
とが多いため、上記の既知の相転換法では多孔質膜であ
る限外濾過膜以外の、いわゆる拡散透過型の分離膜を製
膜することは実質的にかなり困難であった。さらに、こ
うした高分子素材は親水性高分子に比べかなり剛直な構
造を有しているため、仮に製膜が可能であっても得られ
る膜の透過流束は一般に極めて小さいとされている。
[0006] However, since membrane materials exhibiting solvent resistance such as polyimide polymers are often commercially available in the form of a solution, the above-mentioned known phase inversion method is a porous membrane that uses ultrafiltration. It was substantially difficult to form a so-called diffusion transmission type separation membrane other than the membrane. Further, since such a polymer material has a considerably rigid structure as compared with a hydrophilic polymer, it is said that the permeation flux of the obtained membrane is generally extremely small even if the membrane can be formed.

【0007】第二に、従来の相転換法によって作製され
た膜、特に製膜原液を溶液状で用いて作製された膜は、
一般にゲル化が速く起るため、そのままでは耐溶剤性、
機械的強度等が低い場合が多く、実用的な逆浸透膜、浸
透気化膜等のいわゆる拡散透過型の分離膜を得ることは
できなかった。
Secondly, the film produced by the conventional phase inversion method, especially the film produced by using the film forming stock solution in the form of a solution,
In general, gelation occurs rapidly, so solvent resistance,
In many cases, the mechanical strength and the like are low, and it was not possible to obtain a so-called diffusion-permeation type separation membrane such as a reverse osmosis membrane or a pervaporation membrane.

【0008】第三に、複合膜法においては、支持体に積
層する高分離機能を持つ高分子素材の開発が必要であ
り、さらに活性層となる薄膜層の形成方法やその接着方
法等に高度な技術を必要とし、その製造工程が極めて複
雑となる。
Thirdly, in the composite membrane method, it is necessary to develop a polymer material having a high separating function to be laminated on a support, and further, it is highly required to form a thin film layer to be an active layer and its adhesion method. However, the manufacturing process becomes extremely complicated.

【0009】[0009]

【課題を解決するための手段】この様な背景の中で、本
発明者らは鋭意研究し、既知の相転換法の改良をいろい
ろ試みた結果、耐溶剤性の膜を与える高分子重合体に含
有される少量の水分(0.5〜数重量%程度の)が膜性
能の低下に大きく影響しており、予め、高分子重合体の
溶液を加熱濃縮して水分を実質的に零にすることによ
り、相転換法により非常に緻密で均一な構造の活性層を
形成しうることを見い出し、この知見に基づき本発明を
なすに至った。本発明は、ポリイミド重合体等の耐熱
性、耐薬品性等を有する高分子重合体をその市販の形態
に関わらず膜素材として利用でき、既知の相転換法に簡
便な処理操作を付随することによって、耐溶剤性を有す
る非多孔質型の高機能性非対称膜を容易に製造できる方
法を提供するものである。
Against this background, the present inventors have diligently studied and made various attempts to improve the known phase inversion method, and as a result, a high molecular polymer giving a solvent resistant film was obtained. The small amount of water (about 0.5 to several weight%) contained in the composition greatly affects the deterioration of the membrane performance, and the solution of the high molecular polymer is heated and concentrated in advance so that the water content becomes substantially zero. By doing so, it was found that an active layer having a very dense and uniform structure can be formed by the phase inversion method, and the present invention was completed based on this finding. INDUSTRIAL APPLICABILITY The present invention can use a high molecular polymer having heat resistance, chemical resistance, etc., such as a polyimide polymer as a membrane material regardless of its commercially available form, and accompany a known phase inversion method with a simple treatment operation. According to the present invention, there is provided a method capable of easily producing a solvent-resistant non-porous high-performance asymmetric membrane.

【0010】すなわち本発明はポリイミド重合体又はポ
リアクリロニトリル重合体の溶液を加熱濃縮して、溶液
中の水分含量を0.3重量%(以下、重量%を単に%と
記す)以下とした後、所定の組成を有す製膜原液を作製
し、この製膜原液を用いて相転換法により非対称膜の製
膜を行うことを特徴とする高機能性非対称膜の製造方法
に関するものである。本発明の高機能性非対称膜の製造
方法は、従来の相転換法では製膜が極めて困難であった
溶液状で市販されているポリイミド重合体等を膜素材と
しても非多孔質型の非対称膜の作製を可能とするもので
ある。また、ポリアクリロニトリル重合体のように固形
の粉末状ではあるが通常の状態で水分含量が5以上
で、場合によっては20以上もあり完全に脱水するこ
とは極めて困難な含水性の膜素材を用いても、非多孔質
型の非対称膜を容易に作製することができる。
That is, the present invention relates to a polyimide polymer or a polymer.
The solution of riacrylonitrile polymer is heated and concentrated to form a solution.
The moisture content in the product is 0.3% by weight (hereinafter, weight% is simply referred to as%).
The production of a highly functional asymmetric membrane characterized in that after the following steps, a membrane-forming undiluted solution having a predetermined composition is prepared, and the membrane-forming undiluted solution is used to form an asymmetric membrane by the phase inversion method. It is about the method. The method for producing a highly functional asymmetric membrane of the present invention is a non-porous type asymmetric membrane even when a film material such as a polyimide polymer which is commercially available in a solution form, which has been extremely difficult to form by the conventional phase inversion method, is used as a membrane material. It is possible to manufacture Further, a water-containing membrane material which is a solid powder like a polyacrylonitrile polymer but has a water content of 5 % or more in a normal state, and in some cases 20 % or more, which is extremely difficult to completely dehydrate. By using, it is possible to easily produce a non-porous type asymmetric membrane.

【0011】本発明に用いられる耐熱性、耐薬品性を有
する高分子重合体としては、下記式なる構造を有する市
販の全芳香族性ポリイミド重合体(PI2080)のほ
か、従来公知のポリイミド系重合体も使用することがで
きる。また、市販のポリアクリロニトリル重合体も使用
することができる。
As the high molecular weight polymer having heat resistance and chemical resistance used in the present invention, a commercially available wholly aromatic polyimide polymer (PI2080) having a structure represented by the following formula, and conventionally known polyimide type Coalescence can also be used. Moreover, a commercially available polyacrylonitrile polymer can also be used.

【0012】[0012]

【化1】 [Chemical 1]

【0013】これらの膜素材は、粉末、顆粒などの固形
状、あるいはワニス状の液状、もしくは適当な溶剤に溶
解された溶液状(例えば、高分子重合体の合成反応終了
液をある程度精製した溶液等)の形態で市販されてい
る。
These membrane materials are in the form of solid such as powder or granules, or liquid such as varnish, or solution in which they are dissolved in a suitable solvent (for example, a solution obtained by purifying a synthesis reaction solution of a high molecular polymer to some extent). Etc.) is commercially available.

【0014】本発明を用いて、例えばポリイミド重合体
を膜素材として本発明の相転換法によって非対称膜を製
膜する方法を、以下に示す。まず、固形状の重合体は適
当な溶剤に溶解し、溶液状の重合体も必要ならば適宜溶
剤を添加し完全に溶解する。溶剤としては、高分子重合
体を溶解させると供に、後に説明する膨潤剤、凝固溶剤
(ゲル化剤)と相溶性を有するものが用いられ、N−メ
チル−2−ピロリドン、ジメチルアセトアミド、ジメチ
ルホルムアミド、ジメチルスルホキシド、γ−ブチルラ
クトン等を例示することができる。高分子重合体の濃度
は製膜する膜厚等に応じ10〜35重量%(以下、明示
しない限りは組成を示す%はすべて重量%を表すものと
する。)、好ましくは、15〜25%である。この時の
溶液の濃度及び粘度は、製膜時の自己支持性(膜形成
能)、製膜原液の均一性等が良好と成るように適宜選択
される。
A method for forming an asymmetric membrane by using the present invention, for example, using a polyimide polymer as a membrane material by the phase conversion method of the present invention will be described below. First, the solid polymer is dissolved in an appropriate solvent, and the polymer in solution is also completely dissolved by adding an appropriate solvent if necessary. As the solvent, a solvent having a compatibility with a swelling agent and a coagulating solvent (gelling agent), which will be described later, is used in addition to dissolving a high-molecular polymer, and N-methyl-2-pyrrolidone, dimethylacetamide, dimethyl are used. Examples include formamide, dimethyl sulfoxide, γ-butyl lactone, and the like. The concentration of the high molecular weight polymer is 10 to 35% by weight (hereinafter, all% representing composition represents% by weight unless otherwise specified), preferably 15 to 25%, depending on the film thickness to be formed. Is. The concentration and viscosity of the solution at this time are appropriately selected so that the self-supporting property (film forming ability) during film formation, the uniformity of the film forming stock solution, and the like are good.

【0015】本発明における重要な技術的手段は、製膜
原液を作製する前に、予めこの高分子重合体溶解液を加
熱濃縮処理することであり、これにより溶液中に含まれ
る水分、低沸点化合物等の不純物を除去することであ
る。すでに述べたように、一般に市販されている高分子
素材には、高分子重合体自体あるいはこれを溶解してい
る溶剤等にこのような不純物が数%程度含まれているこ
とが多い。特に溶液状高分子重合体は、固形状の物に比
べその含量が多いと考えられる。高分子素材自体に全く
不純物が含まれていない場合でも、溶剤として別途加え
る上記のような市販の極性溶剤は親水性であるため水分
等が少なからず含まれていること多い。製膜原液中に存
在する水分や低沸点有機化合物等は、一般にそのゲル化
を速めるため、製膜された膜表面に形成される緻密な活
性層の微細構造を不均一にし局部的に欠陥(ピンホー
ル)ができ易くなり、膜性能の低下をもたらす。従っ
て、製膜原液中の不純物特に水分を除去することは非対
称膜を作製する場合に極めて重要である。
An important technical means in the present invention is to heat-concentrate the high-molecular polymer solution in advance before preparing the membrane-forming stock solution, whereby the water content and low boiling point contained in the solution are reduced. It is to remove impurities such as compounds. As described above, generally commercially available polymer materials often contain about several percent of such impurities in the polymer itself or the solvent in which it is dissolved. In particular, it is considered that the content of the solution type high molecular weight polymer is higher than that of the solid state type polymer. Even if the polymer material itself does not contain any impurities, the commercially available polar solvent that is separately added as a solvent is hydrophilic and often contains a considerable amount of water or the like. Moisture, low boiling point organic compounds, etc. present in the stock solution for film formation generally accelerate the gelation of the solution, resulting in non-uniform microstructure of the dense active layer formed on the surface of the formed film, leading to local defects ( Pinholes) are easily formed, and the film performance is deteriorated. Therefore, it is extremely important to remove impurities, especially water, from the stock solution for film formation when producing an asymmetric film.

【0016】この高分子重合体溶液の加熱濃縮処理は、
前記高分子重合体等の溶解液を少なくとも60℃以上好
ましくは100℃以上の比較的高温でゆっくり撹拌しな
がら加熱し、水分を実質的に含有しないように、すなわ
ち少なくとも0.3%以下好ましくは0.1%以下にな
るまで濃縮を続けることからなる。このように処理した
溶液から所定の組成を有する製膜原液を作製し、これを
用いることにより、分離機能が高い膜を容易に製膜す
る。加熱温度は、溶剤によって異なるが、あまり低いと
濃縮に時間がかかり、あまり高いと高分子重合体が変質
するため、通常は100〜150℃程度が好ましい。加
熱時間は、溶剤、溶液量により異なるが、通常は6〜4
8時間程度が好ましい。
The heating and concentrating treatment of the polymer solution is
The solution of the polymer or the like is heated at a relatively high temperature of at least 60 ° C. or higher, preferably 100 ° C. or higher, with slow stirring so as to be substantially free of water, that is, at least 0.3% or less, preferably Concentration is continued until it is below 0.1%. A membrane-forming stock solution having a predetermined composition is prepared from the solution thus treated, and by using this, a membrane having a high separation function is easily formed. The heating temperature varies depending on the solvent, but if it is too low, it takes time to concentrate, and if it is too high, the high-molecular polymer deteriorates. The heating time varies depending on the solvent and the amount of the solution, but is usually 6 to 4
About 8 hours is preferable.

【0017】水分含量が実質的に零になった時点で、必
要ならばこの重合体溶解液に膨潤剤等を添加し、これを
製膜原液とする。膨潤剤としては、溶剤および凝固溶剤
と相溶性を有すもので、ジオキサン、アセトン、テトラ
ヒドロフラン等の親水性有機溶剤や塩化リチウム(LiC
l)等の無機塩を好ましいものとして挙げることができ
る。特に、上記のようなポリイミドあるいはポリアクリ
ロニトリルの如く耐溶剤性の高い高分子重合体を膜素材
として用いる場合は、アセトン、ジオキサン等のケトン
類の化合物や含酸素環状化合物等が望ましい。
When the water content becomes substantially zero, a swelling agent or the like is added to the polymer solution, if necessary, to prepare a stock solution for film formation. The swelling agent is compatible with the solvent and coagulating solvent, and is a hydrophilic organic solvent such as dioxane, acetone, or tetrahydrofuran, or lithium chloride (LiC
Inorganic salts such as l) can be mentioned as preferable ones. In particular, when a high polymer having high solvent resistance such as polyimide or polyacrylonitrile as described above is used as a membrane material, a compound of a ketone such as acetone or dioxane or an oxygen-containing cyclic compound is preferable.

【0018】次いで、このようにして調製した製膜原液
を適当な支持体の上に一定の厚さに流延する。また、中
空糸状の膜を作製する場合には、支持体を用いず同心円
状の二重構造のノズル(口金)から直接流延する。これ
らの流延は、相対湿度が少なくとも40%以下に管理さ
れている雰囲気中で行われることが望ましい。用いる支
持体は特に限定しないが、ガラス、アルミニウム、プラ
スチック等平滑な表面を有する平板あるいは管を利用す
ることができ、不織布のようなシート状のものも利用す
ることができる。平板状に流延する手段としては、従来
公知の塗布手段を利用すればよく、実験室的には例えば
ドクターナイフ、ドクターブレード、バーコーダー等を
利用することができる。支持体に流延する厚さは、目的
とする膜の用途によって異なるが、通常は約80〜30
0μm程度が好ましい。支持体に流延された製膜原液
は、通常直ちにあるいは数分以内に凝固液に浸漬し、製
膜原液中の溶剤と凝固液を実質的に交換させると共に、
高分子重合体を相転換させて凝固(ゲル化)させ、膜状
にする。
Next, the stock solution for film formation thus prepared is cast on an appropriate support to a predetermined thickness. Further, in the case of producing a hollow fiber membrane, casting is performed directly from a concentric double structure nozzle (base) without using a support. It is desirable that these castings are performed in an atmosphere in which the relative humidity is controlled to be at least 40% or less. The support to be used is not particularly limited, but a flat plate or tube having a smooth surface such as glass, aluminum, or plastic can be used, and a sheet-like one such as nonwoven fabric can also be used. As a means for casting in a flat plate shape, a conventionally known coating means may be used, and in the laboratory, for example, a doctor knife, a doctor blade, a bar coder or the like can be used. The thickness cast on the support varies depending on the intended use of the membrane, but is usually about 80 to 30.
About 0 μm is preferable. The film-forming stock solution cast on the support is usually immediately or within a few minutes immersed in the coagulating solution to substantially exchange the solvent and the coagulating solution in the film-forming stock solution,
The high-molecular polymer is phase-converted and solidified (gelled) to form a film.

【0019】凝固液(ゲル化液)としては、高分子重合
体溶解用の溶剤、膨潤剤等と相溶性を有すもので、その
高分子重合体に対して溶解力がない水、アセトン、ベン
ゼン、ヘキサン、あるいはメタノール、エタノール等の
アルコールなどを利用することができる。製膜原液を凝
固液中に浸漬してゲル化させ製膜する際の温度は、凝固
液の沸点以下であれば特に限定されるものではないが、
一般的には0〜40℃程度が好ましい。浸漬時間は浸漬
温度によって異なるが、一般的には1時間以上が好まし
い。
The coagulating liquid (gelling liquid) is compatible with a solvent for dissolving a high molecular polymer, a swelling agent, etc., and has no dissolving power for the high molecular polymer, such as water, acetone, Benzene, hexane, or alcohol such as methanol or ethanol can be used. The temperature at the time of forming a gel by dipping the film-forming stock solution in a coagulating liquid is not particularly limited as long as it is equal to or lower than the boiling point of the coagulating liquid.
Generally, about 0 to 40 ° C is preferable. Although the immersion time varies depending on the immersion temperature, it is generally preferably 1 hour or more.

【0020】本発明において、以上のように相転換法で
作製した膜を真空下で熱処理し、その機械的強度、耐溶
剤性等の改質を図ることが好ましい。膜を熱処理し、そ
の機械的強度を高めること自体は従来公知の手段である
が、本発明ではこの処理を真空下で行うことにより、機
械的強度ばかりでなく化学的安定性(耐溶剤性等)をも
高めることができる。これは、真空下で熱処理を行う
と、製膜後に膜中に残存していた水分(熱処理すること
により脱水縮合等の架橋反応が起こって生成される水分
等を含む)、凝固溶剤等の微量な不純物までもが除去さ
れ、機械的強度、化学的安定性を増加させるための高分
子素材の構造変化(架橋等)が著しく促進されるためで
ある。この様な微量な不純物は単に温度を上昇させるだ
けでは除去困難である。従って、本発明での熱処理は、
ポリイミド、ポリアクリロニトリル等の耐熱性高分子を
膜素材とする場合に特に有効であり、従来の熱処理に比
べ熱処理効率が高く架橋反応等の進行が著しく大きいた
め、比較的短時間でこれらの高分子から成る非対称膜の
高機能化を図ることができる。
In the present invention, it is preferable to heat-treat the film produced by the phase inversion method as described above under vacuum to improve its mechanical strength, solvent resistance and the like. The heat treatment of the film to increase its mechanical strength is a conventionally known means, but in the present invention, this treatment is performed under vacuum to obtain not only mechanical strength but also chemical stability (solvent resistance, etc.). ) Can also be increased. This is because when heat treatment is performed under vacuum, the water remaining in the film after film formation (including water that is generated by crosslinking reactions such as dehydration condensation by heat treatment) and trace amounts of coagulation solvents, etc. This is because even such impurities are removed, and structural changes (crosslinking, etc.) of the polymer material for increasing mechanical strength and chemical stability are significantly promoted. It is difficult to remove such a trace amount of impurities simply by raising the temperature. Therefore, the heat treatment in the present invention is
It is particularly effective when heat-resistant polymers such as polyimide and polyacrylonitrile are used as the film material, and the heat treatment efficiency is higher than the conventional heat treatment, and the progress of the crosslinking reaction is significantly large. It is possible to enhance the function of the asymmetric film made of.

【0021】このような製膜後の熱処理を行うために
は、まず、上記のような方法で作製された膜を凝固液か
ら取り出し、適当な溶剤に順番に浸漬して膜中の凝固液
や水分等を順次除去する。特に水を凝固液として用いた
場合には、エタノール、イソプロピルアルコール中等に
順番に浸漬して溶媒置換を行いながら脱水するのがよ
く、最終的にはヘキサン等の表面張力が低くかつ低沸点
の溶剤に浸漬してから、膜を外に取り出し常温で風乾
後、真空乾燥器中でさらに加熱処理するのが望ましい。
その加熱温度は、膜素材である高分子重合体のガラス転
移点以下であることが望ましく、通常は100〜350
℃の範囲であり、特にポリイミド重合体膜の場合は20
0〜300℃程度の高温が好ましい。加熱時間は、通常
1〜8時間程度が必要で、3〜6時間程度が好ましい。
この時の、真空度は少なくとも1Torr以下、10-1〜1
-3Torrが好ましい。必要ならば、さらに真空度を低下
させることにより、より一層高機能な膜を得ることが可
能である。以上説明したように、本発明の高機能性非対
称膜の製造方法は、製膜原液の調製、相転換法による製
膜、熱処理による膜の高機能化より成る。
In order to carry out such a heat treatment after film formation, first, the film produced by the above method is taken out from the coagulation liquid and sequentially immersed in an appropriate solvent to remove the coagulation liquid in the film. Moisture etc. are removed sequentially. In particular, when water is used as the coagulating liquid, it is preferable to sequentially immerse it in ethanol, isopropyl alcohol, etc. to perform dehydration while performing solvent replacement, and finally, a solvent having a low surface tension and a low boiling point such as hexane. It is preferable that the membrane is taken out, air dried at room temperature, and then further heat-treated in a vacuum dryer.
The heating temperature is preferably not higher than the glass transition point of the high molecular weight polymer that is the film material, and is usually 100 to 350.
℃ range, especially in the case of polyimide polymer film 20
A high temperature of about 0 to 300 ° C. is preferable. The heating time is usually about 1 to 8 hours, preferably about 3 to 6 hours.
At this time, the degree of vacuum is at least 1 Torr or less, 10 -1 to 1
0 -3 Torr is preferred. If necessary, the vacuum degree can be further reduced to obtain a film with higher functionality. As described above, the method for producing a highly functional asymmetric membrane of the present invention comprises preparation of a membrane-forming stock solution, membrane formation by a phase inversion method, and functionalization of a membrane by heat treatment.

【0022】[0022]

【実施例】以下、実施例に基づき、本発明をさらに詳細
に説明する。ただし、これらの実施例は、本発明を限定
するものではない。
The present invention will be described in more detail based on the following examples. However, these examples do not limit the present invention.

【0023】実施例1 ポリイミドを25%含むジメチルホルムアミド溶液(商
品名PI2080、ダウ・ケミカル社製)100gを3
00ml容ナス型フラスコに分取し、オイルバス上でゆ
っくりと回転させながら撹拌して、120℃で24時間
加熱濃縮操作を行った。加熱処理前のポリイミド樹脂溶
液の水分含量は約0.8%であったが、上記操作後、そ
の値は0.09%となった。なお、この場合、ポリイミ
ド溶液の水分含量は、カールフィッシャー水分計(三菱
化成製)にて測定した。このポリイミド濃縮溶液に、溶
剤としてジメチルホルムアミドを、膨潤剤としてジオキ
サンを各々加えて製膜原液を作製した。ただし、製膜原
液の組成は、ポリイミド22.5%、溶剤62%、膨潤
剤15.5%とした。この製膜原液を、25℃、窒素ガ
ス雰囲気中(相対湿度は35%以下)で、ドクターブレ
ートを用いてガラス板上に250μmの厚さに均一に流
延(塗布)し、約30秒間水平に保持して溶剤の一部を
蒸発させた後、2℃の冷水中に浸漬してゲル化させた。
作製された非対称膜を水中より取り出し、エタノール、
イソプロピルアルコール、へキサンの各溶液に3日間ず
つ順次浸積し、膜の脱水、溶媒置換を行った。こうして
得られた膜を試料No.1とする。またこの膜を風乾し真
空乾燥機中に入れ、6時間、10-2Torr以下の真空下、
250℃で熱処理を行って得た膜を試料No.2とする。
Example 1 Three 100 g of a dimethylformamide solution containing 25% of polyimide (trade name PI2080, manufactured by Dow Chemical Co.)
The mixture was dispensed into a 00 ml eggplant-shaped flask, stirred while slowly rotating on an oil bath, and heated and concentrated at 120 ° C. for 24 hours. The water content of the polyimide resin solution before the heat treatment was about 0.8%, but after the above operation, the value was 0.09%. In this case, the water content of the polyimide solution was measured with a Karl Fischer moisture meter (manufactured by Mitsubishi Kasei). Dimethylformamide as a solvent and dioxane as a swelling agent were added to this concentrated polyimide solution to prepare a stock solution for film formation. However, the composition of the film-forming stock solution was polyimide 22.5%, solvent 62%, and swelling agent 15.5%. This film-forming stock solution is uniformly cast (applied) to a thickness of 250 μm on a glass plate using a doctor plate in a nitrogen gas atmosphere (relative humidity is 35% or less) at a temperature of 25 ° C. for about 30 seconds. The solution was retained in the above to evaporate a part of the solvent, and then immersed in cold water at 2 ° C. for gelation.
The produced asymmetric membrane was taken out from water, ethanol,
The film was dehydrated and the solvent was replaced by immersing the solution in isopropyl alcohol and hexane for 3 days respectively. The film thus obtained is referred to as Sample No. 1. The film was air dried and placed in a vacuum dryer for 6 hours under a vacuum of 10 -2 Torr or less,
The film obtained by heat treatment at 250 ° C. is designated as sample No.2.

【0024】上記実施例1で作製した膜試料No.1及び
2の分離性能を、25℃、2次圧1Torr以下の条件で9
5容量%エタノール水溶液に対する浸透気化特性(膜透
過流束Q、分離係数α(H2O/EtOH))を測定することによ
り評価した。その結果を表1に示す。また、製膜後の熱
処理を全く行わなかった膜(試料No.1)については、
限外ろ過特性も測定した(25℃、操作圧力3kg/c
m2)。その結果、この膜は、分子量6000のポリエチ
レングリコールに対して阻止率90%、Q=0.5t/m2
・Dの性能を示した。これより、本発明にしたがって製
膜することにより製膜後の熱処理を全く行わなくても、
十分な性能を有する限外ろ過膜が得られることが分か
る。
The separation performance of the membrane samples No. 1 and No. 2 produced in the above-mentioned Example 1 was 9 at 25 ° C. and a secondary pressure of 1 Torr or less.
It was evaluated by measuring the pervaporation characteristics (membrane permeation flux Q, separation coefficient α (H 2 O / EtOH)) for a 5% by volume ethanol aqueous solution. The results are shown in Table 1. In addition, regarding the film (Sample No. 1) which was not subjected to heat treatment after film formation,
Ultrafiltration characteristics were also measured (25 ° C, operating pressure 3 kg / c
m 2 ). As a result, this membrane has a rejection of 90% for polyethylene glycol having a molecular weight of 6000 and Q = 0.5 t / m 2.
-D performance was shown. From this, by performing the film formation according to the present invention, without performing any heat treatment after the film formation,
It can be seen that an ultrafiltration membrane having sufficient performance can be obtained.

【0025】上記実施例1で作製した膜試料No.1を1
00℃から300℃以上の各温度条件で熱処理した後、
引張り強度を測定した。その結果を図1に示した。ま
た、膜の化学的安定性は、試料No.1及び2を各種の溶
剤に25℃で48時間浸積した後、引張り強度を測定す
ることにより評価した。その結果を表2に示す。図1,
表1及び表2に示される様に、相転換法で作製された膜
を真空下で熱処理することにより、分離特性、機械的強
度、化学的安定性が向上した。
The film sample No. 1 produced in Example 1 was
After heat treatment under each temperature condition from 00 ℃ to 300 ℃ or more,
The tensile strength was measured. The results are shown in Fig. 1. Further, the chemical stability of the film was evaluated by immersing the samples No. 1 and 2 in various solvents at 25 ° C. for 48 hours and then measuring the tensile strength. The results are shown in Table 2. Figure 1,
As shown in Table 1 and Table 2, by heat-treating the film produced by the phase inversion method under vacuum, the separation characteristics, mechanical strength, and chemical stability were improved.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】比較例1 加熱濃縮操作をしなかった以外は、上記実施例1と同様
にして非対称膜の製膜を行った。作製された膜は、欠陥
(ピンホール)が多く、緻密層が不十分な、実質的には
分離性能を持たない膜であった。したがって、本発明の
技術的な特徴である製膜原液中の水分含量の調整なくし
ては、ポリイミドPI2080からの製膜自体が非常に
困難であることが分かる。
Comparative Example 1 An asymmetric membrane was formed in the same manner as in Example 1 except that the heating and concentration operation was not performed. The produced film had many defects (pinholes), the dense layer was insufficient, and the film had substantially no separation performance. Therefore, it can be seen that it is very difficult to form a film from the polyimide PI2080 without adjusting the water content in the stock film forming solution, which is a technical feature of the present invention.

【0029】実施例2 製膜後の熱処理温度を、300℃とした以外は、上記実
施例1の試料No.2と同様にして非対称膜の試料No.3
を作製し、その浸透気化特性を測定した。その結果を表
1に示す。
Example 2 An asymmetric film sample No. 3 was prepared in the same manner as the sample No. 2 of Example 1 except that the heat treatment temperature after film formation was 300 ° C.
Was prepared and its pervaporation characteristics were measured. The results are shown in Table 1.

【0030】実施例3 製膜原液の組成を溶剤38.75%、膨潤剤38.75
%とし、熱処理する場合の温度を300℃とした以外
は、上記実施例1と同様にして未処理及び加熱処理の非
対称膜試料No.4及び5を作製し、その浸透気化特性を
測定した。その結果を表1に示す。この膜は、60℃に
おける浸透気化特性が、α= 900、Q=1.0kg/m2
・h となり、極めて高い分離機能を有していた。また、
製膜後の熱処理を全く行わなかった膜(試料No.4)に
ついては、限外ろ過特性も測定した(25℃、操作圧力
3kg/cm2)。その結果、この膜は、分子量2000のポ
リエチレングリコールに対して97%の阻止率、Q=
0.2t/m2・Dの性能を示した。本発明にしたがって製
膜することにより、製膜後の熱処理を全く行わなくて
も、十分な性能を有する限外ろ過膜が得られることが分
かる。
Example 3 The composition of the film-forming stock solution was 38.75% solvent and 38.75 swelling agent.
%, And untreated and heat-treated asymmetric membrane samples Nos. 4 and 5 were prepared in the same manner as in Example 1 except that the heat treatment temperature was 300 ° C., and the pervaporation characteristics thereof were measured. The results are shown in Table 1. This membrane has pervaporation characteristics at 60 ° C of α = 900, Q = 1.0 kg / m 2
・ It was h, and it had an extremely high separation function. Also,
Ultrafiltration characteristics were also measured (25 ° C., operating pressure 3 kg / cm 2 ) for the membrane (Sample No. 4) which was not subjected to heat treatment after film formation. As a result, the membrane had a rejection of 97% for polyethylene glycol having a molecular weight of 2000, and Q =
The performance was 0.2 t / m 2 · D. It can be seen that by forming a membrane according to the present invention, an ultrafiltration membrane having sufficient performance can be obtained without any heat treatment after the membrane formation.

【0031】実施例4 製膜原液の組成を溶剤31%、膨潤剤46.5%とし、
熱処理する場合の温度を300℃とした以外は、上記実
施例1と同様にして、未処理及び加熱処理の非対称膜試
料No.6及び7を作製し、その浸透気化特性を測定し
た。その結果を表1に示す。また、製膜後の熱処理を全
く行わなかった膜(試料No.6)については、逆浸透特
性も測定した(25℃、操作圧力40kg/cm2)。その結
果、この膜は、塩化ナトリウムに対して99%の阻止
率、Q=0.7t/m2・Dの性能を示した。本発明にした
がって製膜することにより、製膜後の熱処理を全く行わ
なくても、十分な性能を有する逆浸透膜が得られること
が分かる。
Example 4 The composition of the stock solution for film formation was 31% solvent and 46.5% swelling agent.
Untreated and heat-treated asymmetric membrane samples No. 6 and 7 were prepared in the same manner as in Example 1 except that the temperature for heat treatment was 300 ° C., and the pervaporation characteristics thereof were measured. The results are shown in Table 1. The reverse osmosis characteristics were also measured (25 ° C., operating pressure 40 kg / cm 2 ) for the film (Sample No. 6) which was not subjected to heat treatment after film formation. As a result, this film exhibited a rejection of 99% against sodium chloride and a performance of Q = 0.7 t / m 2 · D. It can be seen that by forming a film according to the present invention, a reverse osmosis membrane having sufficient performance can be obtained without any heat treatment after film formation.

【0032】[0032]

【発明の効果】本発明の方法によれば次のような作用効
果を得ることができ、工業的有用度が極めて高い。第一
に、製膜原液作製前に高分子重合体の溶解液を加熱濃縮
処理し不純物の除去を図るため、素材の市販の形態に関
わらず、容易に相転換法によって非多孔質型の非対称膜
を作製できる。第二に、作製された膜を適宜に真空中で
熱処理することにより、比較的短時間で機械的強度のみ
ならず化学的安定性を非対称膜に付与することができ
る。第三に、全芳香族性ポリイミド(PI2080)を
素材として、特にエタノール分離用の高機能な浸透気化
膜が作製できる。
According to the method of the present invention, the following operational effects can be obtained and the industrial utility is extremely high. First, since a high-molecular polymer solution is heated and concentrated before the film-forming stock solution is prepared to remove impurities, a non-porous type asymmetric structure can be easily obtained by the phase inversion method regardless of the commercially available form of the material. Membranes can be made. Secondly, by appropriately heat-treating the produced film in a vacuum, not only mechanical strength but also chemical stability can be imparted to the asymmetric film in a relatively short time. Thirdly, a highly functional pervaporation membrane for ethanol separation can be produced using wholly aromatic polyimide (PI2080) as a material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従い、作製した非対称膜の機械的強度
と熱処理温度との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the mechanical strength and the heat treatment temperature of an asymmetric film produced according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリイミド重合体又はポリアクリロニト
リル重合体の溶液を加熱濃縮して、溶液中の水分含量を
0.3重量%以下とした後、所定の組成を有す製膜原液
を作製し、この製膜原液を用いて相転換法により非対称
膜の製膜を行うことを特徴とする高機能性非対称膜の製
造方法。
1. A polyimide polymer or polyacrylonite
The ril polymer solution is heated and concentrated to reduce the water content in the solution.
A highly functional asymmetric membrane characterized by producing a film-forming undiluted solution having a predetermined composition after the content of 0.3% by weight or less, and using this film-forming undiluted solution to form an asymmetric film by the phase inversion method. Membrane manufacturing method.
【請求項2】 製膜した非対称膜を、1Torr以下の
真空中で60℃以上の温度で熱処理することを特徴とす
る請求項1記載の高機能性非対称膜の製造方法。
2. The asymmetric membrane produced is less than 1 Torr.
Characterized by heat treatment at a temperature of 60 ° C. or higher in vacuum
The method for producing a highly functional asymmetric membrane according to claim 1.
JP4024678A 1992-01-14 1992-01-14 Method for producing highly functional asymmetric membrane Expired - Lifetime JPH0761432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4024678A JPH0761432B2 (en) 1992-01-14 1992-01-14 Method for producing highly functional asymmetric membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4024678A JPH0761432B2 (en) 1992-01-14 1992-01-14 Method for producing highly functional asymmetric membrane

Publications (2)

Publication Number Publication Date
JPH05184887A JPH05184887A (en) 1993-07-27
JPH0761432B2 true JPH0761432B2 (en) 1995-07-05

Family

ID=12144808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4024678A Expired - Lifetime JPH0761432B2 (en) 1992-01-14 1992-01-14 Method for producing highly functional asymmetric membrane

Country Status (1)

Country Link
JP (1) JPH0761432B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2754153B2 (en) * 1994-03-09 1998-05-20 工業技術院長 Carbonized capillary membrane and method for producing the same
US5690870A (en) * 1994-10-26 1997-11-25 Nitto Denko Corporation Method of manufacturing a polyimide-type gas permeation membrane including fluorine
JPH09122461A (en) * 1995-10-31 1997-05-13 Nitto Denko Corp Polyimide semipermeable membrane
JPH09225273A (en) * 1996-02-23 1997-09-02 Nitto Denko Corp Laminated asymmetric membrane and its production
KR100851342B1 (en) * 2008-01-02 2008-08-08 (주)청아필터 Microfiltration manufacturing method
US8614288B2 (en) * 2011-06-17 2013-12-24 Uop Llc Polyimide gas separation membranes
JPWO2016104797A1 (en) * 2014-12-26 2017-11-30 東レ株式会社 Solvent-resistant separation membrane and method for producing solvent-resistant separation membrane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133106A (en) * 1984-11-30 1986-06-20 Ube Ind Ltd Preparation of separating membrane
JPH073004B2 (en) * 1986-03-27 1995-01-18 三菱化成株式会社 Copolyimide hollow fiber and method for producing the same

Also Published As

Publication number Publication date
JPH05184887A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
EP0165077B1 (en) Sulfonated polysulfone composite semipermeable membranes
JPS5857205B2 (en) Manufacturing method of semipermeable membrane
US4071590A (en) Composite asymmetrical membranes
JPS6354903A (en) Separation membrane for pervaporation
JPH0761432B2 (en) Method for producing highly functional asymmetric membrane
JPS60132605A (en) Preparation of asymmetric membrane
JP2513460B2 (en) Composite semipermeable membrane and manufacturing method thereof
Vijesh et al. Preparation and characterization of polysulfone based hollow fibre composite membranes for water purification
JPS63130105A (en) Production of permselective composite membrane
JPH0563209B2 (en)
CN112844077A (en) Reverse osmosis membrane with PE microporous membrane as base material and preparation method thereof
JPS5827964B2 (en) Manufacturing method of semipermeable membrane
JPH04110030A (en) Aromatic copolymerized separating membrane
JPS5892402A (en) Preparation of composite membrane having selective permeability of organic substance
JPS61222503A (en) Method for preparing desalted water
JPH052365B2 (en)
JPH0220290B2 (en)
US5221482A (en) Polyparabanic acid membrane for selective separation
JPH0420647B2 (en)
JPH0252529B2 (en)
JPH09239248A (en) Method for treatment of pervaporation membrane
JP2952685B2 (en) Separation membrane for liquid separation
JP3018093B2 (en) Polyimide water selective separation membrane
JPH0510967B2 (en)
JP2918687B2 (en) Polyparabanic acid selective separation membrane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term