JPS5823404A - Rare earth cobalt permanent magnet - Google Patents

Rare earth cobalt permanent magnet

Info

Publication number
JPS5823404A
JPS5823404A JP56122004A JP12200481A JPS5823404A JP S5823404 A JPS5823404 A JP S5823404A JP 56122004 A JP56122004 A JP 56122004A JP 12200481 A JP12200481 A JP 12200481A JP S5823404 A JPS5823404 A JP S5823404A
Authority
JP
Japan
Prior art keywords
alloy
columnar
crystal
ingot
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56122004A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Kitabayashi
北林 強
Itaru Okonogi
格 小此木
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP56122004A priority Critical patent/JPS5823404A/en
Publication of JPS5823404A publication Critical patent/JPS5823404A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To further promote columnar crystallization of alloy ingot and to try the high performance of a resin, metal, or ceramic coupling Sm2Co17 type permanent magnet by a method wherein carbon C and S, Se, Te, Ce, Pb, Cd, Bi, Si or the like are compounded and added to an Sm-Co-Cu-Fe-Hf alloy. CONSTITUTION:Concerning a precipitation hardened type permanet magnet used Sm2Co17 type crystal, when Sm-Co-Cu-Fe-Hf-C-M (M is at least one kind or more out of S, Se, Te, Ce, Pb, Cd, Bi, Si) alloy is dissolved and casted, casting macro structure of this alloy is crystallized in columnar shape as much as possible by the effect of carbon C and this particular element M and thermal treatment for magetic hardening is applied to the alloy having much columnar crystallization. After that, pulverization, magnetic field formation are done to intensity coupling by binder. When the composition of this alloy is represented as Sm (Co1-u-v-w-x-yCuuFevHfwCxMy)z by the composition formula used atomic ratio, the range of composition is 0<u<0.2, 0<v<0.5, 0<w<=0.05, 0<x<0.05, 0<y< 0.1, 6.5<=z<=9.0.

Description

【発明の詳細な説明】 本発明は5m1colf  型結晶を用tn2析出硬化
型出石に関するものである、さらに詳しく述べれば、B
 m −Co −Cs −F a−Hf −C−M (
Mけ& B# ’ # a丁a m Cd e Pb 
@ Cd * B S *a4の中の少くとも1種以上
を示す。以下この表記に従う。)合金の溶解鋳造時、炭
素Cと該特殊元素Mの効果によシ、該合金の鋳造マクロ
組織をできるだけ多く柱状晶化させ、骸柱状晶の多い合
金を磁気硬化のための熱処理を行な^、その後。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tn2 precipitation hardening type stone using 5m1colf type crystals.
m -Co -Cs -F a-Hf -C-M (
Mke &B#'# a ding a m Cd e Pb
Indicates at least one type of @Cd*BS*a4. This notation will be followed below. ) When melting and casting an alloy, the effects of carbon C and the special element M are used to transform the cast macrostructure of the alloy into columnar crystals as much as possible, and heat-treat alloys with many columnar crystals for magnetic hardening. ^, then.

粉砕、 am551.形し、バインダーにより結合強化
した永久磁石に関するものである。
Grinding, am551. This relates to permanent magnets that are shaped and strengthened by a binder.

本発明の目的は、 am−C6−CB−F g−■/−
C−M工りなる合金の磁気性能を同上させるのに1合金
インゴットの鋳造組織をできるだけ多〈柱状晶化させる
ととにある。
The object of the present invention is am-C6-CB-F g-■/-
In order to improve the magnetic performance of the C-M alloy, the casting structure of the alloy ingot should be made into as many columnar crystals as possible.

我々#i、特願昭55−3226号で8想二C。We #i, 8 Soji C in patent application No. 55-3226.

−C−一1−−zr系で1合金のインゴットを柱晶にす
ると2等軸晶および、チル晶に比べて、この合金を使用
しt磁石の磁気性能が格段とよくなることを承した。本
発明Fi、該事実がs m−c 。
-C--1-- It has been accepted that if the ingot of 1 alloy in the zr system is made into a columnar crystal, the magnetic performance of a t-magnet using this alloy will be much better than that of a bi-equiaxed crystal or a chill crystal. The present invention Fi, the fact is s m-c.

−c、、−y、−H/系合金に炭素Cと特殊元素輩を黴
蓋添加して柱状組織を増スさせても、同様な効果が得ら
れることを示したものである・本発明は、fi造インゴ
ットの塊をそのtt熱処理し、粉砕、バインダーとの混
合、磁場中区形。
This shows that similar effects can be obtained by adding carbon C and special elements to -c, -y, -H/based alloys to increase the columnar structure.・This invention The ingot mass is subjected to heat treatment, crushed, mixed with a binder, and shaped in a magnetic field.

バインダーを結合強化して磁石を製造する・樹脂、メタ
ル、またはセライック結合ms石の高性能化に極めて有
効で◆る。すなわち、粉砕前までの工Sは鋳造磁石と変
らず、鋳造インゴットの結晶状態をそのまま用いるので
、前記したよう′&暮性能な磁気特性が得られる柱状晶
を、鋳造インゴツシに微量株加した炭素Cと特殊元素M
の効果に1す、できるだけ多く生−底させれば高性能の
磁石な袴ることは可能である。
Manufacture magnets by bonding and strengthening binders - Extremely effective in improving the performance of resin, metal, or ceramic bonded stone. In other words, the process S before crushing is the same as that of a cast magnet, and the crystalline state of the cast ingot is used as is, so the columnar crystals that provide excellent magnetic properties as described above are added to the cast ingot in a small amount of carbon. C and special element M
Based on this effect, it is possible to make a high-performance magnetic hakama by using as much raw material as possible.

一般Kil融金属が、るつぼから鋳型に注入されると、
鋳型から凝固が開始する。これは、固体実物質と接解し
た工yプリオ(晶芽)は、接触しな^で融酸中に漂りて
論るものに比べて、安定核化[K対するエネルギー障壁
が小さくなるからと説明されている。鋳11に生放しt
結晶は、隣の結晶と相互に競争しつつ溶湯中に区長する
a IE 1図に示すような、鋳塊最外層の結晶の競争
S*領域をチル層と呼んで論る。結晶は底長速匿に異方
性がある霞め、最大成長速量をもつ方向が熱流の方向に
平行であるような結晶が、隣接の結晶区長を抑えて優先
的に区長する。結晶の底長中、優先方位が熱流に近い程
長く生き、残り、その結晶は淘汰される結果、結晶の数
は鋳塊内部にゆ(K従って少くなり、柱状晶帯が形厘さ
れる。条件が整えば柱状晶帯がぶつか〕合い凝固は完了
するが1通常第1図に示すように、柱状晶の内部に等輪
島が生反する。等輪島の生″因につ−では、以前はL〈
知られていなかったが、現在では鋳壁とか冷却された湯
面で形放された結晶が遊離して自由晶となシ。
When molten metal is injected from the crucible into the mold,
Solidification begins from the mold. This is because crystal buds in contact with a solid substance have a smaller energy barrier to stable nucleation [K] than those floating in molten acid without contact. It is explained. Released raw in casting 11
Crystals grow in the molten metal while competing with neighboring crystals.The competition S* region of crystals in the outermost layer of the ingot, as shown in Figure 1, will be referred to as the chill layer. Crystals have anisotropy in length, velocity, and density, and crystals whose direction of maximum growth rate is parallel to the direction of heat flow preferentially grow by suppressing adjacent crystal division lengths. During the base length of the crystal, the closer the preferential orientation is to the heat flow, the longer it lives and remains, and as a result of being weeded out, the number of crystals (K) decreases inside the ingot, and columnar crystal bands are formed. When the conditions are right, the columnar crystal bands collide and solidification is completed, but 1 Normally, isocycle islands grow inside the columnar crystals, as shown in Figure 1. Regarding the cause of the production of isocycle islands, we have previously explained is L〈
Although it was not known, now crystals released from the casting wall or the cooled surface of the molten metal become liberated and become free crystals.

この自由晶が等輪島体を形反することが明らかに9つて
込る(ム、Ohm@ #テ、Motagi and H
lBoda :Trasa、 XBXl、 11(19
71) 18 ) 。
It is clear that this free crystal contradicts the isometric island body (Mu, Ohm@#te, Motagi and H
lBoda:Trasa, XBXl, 11 (19
71) 18).

8懸−C(1−Cs −? a−1f −C−M系の7
元合金を使用した磁石it、ta硬化型、あるv′には
2相分離型磁石と呼ばれる。これは、マきリツクス中に
異相を析出させ、a気硬化させるためである0本系統の
磁石は、最初am−GO−C%3元系合金で、主に8f
llCO1?結晶を用いた組厘で磁石化されて以来、今
日広く発展してきtものである。
8-Ken-C (1-Cs -? a-1f -C-M system 7
Magnets using original alloys are called it, ta hardening type, and some v' are called two-phase separation type magnets. This is to precipitate a different phase in the matrix and harden it with a-air.The 0-piece magnet was initially made of an am-GO-C% ternary alloy, mainly 8f
llCO1? Ever since it was first made into a magnet by using crystals, it has been widely developed.

C,を1#と置換してゆくと、ある量まで飽和磁化4π
X#が増加することが知られている。4πI#が増大す
る範囲でしかも、結晶が一軸島方性を示すのは、ti 
tns(Cal −z IPm ta )l?で示すと
By replacing C, with 1#, the saturation magnetization 4π up to a certain amount
It is known that X# increases. In the range where 4πI# increases, the crystal exhibits uniaxial island orientation because ti
tns(Cal-zIPmta)l? It is shown as.

1がO−0,6の範囲である。この事実1jcoKct
をある程度の量置換しても変らない、 Bs@ (C。
1 is in the range of O-0.6. This fact 1jcoKct
It doesn't change even if you replace a certain amount of Bs@(C.

0Mシー)tyK−さらKll/を加えると、ii/の
置は微量でもた込へん磁気性能の同上がはかれる。
0M C) tyK-Furthermore, when Kll/ is added, the same as above of the magnetic performance can be measured even if the position of ii/ is small.

すなわち、 II/を加えると、amの量が少なくなっ
ても、tた鉄の量が多(なりて%、実用−石として充分
な保磁力(Hcが得られ高エネルギー積の磁石の作製が
可能になりた・。
In other words, when II/ is added, even if the amount of am is small, the amount of iron is large (%), and a sufficient coercive force (Hc) can be obtained as a practical stone, making it possible to create a magnet with a high energy product. It's now possible.

本合金では前述したように、チル晶帯、柱状晶帯、そし
て等輪島帯のうちで柱状晶帯が磁石にするのKi#も優
れてηることが明らかになった。また1合金に炭素Cと
特殊元累輩を微量添加して。
As mentioned above, in this alloy, it has been revealed that among the chill crystal zone, columnar crystal zone, and equicyclic island zone, the columnar crystal zone has an excellent Ki# for making a magnet. In addition, a small amount of carbon C and a special grader is added to the alloy.

インゴット中の柱状晶帯域を増大させたものの方が、同
一条件で鋳込んだインゴットと比較して優れて論る。
It is argued that ingots with increased columnar crystal zones are superior to ingots cast under the same conditions.

今1例を樹脂結合型希土類コバルト磁石にとって説明す
る。この磁石は第2図に飛すような方法で磁石合金を磁
石にする。製法を全く同じにして。
An example will now be explained using a resin bonded rare earth cobalt magnet. This magnet is made from a magnetic alloy using the method shown in Figure 2. The manufacturing method is exactly the same.

等輪島合金、柱状晶合金とチル晶合金を磁石にしてみる
と、柱状晶合金が、飽和磁化4πXa、保磁力(Ha 
* bHa するいはヒステリシスループの角形性にと
、全ての性能にわたってすぐれていることが分った。逆
に1等軸晶合金およびチル晶合金が性能的に劣っている
。また、同一条件で鋳込んだもので、炭素Cと特殊元素
輩を微量添加して柱状晶帯域を増大させたインゴットと
、災累Cと特殊元素Mを添加しな込インゴットでは、炭
xcと特殊元素Mを接合添加して柱状晶帯域を増大させ
t4のの方が性能が優れている。
When magnets are made of equicyclic alloy, columnar crystal alloy, and chill crystal alloy, the columnar crystal alloy has a saturation magnetization of 4πXa and a coercive force (Ha
*It was found that all performances, such as bHa and the squareness of the hysteresis loop, were excellent. On the contrary, uniaxial crystal alloys and chill crystal alloys are inferior in performance. In addition, in the ingot cast under the same conditions, the columnar crystal zone was increased by adding small amounts of carbon C and special elements, and the Nagomi ingot with addition of disaster C and special elements M was found to have charcoal The performance is better in t4, in which the special element M is added to increase the columnar crystal zone.

柱状晶合金#:r、結晶が揃ってηるので磁石にした時
の一軸方向への配向性がよ〈壜る。tt、該合金#′i
、熱処理に1りてでき″る析出物が他のものに比べ均一
になると考えられる。このため七ステリシスの角形性が
工くなる。また析出物の結晶構造、形態も等輪島のもの
に比べ(Haをよく高める方向に形底されると考えられ
る。
Columnar crystal alloy #:r, since the crystals are aligned, the orientation in the uniaxial direction is improved when it is made into a magnet. tt, the alloy #'i
It is thought that the precipitates formed during the heat treatment are more uniform than those of other types.For this reason, the squareness of the heptastesis is improved.Also, the crystal structure and morphology of the precipitates are also different compared to those of Tomowajima. (It is thought that the bottom is shaped in a direction that increases Ha well.

このため1本合金を鋳壁近傍の争ル晶体は柱状チル晶に
して、他の部分は柱状晶にする製造法がよい磁石を得る
ために大切である。チル晶帯は合金全体では量が少いの
で、製造上置も大切なことは1等軸に帯を防虻柱状晶帯
の、比率を大きくすることである。この1うなことから
、8fi−co −Cs −F g −Hf系合金に、
Cと8.81.τ−# Ca e 1? h a Cd
 a Bイ、11(等を微量添加して鋳造することKよ
り、融体から結晶化の核生匠を促進させる酸化物や、窒
化物等を炭化物硫化物等で包み込んで、核作用を不活性
化させtす、炭素C8特殊元素゛Mと、融体中の酸素、
窒素等が結合して、結晶生匠の核となる酸化物や、窒化
物等の発生を少くして1等軸晶の形「をできるだけ抑え
ているやこの場合添加元素により、その効果は必ずしも
同等ではな−か、柱状晶を促進させるのに果す役割りは
同じである。
For this reason, in order to obtain a good magnet, it is important to manufacture a single alloy in such a way that the crystals near the casting wall are made into columnar chill crystals, and the other parts are made into columnar crystals. Since the amount of chill crystal bands is small in the whole alloy, what is important in terms of manufacturing is to increase the ratio of the monoaxed bands to the anti-pillar crystal bands. From this fact, 8fi-co-Cs-Fg-Hf alloy,
C and 8.81. τ-# Ca e 1? h a Cd
a B, B, 11 (etc., etc.) are added in small amounts for casting.K, oxides, nitrides, etc. that promote the nucleation of crystallization from the melt are wrapped in carbides, sulfides, etc., and the nucleation is prevented. Activating carbon C8 special element ゛M and oxygen in the melt,
Nitrogen, etc. combine to reduce the generation of oxides and nitrides, which form the core of crystallization, and to suppress the formation of uniaxial crystals as much as possible.In this case, depending on the added element, the effect is not necessarily Although they are not equivalent, they play the same role in promoting columnar crystals.

tた1金属的には柱状晶化によって最も効果が期待され
るの#i、組匠金属子比を用すた金属式で、B  fl
& (Cal   % −9%II   $  CII
IM’F@l]Jヨ7w  CZ  MY)gと表現し
たとき。
For metals, columnar crystallization is expected to have the most effect #i, a metal formula using a textured metal element ratio, B fl
& (Cal % -9%II $CII
When expressed as IM'F@l]Jyo7w CZ MY)g.

0〈協<0.3 0<V<0.1 Oく1≦0.05 0(1(0,05 0く丁<0.1 5.0≦gり9.。0<co<0.3 0<V<0.1 Oku1≦0.05 0(1(0,05 0<0.1 5.0≦gri9. .

であることが確認された。また高性能な磁石を得るため
に1シ好ましi@匠範囲#i。
It was confirmed that Also, in order to obtain a high-performance magnet, I prefer 1 type i@Takumi range #i.

0 < s <: 0.2 o<y<o、s Q (W(0,05 0< X< 0.05 0 < Y < 0.1 6.5≦2≦9.0 である。これは、特許請求範囲に示しである組区域と同
一である。それでd以下に区分と金属域を限定し21!
由を述べる。
0 < s <: 0.2 o<y<o, s Q (W(0,05 0<X< 0.05 0 < Y < 0.1 6.5≦2≦9.0. , is the same as the group area shown in the claims. Therefore, the division and metal area are limited to d or less and 21!
I will explain why.

本合金系お1びその組区域においては、Bm−C,系が
基本である。Csけ一5Cost III合金で保磁力
を得るために加え゛られるものであり、0%を入れるこ
とで1Tiaは向上する。しかし、4πX#は低下する
。このため、実用磁石材料としては。
In the present alloy system 1 and its assembly area, the Bm-C system is the basis. It is added to obtain coercive force in the Cs-5Cost III alloy, and adding 0% improves 1Tia. However, 4πX# decreases. Therefore, it can be used as a practical magnetic material.

8 m (Cal −m Csm ) Z中ノs ノ籠
は、0.2マでが限iである。2の値が5 < Z (
8,5の間にある時には、5s−C(1合金は!1fi
c@、型化合物とBtxB co、マ製化合物に分離す
る。4πXaの箇は。
8 m (Cal - m Csm) The limit i of the Z medium basket is 0.2 m. The value of 2 is 5 < Z (
When it is between 8 and 5, 5s-C (1 alloy is !1fi
It separates into c@, type compound and BtxB co, ma compound. What is 4πXa?

8i110O1yの方が20憾高い。依って、高dtX
Hを実現するためには、ZFi6.5以上が望まし藝。
8i110O1y is 20 times more expensive. Therefore, high dtX
In order to achieve H, ZFi 6.5 or higher is desirable.

一方2が9.0以上になると、  teaは着しく低下
するとともに・ Go−7,相が多く出て来てしまいヒ
ステリシスループの角形性を悪くするので好ましくない
。II/#:を著しく合金の4π工1を低下させるので
、 0.05以上入れると、1−を増やしCI&を低減
して4xXaを扉めた意味がなくなる。
On the other hand, if 2 becomes 9.0 or more, the tea value will decrease steadily and a large amount of Go-7 phase will come out, which will impair the squareness of the hysteresis loop, which is not preferable. II/#: significantly lowers the 4π work 1 of the alloy, so if 0.05 or more is added, there is no point in increasing 1- and reducing CI& to increase 4xXa.

cq、多くなるに従りて4π工a 、 i Hc カ低
下するので、その限界を考慮して上限をO,OSとし霞
ゆMは、添加元素により多少効果り異なるが、ある量以
上になると4KX a a % Haが低下するので。
As cq increases, 4π engineering a, i Hc decreases, so taking this limit into consideration, the upper limit is set as O, OS, and Kasumi Yu M has slightly different effects depending on the added element, but when it exceeds a certain amount, 4KX a a % Ha decreases.

その限界を考慮して上限を0.1とした、尚、これらは
複合添加の合計量を承しておシ、その比率は特に規定し
ない。
Taking this limit into consideration, the upper limit was set at 0.1; however, these values are based on the total amount of the composite addition, and the ratio is not particularly specified.

バインダーは各種ポリマー、例えば、エポキシ、フェノ
ール、ゴム、ポリエステルなど又は、メタルバインダー
で、融点が400℃以下の低M点合金が好まし^。
The binder is a variety of polymers such as epoxy, phenol, rubber, polyester, etc. or a metal binder, preferably a low M point alloy with a melting point of 400° C. or lower.

以下実施例に従って本発明を説明する、実施例1 鋳造後a m (Co0.59 Cs0.07 I’g
O,3Hlo、0I C0,0280,(11) 8.
2の金属になる15原料を調合し。
The present invention will be described below according to examples. Example 1 After casting a m (Co0.59 Cs0.07 I'g
O,3Hlo,0I C0,0280,(11) 8.
Mix 15 raw materials to make metal 2.

全部でI KPの合金を、高周波炉を用いてムrガス雰
囲気中で溶解し、第3図に示されるような鉄製の鋳型に
湯温1550℃で鋳込んだ。溶湯は主に側壁から冷却さ
れ、第1図に示すような組織形態をとった。lE1図は
インゴットを中心で切断したときの組織を示す。これら
の部分で、チル層をム。
Alloys of I KP in total were melted in a high frequency furnace in a murium gas atmosphere and cast into an iron mold as shown in FIG. 3 at a hot water temperature of 1550°C. The molten metal was cooled mainly from the side walls, and had the structure shown in FIG. Figure 1E1 shows the structure when the ingot is cut at the center. In these areas, remove the chill layer.

柱状組織なり、そして等軸組織をCとする。合金インゴ
ットのム、B、C部よ秒、それぞれの鋳造塊を切り出し
、第2図に承す製法1に従込樹脂結合缶石を作製した。
C is a columnar structure and an equiaxed structure. Cast ingots of parts M, B, and C of the alloy ingot were cut out, and resin-bonded limestone was produced according to manufacturing method 1 shown in FIG.

溶体化処理は、1150℃で24時間1時効処mは80
0℃で20時間アルゴン雰囲気中で行った。ボールミル
法にニジ平均粒[10μに粉砕された磁石微粉末に、バ
インダーとしてのヱポキシ樹脂1.8 wKを混練した
。この混練した混合物を16KGai場中でプレス原形
し。
Solution treatment is 1150℃ for 24 hours, m is 80℃.
The test was carried out at 0° C. for 20 hours in an argon atmosphere. An epoxy resin of 1.8 wK as a binder was kneaded into a magnetic fine powder that had been ground into average particles (10 μm) using a ball mill method. This kneaded mixture was pressed into an original shape in a 16K Gai field.

底形体に適lな熱を加えて樹脂を硬化させ(キュア処m
)、a石を充放させた。結果をH1表に示す0表ニジ分
かるように、B部の柱状晶帯ニジ得たM1@性能は、0
部の等輪島帯Lす得たものニジ。
Appropriate heat is applied to the bottom body to harden the resin (cure treatment).
), a stone was charged. The results are shown in Table H1. As can be seen, the columnar crystal zone in part B has the M1 performance of 0.
Part of the Torowa Shima Belt L got something from Niji.

たいへん優れてAる。A部のチル晶帯は、B部のものと
比べて低いとは論え、0部よりも優れている。
Very good A. Although it can be said that the chill crystal band in part A is lower than that in part B, it is superior to part 0.

第1表 ただしhBQJ−uヒステリシスループの角形性を示す
指標で。
Table 1 shows the squareness of the hBQJ-u hysteresis loop.

B Q = Hk/iHe で与えられる、Hk#′i、 4KX−H1cffi曲
線上で0.9 Bデで与える磁場の大きさである。これ
らの結果LLB部の柱状晶の部分が最゛も性能が優れて
いることが明らかKなりた。A部のチル晶帯け。
BQ=Hk/iHe, which is given by Hk#'i, is the magnitude of the magnetic field given by 0.9 Bde on the 4KX-H1cffi curve. As a result, it is clear that the columnar crystal portion of the LLB portion has the best performance. Chilled crystal band in part A.

鋳壁のごく近傍のみに虫取するもので、インゴット全体
ではごくわずかであるから、インゴット製造上置も大切
なことは、いかKして等輪島の生立を抑え、柱状晶を発
達させるかである。尚1本実施例に用いたA部には、A
部の発生状況からして。
Since the insects are removed only in the vicinity of the casting wall, and the amount of insects in the whole ingot is small, placing the insects on top of the ingot manufacturing is also important because it will suppress the growth of isocycle islands and develop columnar crystals. be. Note that part A used in this example contains A
Considering the situation in the department.

ある程督の柱状晶Bの部分が入ってbると思われる。It is thought that part of the columnar crystal B of a certain degree is included.

実施例2 実施例1と同様な方法で、m2Hに示されている船底の
合金から樹脂結合磁石を製造した。但し溶体化処理は1
120〜1180℃の間で最も適切な温lで20時間行
った。
Example 2 A resin-bonded magnet was manufactured from the bottom alloy shown in m2H in a similar manner to Example 1. However, solution treatment is 1
The test was carried out at the most suitable temperature between 120 and 1180°C for 20 hours.

wKz表 本実施例ij、B、C部のインゴットに対して行なった
。結果を第゛4図に示す。1−の量が増加して込りても
、柱状晶帯Bの方が良い磁気性能が得られる。これ1夛
、ある程[F−の量を高めても。
wKz Table This was carried out on the ingots of Sections ij, B, and C of this example. The results are shown in Figure 4. Even if the amount of 1- increases, columnar crystal zone B provides better magnetic performance. Even if the amount of F- is increased to some extent.

ある程匿の(Haが得られることが明らかになっπ・ am例3 実施例2と全く同じ方法で、第3表の組Jの合金から樹
脂結合磁石を製造した。結果を第5図に示・す。8gl
 (C6(s F# Hf CM)17型の合金では、
0%の量が低くなると、(Haは低下するが柱状晶のも
のでVi、等輪島のものに比べて、低am金属まで(H
6け高い値が得られることが分かる。
It became clear that a certain degree of concealment (Ha) could be obtained.Example 3 A resin-bonded magnet was manufactured from the alloy of Group J in Table 3 in exactly the same manner as in Example 2.The results are shown in Figure 5. Show: 8gl
(For C6 (s F# Hf CM) 17 type alloy,
When the amount of 0% decreases, (Ha decreases, but Vi in the columnar crystal, compared to the one in the
It can be seen that a value 6 orders of magnitude higher is obtained.

また、角形性も柱状晶部の方が優れている。In addition, the columnar crystal portion has better squareness.

禦3表 実施例4 実施例2と全く同じ方法で、aE4表の船底の合金から
樹脂結合磁石を製造し7?。合金鋳造時の湯温は160
0℃である。鋳造インゴットはH1図に示すLうな断面
マクロ組織になって^る。Bの柱状組織の割合は1合金
ム1では約60係1合金42〜4では80〜89優1合
金ム5〜6では70〜78優であった。柱状組織の割合
はインゴット断面を顕微鏡で観察し、メツシュ法で推定
した。
Table 3 Example 4 Using exactly the same method as in Example 2, a resin-bonded magnet was manufactured from the bottom alloy shown in Table 7. . The water temperature during alloy casting is 160
It is 0°C. The cast ingot has an L-shaped cross-sectional macrostructure as shown in Figure H1. The ratio of the columnar structure of B was approximately 60 in Alloy 1, 80 to 89 in Alloys 42 to 4, and 70 to 78 in Alloy 5 to 6. The proportion of columnar structure was estimated by observing the cross section of the ingot under a microscope and using the mesh method.

114    表 結果をに5@に示す、IK5表から分かる通り。114 Table As can be seen from the IK5 table, the results are shown in 5@.

柱状組織が最も多すもの力よ、最も磁気性能が優れてい
る。この15に1合金組放にCと” + 81 @τa
、ca、X”k、cd、BiaBi等t)特殊yc素M
を做愛添加して柱状組織をできるだけ促進させるように
することKzb、a気性能の同上−6Xはかられて込る
ことが分かる。
The one with the most columnar structure has the best magnetic performance. This 15 to 1 alloy set is C and " + 81 @ τa
, ca, X”k, cd, BiaBi etc. t) Special yc element M
It can be seen that the above-mentioned -6X of Kzb and a-air performance is affected by adding Kzb and a to promote the columnar structure as much as possible.

菖   5jl+ 実施例5 第6!lに示す組散の合金を、実施例2と全く同じ方法
で樹脂結合磁石を製造した。結果を第7表に示す。
Iris 5jl+ Example 5 6th! A resin-bonded magnet was manufactured using the alloy having the composition shown in 1 in exactly the same manner as in Example 2. The results are shown in Table 7.

第6表 第   7I! 上記のごと<、 zf)*を変化させても充分暮η−気
性能を有する磁石を得ることができた。
Table 6 No. 7I! It was possible to obtain a magnet having sufficient thermal performance even when the above values were changed.

この19Km  am−G o−Cm−Fg−H/合金
ニ炭8 ’ ト’ * 8# s T a a Cl 
a P 6 # Cde B% 68 %等を複合添加
することにxl)、合金インゴットの柱状晶化を一層促
進させ、樹脂、メタル、またはセラミック結合のBtl
LxCoylJfB石の高性能化がなされた0本発明の
高性能磁石#f。
This 19km am-Go-Cm-Fg-H/alloy carbon 8'To' * 8#s Ta a Cl
a P 6 # Cde B% 68% xl) further promotes the columnar crystallization of the alloy ingot and improves the Btl of resin, metal, or ceramic bonds.
High-performance magnet #f of the present invention, in which the performance of LxCoylJfB stone has been improved.

時創用ステップモーター、マイクロスピーカー。Time creation step motor, micro speaker.

コアレスモーター、a気センサーナト広く工業的用途を
持つものである。
Coreless motors and air sensor nuts have a wide range of industrial uses.

【図面の簡単な説明】[Brief explanation of drawings]

III図#′11鋳型に鋳込んだインゴットの中心を縦
方向に切断し岸ときの断面である。ム、B、C1それぞ
れチル層、柱状層、そして当軸層を示す。 フハ金型の断面である。 第2図Fi、樹脂結合型磁石の製造工程を示す。 第3図#−1.鉄製鋳型を示す。肉厚はすべて15Uで
ある。長さの単位Fiwxである。 第4図ij 、  Bm(Can、89 V CsO,
07Pg V HfO,QICo、02 Bo、01)
8.1 ノ組11a’4C:MLnテ、vをi化1kt
た時の樹脂結合磁石の磁気性能を示す。 第5図ij、 am(Co0.73−s Cs s F
gO,22Hlo、02G0.02 Bo、01)8.
3の組ffにおいて、聾を変化させた時の樹脂結合磁石
の磁気性能を示す。 以   上 出願人 株式会社諏訪精工舎 代理人 最  上    務 第1図 第2図 第 2$ ひqり g、ld+(7−/6
Figure III: #'11 This is a cross-section of the ingot cast into the mold, cut longitudinally through the center. B, C1 indicate the chill layer, columnar layer, and equiaxial layer, respectively. This is a cross section of the Fuha mold. FIG. 2 Fi shows the manufacturing process of the resin-bonded magnet. Figure 3 #-1. Showing an iron mold. All wall thicknesses are 15U. The unit of length is Fiwx. Figure 4 ij, Bm (Can, 89 V CsO,
07Pg V HfO, QICo, 02 Bo, 01)
8.1 Group 11a'4C: MLnte, v to i 1kt
The magnetic performance of the resin-bonded magnet is shown below. Figure 5 ij, am(Co0.73-s Cs s F
gO, 22Hlo, 02G0.02 Bo, 01)8.
In group 3 ff, the magnetic performance of the resin bonded magnet is shown when the deafness is changed. Applicant Suwa Seikosha Co., Ltd. Agent Mr. Mogami Figure 1 Figure 2 Figure 2 $ Hikuri g, ld+ (7-/6

Claims (1)

【特許請求の範囲】 サマリウム(8fi)、コバルト(Co) 、銅(0%
) 、鉄(Fs) # /%−yニウA (H/) 、
炭X(C)、*工びMcMは、イオウ(S)、セレy(
8# ) #テルル(T#) 、セリウム((4)、鉛
(’6)sカド°ミウム(Cd) #ビスマス(B4)
 、ケイ素(84)の中の少くとも1種以上〕からなる
合金属おいて、その1ilyが原子比を用すた組立式で
。 am(−−9b−V−W−X−’IC% w ’I!e
V HfW OX MY)gと表現した時1組立の範囲
が。 0<%<0.2 o < v < o、s o < Y り0.05 o<x<o、os O< Y < 0.1 6−5 < Z < 9.0 であるところのBm@C(jy型結晶を主体とした合金
で、しかも鋳造時のインゴットのマクロ組織が主に柱状
組織である該合金からなることを特徴とする希止類コバ
ル島永久出石。
[Claims] Samarium (8fi), cobalt (Co), copper (0%
), iron (Fs) #/%-yniuA (H/),
Charcoal
8#) #Tellurium (T#), Cerium ((4), Lead ('6), Cadmium (Cd), #Bismuth (B4)
, at least one kind of silicon (84)], whose 1ily is an assembly formula using atomic ratio. am(--9b-V-W-X-'IC% w 'I!e
V HfW OX MY) When expressed as g, the range of one assembly is. Bm@ where 0<%<0.2 o<v<o, so<Y ri0.05 o<x<o, os O<Y<0.1 6-5<Z<9.0 A Kobarujima permanent stone alloy which is characterized by being an alloy mainly composed of C (jy type crystals, and in which the macrostructure of the ingot at the time of casting is mainly a columnar structure.
JP56122004A 1981-08-04 1981-08-04 Rare earth cobalt permanent magnet Pending JPS5823404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56122004A JPS5823404A (en) 1981-08-04 1981-08-04 Rare earth cobalt permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56122004A JPS5823404A (en) 1981-08-04 1981-08-04 Rare earth cobalt permanent magnet

Publications (1)

Publication Number Publication Date
JPS5823404A true JPS5823404A (en) 1983-02-12

Family

ID=14825175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56122004A Pending JPS5823404A (en) 1981-08-04 1981-08-04 Rare earth cobalt permanent magnet

Country Status (1)

Country Link
JP (1) JPS5823404A (en)

Similar Documents

Publication Publication Date Title
JPH0140483B2 (en)
JP2005068451A (en) Fe BASED SOFT MAGNETIC BULK AMORPHOUS-NANOCRYSTAL DUAL PHASE ALLOY, AND ITS PRODUCTION METHOD
JPS5823404A (en) Rare earth cobalt permanent magnet
JPS63238268A (en) Production of target for sputtering
JPS5823406A (en) Rare earth cobalt permanent magnet
JP2002356717A (en) Method for producing alloy for rare earth bond magnet, and rare earth bond magnet composition
JPS6111304B2 (en)
JPS5822351A (en) Rare earth metal-cobalt permanent magnet
JPH0125819B2 (en)
JPS5822349A (en) Rare earth metal-cobalt permanent magnet
JPS648451B2 (en)
JPS6111447B2 (en)
JPS5822350A (en) Rare earth metal-cobalt permanent magnet
JPH031803B2 (en)
JPS5823405A (en) Rare earth cobalt permanent magnet
JPS648447B2 (en)
JPS648455B2 (en)
JPS648445B2 (en)
JPS6111303B2 (en)
JPS648452B2 (en)
JPH0230369B2 (en)
JPS6223060B2 (en)
JPS648448B2 (en)
JPS648459B2 (en)
JPS648458B2 (en)