JPS5822907A - Dimension measuring method of tubular substance - Google Patents

Dimension measuring method of tubular substance

Info

Publication number
JPS5822907A
JPS5822907A JP12217681A JP12217681A JPS5822907A JP S5822907 A JPS5822907 A JP S5822907A JP 12217681 A JP12217681 A JP 12217681A JP 12217681 A JP12217681 A JP 12217681A JP S5822907 A JPS5822907 A JP S5822907A
Authority
JP
Japan
Prior art keywords
steel pipe
ultrasonic pulse
pulse
measuring
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12217681A
Other languages
Japanese (ja)
Inventor
Morio Saito
斉藤 森生
Tetsuo Nakano
中野 哲男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP12217681A priority Critical patent/JPS5822907A/en
Publication of JPS5822907A publication Critical patent/JPS5822907A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To measure dimensions of an inside diameter with high accuracy, by transmitting and receiving an ultrasonic pulse in 2 point positions of the outside, which are opposed to each other through the axial core of a tubular substance, and measuring the inside diameter dimensions of the tubular substance. CONSTITUTION:Ultrasonic pulse transmitting and receiving probes 2, 3 are provided on separate positions of the outside, which are opposed to each other through the axial core of a steel pipe 1 being a tubular substance. Both the probes 2, 3 are placed in water 4 in order to improve acoustic coupling with the steel pipe 1, and send out an ultrasonic pulse vertically against the steel pipe 1 in the direction as indicated with an arrow. The ultrasonic pulse, at first, is reflected by the outside circumferential surface of the steel pipe 1, and this reflected wave is received by both the probes 2, 3. Subsequently, a reflected pulse from the inside circumferential surface of the steel pipe 1 is received, and a value of the inside diameter of the steel pipe 1 can be known easily by comparing a diagram whose quadrature axis and axis of ordinates show a time of a well-known steel pipe such as an outside diameter D0, an inside diameter d0, thickness t0, t0', etc. and pulse intensity, respectively, with a measured value of a steel pipe to be measured.

Description

【発明の詳細な説明】 この発明は例えば鋼管等の管状物の内径寸法の測定方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the inner diameter of a tubular object such as a steel pipe.

従来管状物の寸法を測定する方法としては例えばフォト
ダイオードアレイを使用して光学的に外径を測定する方
法、放射線や超音波肉厚計によって内厚を測定する方法
が一般に知られている。したがってこれらを利用すれば
外径−内厚から管状物の内径寸法を測定することができ
る。
Conventionally known methods for measuring the dimensions of tubular objects include, for example, a method of optically measuring the outer diameter using a photodiode array, and a method of measuring the inner thickness using a radiation or ultrasonic wall thickness gauge. Therefore, by using these, the inner diameter dimension of a tubular object can be measured from the outer diameter minus the inner thickness.

しかしこの方法で内径を測定することを考えると外径を
測定するための装置と肉厚を測定するための装置とをそ
れぞれ設置しなければならず装置の投雪スペースを多く
必要とするとともに装置管理が面倒となる問題が生じる
。また2種の異なる装置を使用するため管状物を搬送さ
せつつ測定する場合測定点を一致させることが非常に困
龜となり測定誤差が大きくなってしまう等の問題がある
However, when measuring the inner diameter using this method, it is necessary to install a device for measuring the outer diameter and a device for measuring wall thickness, which requires a large amount of snow throwing space for the device. A problem arises that makes management troublesome. Furthermore, since two different types of devices are used, when measuring the tubular object while it is being transported, it is very difficult to match the measurement points, resulting in large measurement errors.

この発明はこのような問題に鑑みて為されたもので、測
定に関与する装置の設置スペースを少なくできるととも
に管理が容易にでき、かつ管状物をその軸心方向に搬送
させつつ測定する場合において精度の高い内径測定がで
きる管状物の寸法測定方法を提供することを目的きする
This invention was made in view of these problems, and it is possible to reduce the installation space of the equipment involved in measurement, to facilitate management, and to be able to carry the tubular object in the axial direction while measuring it. It is an object of the present invention to provide a method for measuring the dimensions of a tubular object that can measure the inner diameter with high accuracy.

この発明は管状物の軸心を介して相対向する上や管状物
の外方の2点位置から上記軸心方向に垂直に超音波パル
スを送信し、そのときの管状物の外周面からの反射波と
内周面からの反射波を受信することにより、予め測定さ
れた超音波パルスの送信2点位置間の距離と上記超音波
パルスの送信時及び各反射波の受信時間の時間のずれと
から管状物の内径寸法を測定することにより、外径と肉
厚の測定点の一致を確実に図れ、かつ使用する装置の小
形化を図かるようにしたものである。
This invention transmits ultrasonic pulses perpendicularly to the axial direction from two points on the top and outside of the tubular object that face each other through the axial center of the tubular object. By receiving the reflected waves and the reflected waves from the inner circumferential surface, the distance between the two transmission points of the ultrasonic pulse measured in advance and the time difference between the transmission time of the ultrasonic pulse and the reception time of each reflected wave can be determined. By measuring the inner diameter of the tubular object, it is possible to ensure that the measurement points of the outer diameter and wall thickness match, and to downsize the device used.

以下、この発明の実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

図中1は管状物としての鋼管で、この−管1の細心を介
して相対向する位置(−管1の円周方向に180異なる
位置)でかつ上記鋼管1の外方に離れた位置に超音波パ
ルス送受信用探触子2,3をそれぞれ設けている。前記
測探触子2.3には図示しない送受信権、メモリ、演算
装置等を設けた測定装置が接続されている。前記鋼管1
の外周外側には測探触子2,3との音前記両探触子2,
3から図中集線の矢印で示すように前記鋼管1の軸心方
向と手直に超音波パルスを送信するようにしている。
In the figure, reference numeral 1 indicates a steel pipe as a tubular object, which is located at a position opposite to each other through the narrow center of the pipe 1 (-180 different positions in the circumferential direction of the pipe 1) and at a position away from the outside of the steel pipe 1. Probes 2 and 3 for transmitting and receiving ultrasonic pulses are provided, respectively. A measuring device equipped with transmitting/receiving rights, a memory, an arithmetic device, etc. (not shown) is connected to the measuring probe 2.3. Said steel pipe 1
On the outside of the outer periphery of the sound probes 2 and 3,
3, ultrasonic pulses are transmitted directly in the axial direction of the steel pipe 1, as shown by concentrated arrows in the figure.

この構成において測探触子2,3から怜管1に送信され
る超音波パルスは先ず鋼管1の外周面で反射される。ま
た一部は鋼管1の壁を仕種し内周面で反射される。これ
らの反射波は測探触子2,3によって受信されることに
なる。これらの各パルス波を横に時間軸を取って示せば
第2図に示すようになる。すなわち揮2図においてTは
超音波の送信パルス、Slは鋼管I CI)外周面から
の1回目の反射パルス%BI”!eB3はそわぞれ鋼管
1の内周面からの1回目。
In this configuration, the ultrasonic pulses transmitted from the measuring probes 2 and 3 to the pipe 1 are first reflected by the outer peripheral surface of the steel pipe 1. In addition, a part of the light strikes the wall of the steel pipe 1 and is reflected by the inner circumferential surface. These reflected waves are received by the measuring probes 2 and 3. If each of these pulse waves is plotted horizontally along the time axis, it will become as shown in FIG. That is, in Figure 2, T is the transmitted pulse of the ultrasonic wave, Sl is the first reflected pulse from the outer circumferential surface of the steel pipe 1, %BI''!eB3 is the first reflected pulse from the inner circumferential surface of the steel pipe 1, respectively.

2回目、3回目の反射パルス、Sl目−管10.)外周
面からの2回目の反射パルスを示している。
2nd and 3rd reflected pulses, Sl - tube 10. ) shows the second reflected pulse from the outer peripheral surface.

鋼管1の外径D1肉厚t 、 tl、内径dの各寸法を
測定する前に、外径、肉厚の各寸法が既知の鋼管を使用
して較正する。すなわち外径がDo、肉厚が10.t0
’の鋼管を使用し、各探触子2,3の送受信面と鋼管1
の外周面との距離go+go’を超音波パルスTの送信
時刻t8と反射パルスStの受信時刻t!との時間差(
tt−11)と水中における超音波ノ句レスの伝播速度
vwとから 2g(go * go’)=VW・(tt  i+ )
   ・”■によって御1定する。
Before measuring the outer diameter D1, wall thickness t, tl, and inner diameter d of the steel pipe 1, calibration is performed using a steel pipe whose outer diameter and wall thickness are known. That is, the outer diameter is Do and the wall thickness is 10. t0
' steel pipes are used, and the transmitting and receiving surfaces of each probe 2 and 3 and the steel pipe 1 are
The distance go+go' from the outer peripheral surface of the ultrasonic pulse T to the transmission time t8 and the reflection pulse St reception time t! The time difference between (
tt-11) and the propagation velocity vw of ultrasonic waves in water, 2g(go * go') = VW・(tt i+ )
・It is determined by "■.

そして距@go、go’と外径DOとから測探触子2,
3の送受信面間の距離eOを l o ” go + go’+ Do       
 ・・・■によって測定する。
Then, from the distance @go, go' and the outer diameter DO, the measuring probe 2,
The distance eO between the transmitting and receiving surfaces of 3 is l o ” go + go' + Do
...Measure by ■.

また肉厚tO+’O′を反射パルスS1の受信時刻t!
と反射パルスB1の受信時刻t3との時間差(ts  
ts)と鋼管1における超音波パルスの縦波伝播速度v
sとから 2t(totto’)=VS・(ts  tt)   
・・・■によって測定する。そして既知の外・径00%
肉厚10etO゛と測定によって得られた肉厚to。
Also, the wall thickness tO+'O' is the reception time t of the reflected pulse S1!
and the reception time t3 of the reflected pulse B1 (ts
ts) and the longitudinal wave propagation velocity v of the ultrasonic pulse in the steel pipe 1
s and 2t (totto') = VS・(ts tt)
...Measure by ■. And known outer/diameter 00%
The wall thickness to obtained by measurement is 10etO゛.

t 、1とから距離IQs肉厚t o  、 t Ol
を較正しておく。
t , 1 and distance IQs wall thickness t o , t Ol
Calibrate.

このように較正した後被測定用鋼管1の寸法測定を行な
うことによってより精度の高い測定ができる。第3図に
示すように先ず測探触子2゜3の送受信面と鋼管1の外
周面との距離g+  rg、’及び肉厚i1+’l゛を
上記■、■の関係式から測定できる。そして外径D1、
内径d1はDt =io  (gt +gx’)   
  ・・・■dB =DI  (tl + tt’) 
    ・・・■の演算処理を行乞うことによって測定
できる。
By measuring the dimensions of the steel pipe 1 to be measured after calibrating in this way, more accurate measurements can be made. As shown in FIG. 3, first, the distance g+rg,' and the wall thickness i1+'l' between the transmitting/receiving surface of the measuring probe 2.3 and the outer peripheral surface of the steel pipe 1 can be measured from the relational expressions (1) and (2) above. and outer diameter D1,
The inner diameter d1 is Dt =io (gt +gx')
... ■dB = DI (tl + tt')
...It can be measured by performing the calculation process of ■.

このようにして鋼管1の外径DI、肉厚t、。In this way, the outer diameter DI and wall thickness t of the steel pipe 1 are determined.

t、′、内径d、を測定することにより、設置する測定
装置を1台にすることができ設置スペースを少なくでき
るととも番こ保守、点検等の装置管理が容易となる。ま
た鋼管lに対する測定点が外径、肉厚、内径の各測定に
対して一致させることができるので、鋼管1をその軸心
方向に搬送しつつ測定する場合に測定点のずれによる誤
差というものがなく精度の高い寸法測定ができる。
By measuring t,' and the inner diameter d, the number of measuring devices installed can be reduced to one, the installation space can be reduced, and equipment management such as guard maintenance and inspection becomes easier. In addition, since the measurement points for the steel pipe 1 can be matched for each measurement of the outer diameter, wall thickness, and inner diameter, errors due to deviation of the measurement points when measuring the steel pipe 1 while being conveyed in the axial direction can be avoided. It is possible to measure dimensions with high precision without any problems.

ところで鋼管1をその軸心方向に搬送しつつ測定する場
合に鋼管1を自走回転搬送、すなわちスパイラル搬送す
れば鋼管1の外周面におけるあらゆる角度での外径、肉
厚、内径の寸法測定ができ、鋼管1の寸法測定をより正
確にできる。なお、この場合、鋼管1の周囲に探触子を
複数対設けておけば鋼管1をスパイラル搬送しなくても
略同等の効果が得られる。
By the way, when measuring the steel pipe 1 while transporting it in the axial direction, if the steel pipe 1 is transported by self-propelled rotation, that is, by spiral transport, the dimensions of the outer diameter, wall thickness, and inner diameter can be measured at all angles on the outer circumferential surface of the steel pipe 1. This makes it possible to measure the dimensions of the steel pipe 1 more accurately. In this case, if a plurality of pairs of probes are provided around the steel pipe 1, substantially the same effect can be obtained without spirally conveying the steel pipe 1.

ところで超音波パルスの水中伝惰速度vw及び鋼管中の
縦波伝篇速度vsは温度によってvW:0.23嗟/C
(θ〜35C)1、vs;0、0085優/C(0〜1
00r)の影曽を受けることが知られているので、測定
精度を良好に保つにはこわらの温度管理を充分に行ない
、距離g、肉厚tが温度によって変化しないようにする
必要がある。また温度変化が生じた場合には温度補正を
する必要がある。
By the way, the underwater propagation speed vw of the ultrasonic pulse and the longitudinal wave propagation speed vs in the steel pipe depend on the temperature vW: 0.23°/C
(θ~35C) 1, vs; 0, 0085 excellent/C (0~1
00r), so in order to maintain good measurement accuracy, it is necessary to adequately control the temperature of the stiffness so that the distance g and wall thickness t do not change due to temperature. . Furthermore, if a temperature change occurs, it is necessary to perform temperature correction.

また測定誤差は第4図に示すように送受信探触子2.3
からの超音波パルスが一管lの細心に向けて正しく送信
されない場合にも生じる。
Also, the measurement error is as shown in Figure 4.
It also occurs if the ultrasonic pulses from the tube are not transmitted correctly towards the particulars of the tube.

すなわち−管1の外径をD1軸心を通る垂直ラインと超
音波パルスの送信ラインとの間隔をδ、上記垂直ライン
と軸心から超音波パルスの一管の外周面到達位置を見た
仰角をαとするとα=taa ” (2δ/D)   
     ・・・■となり、距離gのずれΔgは Δg=n/2 (1/lhα−1)   ・・・■とな
る。このことからδを必要精度に保つ必要がある。
That is, - the outer diameter of tube 1 is D1, the distance between the vertical line passing through the axis and the transmission line of the ultrasonic pulse is δ, and the elevation angle when looking at the position where the ultrasonic pulse reaches the outer peripheral surface of one tube from the vertical line and the axis If α is α=taa” (2δ/D)
...■, and the deviation Δg of the distance g is Δg=n/2 (1/lhα-1) ...■. For this reason, it is necessary to maintain δ to the required accuracy.

なお、前記実施例は管状物として一管を使用したものに
ついて述べたがかならずしもこれに限定されるものでな
いのは勿論である。
Although the above embodiments have been described using a single tube as the tubular object, it is needless to say that the present invention is not limited to this.

以上詳述したようにこの発明によれば管状物の軸心を介
して相対向する上記管状物の外方の2点位置から上記軸
心方向に垂直に超音波パルスを送信するとともに上記管
状物の外周面からの反射波及び内周面からの反射波をそ
れぞわ受信し、予め測定された超音波パルスの送信2点
位置間の距離と上記超音波パルスの送信時さ上記管状物
の外周面及び内周面からの反射波の受信時との時間のず
れとから上記管状物の内径寸しては1台でよく設置スペ
ースを少なくできるとともに装置の管理が容易にでき、
かつ管状物をその軸心方向に搬送して内径寸法を連続測
定しても測定点のずれによる誤差がなく精度の高い内径
寸法測定ができる管状物の寸法測定方法を提供できるも
のである。
As described in detail above, according to the present invention, ultrasonic pulses are transmitted perpendicularly to the axial direction of the tubular object from two points on the outside of the tubular object that face each other via the axial center of the tubular object. The reflected waves from the outer circumferential surface and the reflected waves from the inner circumferential surface of the tubular object are respectively received, and the distance between the two transmitting points of the ultrasonic pulse and the time of transmitting the ultrasonic pulse are measured in advance. Due to the time lag between the reception of the reflected waves from the outer and inner circumferential surfaces, the inner diameter of the tubular object requires only one unit, and the installation space can be reduced, and the equipment can be easily managed.
Moreover, it is possible to provide a method for measuring the dimensions of a tubular object, which can perform highly accurate inner diameter measurements without errors due to deviations of measurement points even when the tubular objects are conveyed in the axial direction and the inner diameter dimensions are continuously measured.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明の実施例を示すもので、第1図は較正時の
寸法測定を説明するための図、第2図は超音波パルスの
送信、反射タイミングを示すタイミング図、第3図は被
測定鋼管の寸法測定を説明するための図、第4図は超音
波パルスの鋼管への送信位置ずれによる誤差を説明する
ための図である。 1・・・鋼管、2,3・・・超音波パルス送受信用探触
子。 第1 図。 第2図 t1t2t3    時間−
The figures show an embodiment of the present invention. Figure 1 is a diagram for explaining dimension measurement during calibration, Figure 2 is a timing diagram showing transmission and reflection timing of ultrasonic pulses, and Figure 3 is a diagram for explaining the measurement of dimensions during calibration. FIG. 4 is a diagram for explaining the dimension measurement of the steel pipe to be measured. FIG. 4 is a diagram for explaining the error caused by the shift in the transmission position of the ultrasonic pulse to the steel pipe. 1... Steel pipe, 2, 3... Ultrasonic pulse transmission/reception probe. Figure 1. Figure 2 t1t2t3 Time-

Claims (1)

【特許請求の範囲】[Claims] 管状物の軸心を介して相対向する上記管状物の外方の2
点位置から上記軸心方向に垂直に超音波パルスを送信す
るとともに上記管状物の外周面からの反射波及び内周面
からの反射波をそれぞれ受信し1.予め測定された超音
波パルスの送信2点位置間の距離と上記超音波パルスの
送信時と上記管状物の外周面及び内周面からの反射波の
受信時との時間のずれとから上記管状物の内径寸法を測
定するようにしたことを特徴とする管状物の寸法測定方
法。
two outer sides of the tubular object facing each other across the axis of the tubular object;
Transmit an ultrasonic pulse perpendicularly to the axial direction from a point position, and receive reflected waves from the outer circumferential surface and inner circumferential surface of the tubular object, respectively.1. Based on the pre-measured distance between the two transmitting points of the ultrasonic pulse and the time difference between the time of transmitting the ultrasonic pulse and the time of receiving the reflected waves from the outer and inner circumferential surfaces of the tubular object, A method for measuring the dimensions of a tubular object, characterized in that the inner diameter of the object is measured.
JP12217681A 1981-08-04 1981-08-04 Dimension measuring method of tubular substance Pending JPS5822907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12217681A JPS5822907A (en) 1981-08-04 1981-08-04 Dimension measuring method of tubular substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12217681A JPS5822907A (en) 1981-08-04 1981-08-04 Dimension measuring method of tubular substance

Publications (1)

Publication Number Publication Date
JPS5822907A true JPS5822907A (en) 1983-02-10

Family

ID=14829450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12217681A Pending JPS5822907A (en) 1981-08-04 1981-08-04 Dimension measuring method of tubular substance

Country Status (1)

Country Link
JP (1) JPS5822907A (en)

Similar Documents

Publication Publication Date Title
CN100455996C (en) Flowmeter
US2874568A (en) Ultrasonic flowmeter
US20160116440A1 (en) Sensor positioning with non-dispersive guided waves for pipeline corrosion monitoring
US6209388B1 (en) Ultrasonic 2-phase flow apparatus and method
EP2816327B1 (en) Ultrasonic flowmeter
SE7604537L (en) DEVICE FOR PRECISION MEASUREMENT OF FOREMAL BY ULTRASOUND
US20170153136A1 (en) Clamp-on ultrasonic flow rate measuring device having automatic pipe thickness measuring function
US20040123674A1 (en) Single-body dual-chip orthogonal sensing transit-time flow device
EP0251696B1 (en) Bore mapping and surface time measurement system
US20190293464A1 (en) Structure of flow measurement sensor based on time-of-flight and method for installation thereof
US4823612A (en) Socket structure for mounting ultrasonic gas flow measuring device with respect to gas flow pipe
JPS5822907A (en) Dimension measuring method of tubular substance
AU2017201151B2 (en) Ultrasonic flowmeter
US6854339B2 (en) Single-body dual-chip orthogonal sensing transit-time flow device using a parabolic reflecting surface
JP4363699B2 (en) Method for detecting carburized layer and measuring thickness thereof
SK86093A3 (en) Method and device for location of leaky point by ultrasound
US4991427A (en) Bore mapping and surface time measurement system
JP2008026213A (en) Ultrasonic flowmeter
JPH08271322A (en) Ultrasonic liquid level measuring method
CN110617858A (en) Ultrasonic sensor arrangement method for flow measurement
JPH0584464B2 (en)
JPH01320422A (en) Method and instrument for measuring pipe shape
JPS6013257A (en) Ultrasonic diagnosis
JPS6254112A (en) Thickness measuring method for scale in pipe
CN114689104A (en) Self-calibration system and method of ultrasonic sensing equipment for large flue