JPS582261B2 - Touhou Teki Dekatsukou Engine Seino SI - Google Patents

Touhou Teki Dekatsukou Engine Seino SI

Info

Publication number
JPS582261B2
JPS582261B2 JP48065538A JP6553873A JPS582261B2 JP S582261 B2 JPS582261 B2 JP S582261B2 JP 48065538 A JP48065538 A JP 48065538A JP 6553873 A JP6553873 A JP 6553873A JP S582261 B2 JPS582261 B2 JP S582261B2
Authority
JP
Japan
Prior art keywords
steel
ductility
added
less
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48065538A
Other languages
Japanese (ja)
Other versions
JPS5013216A (en
Inventor
今村淳
早川浩
速水哲博
薮田忠嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP48065538A priority Critical patent/JPS582261B2/en
Priority to SE7407542A priority patent/SE414513B/en
Priority to DE2427837A priority patent/DE2427837B2/en
Priority to FR7419982A priority patent/FR2232609B1/fr
Priority to GB2579874A priority patent/GB1441057A/en
Priority to BR4792/74A priority patent/BR7404792D0/en
Priority to IT23832/74A priority patent/IT1014941B/en
Publication of JPS5013216A publication Critical patent/JPS5013216A/ja
Priority to US05/632,692 priority patent/US4043805A/en
Publication of JPS582261B2 publication Critical patent/JPS582261B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は高い強度を有するにもかかわらず、n値(均一
伸び)が大きく高延性、かつ機械的性質の異方性が少な
い高強度熱間圧延鋼に関するものである。
[Detailed Description of the Invention] The present invention relates to a high-strength hot-rolled steel that has a large n value (uniform elongation), high ductility, and low anisotropy in mechanical properties despite having high strength. .

最近の自動車、特に乗用車は排気ガスなどの公害防止装
置搭載による車重増および運転者の安全確保のため、安
全無公害車の方向に進みつつあり、材料の対策には必然
的に高強度鋼板の使用により重量軽減の必要がある。
Recent automobiles, especially passenger cars, have increased in weight due to the installation of pollution prevention devices such as exhaust gas, and in order to ensure driver safety, there has been a shift toward safer and less polluting vehicles, and high-strength steel plates are inevitably required as material countermeasures. There is a need to reduce weight by using

一方、重量物運搬用トラックの車重軽減対策、その他の
産業機械の重量軽減を目的として、曲げ性や溶接性にす
ぐれた60〜100kg/一級の強度をもつ高強度鋼板
が使用され始めでいる。
On the other hand, high-strength steel plates with excellent bendability and weldability and a strength of 60 to 100 kg/class 1 are beginning to be used for the purpose of reducing the weight of trucks for transporting heavy goods and other industrial machinery. .

これらの高強度鋼板は使用目的に応じて板厚が薄手から
厚手まで広範囲であるのみならず、性能の要求水準も逐
次高くなりつつある。
These high-strength steel plates not only come in a wide range of thicknesses, from thin to thick, depending on the purpose of use, but the required level of performance is also gradually increasing.

特に、高強度化にともなって、通常は必然的に劣化する
延性を極力高水準に維持した高延性鋼の要求、さらに薄
手化によって一層顕著となる延性劣化、同異方性(特に
L,C方向差)の増大を改善した薄手でありながら、等
方的に延性のすぐれた鋼の要求など材質的に改善すべき
重要な問題のほか、製造にあたってB,Mo,Ni等の
特殊元素などの添加を必要とせず、すぐれた性能を発揮
する低コスト鋼の要求、更に高強度鋼でありながら歩留
りを高水準に維持し、安定した供給を可能にする解決方
策など製造上の問題もある。
In particular, there is a demand for high ductility steel that maintains ductility as high as possible, which normally inevitably deteriorates with increasing strength, and also the deterioration of ductility, which becomes even more noticeable as the steel becomes thinner, and isotropy (especially L, C). In addition to the important issues that need to be improved in terms of materials, such as the need for thin steel with excellent isotropic ductility, which has improved the increase in direction difference), special elements such as B, Mo, and Ni are required for manufacturing. There are also manufacturing issues, such as the need for a low-cost steel that does not require additives and exhibits excellent performance, and solutions to maintain a high yield and stable supply of high-strength steel.

本発明者らはこれらの難問題を解決するに当って次の3
つの基本的発想概念にもとづいてそれを具現するに、極
めて有効な対応方策を発見し、それにもとづいて本発明
を構成した。
In solving these difficult problems, the inventors made the following three points.
Based on these basic concepts, we have discovered extremely effective countermeasures to realize them, and have constructed the present invention based on these.

以下に基本概念を説明する。The basic concept will be explained below.

延靭性向上に関するものとして (1) n値向上による延性改善。Regarding improving ductility and toughness (1) Improved ductility by increasing n value.

(2)組織の微細化、第二相(パーライト相、介在物)
の均一分散化、見掛上の減少による延性改善。
(2) Refinement of structure, second phase (pearlite phase, inclusions)
Improved ductility due to uniform dispersion and apparent reduction.

がある。There is.

一軸引張変形における延性尺度は全伸び (T.M)として均一伸び(ε*)とくびれ伸び(εL
)との和で表現される。
The ductility scale in uniaxial tensile deformation is total elongation (T.M), uniform elongation (ε*) and waist elongation (εL
) is expressed as the sum of

ところで2点法で求められる慣用のn値と均一伸び(ε
*:真応力直歪曲線とda/変化曲線の交点、すなわち
0−σにおけるε値)とは絶対値に多少の差ははあるが
、比例関係にある。
By the way, the conventional n value and uniform elongation (ε
*: The intersection of the true stress direct strain curve and the da/change curve, that is, the ε value at 0-σ) has a proportional relationship, although there is some difference in absolute value.

第1図に本発明鋼を含めて、その関係を示した。FIG. 1 shows the relationship including the steel of the present invention.

この図から明らかなようにε*はnよりほぼ0.015
高くでるに過ぎない。
As is clear from this figure, ε* is approximately 0.015 smaller than n.
It's just too high.

従ってn値の向上は均一伸び(ε*)の改善と全く同義
であり、くびれ伸びを減少しない限り延性改善の有力な
解決策である。
Therefore, improving the n value is completely synonymous with improving uniform elongation (ε*), and is an effective solution to improving ductility unless waist elongation is reduced.

一般に高強度化と共に急激に低下するn値を高水準に維
持する方策を見出すことが重要である。
It is important to find a way to maintain the n value, which generally decreases rapidly with increasing strength, at a high level.

一方、塑性変形および延性破壊の観点からみると、見掛
け上のパーライト、介在物の低減、微細化、均一分散化
は均一伸び(ε*)の改善のみならず、くびれ伸び(ε
L)の改善にも有効である。
On the other hand, from the perspective of plastic deformation and ductile fracture, the reduction, refinement, and uniform dispersion of apparent pearlite and inclusions not only improve uniform elongation (ε*) but also improve waist elongation (ε
It is also effective in improving L).

第7図a s b + C + d .,e t fは
同一スラブより出発し、結晶粒径、パーライト分率をコ
ントロールした各種試料の顕微鏡組織を示し、第2図に
は延性尺度の全伸び( T. M )およびn値の変化
をパーライト分率との関係において示す。
Figure 7 a s b + C + d. , e t f show the microstructures of various samples starting from the same slab and controlling the grain size and pearlite fraction, and Figure 2 shows the changes in the total elongation (T.M) and n value of the ductility scale. It is shown in relation to the pearlite fraction.

第7図の写真にみるように、細粒鋼はパーライトの分率
も小であるが、フエライト粒の整粒度もよく、パーライ
ト・コロニーサイズも小さく均一に分散している。
As shown in the photograph in FIG. 7, fine-grained steel has a small percentage of pearlite, but the ferrite grains are well-sized and the pearlite colony size is small and uniformly dispersed.

粗粒になると逆の現象をたどる。When the grain becomes coarse, the opposite phenomenon occurs.

第2図では明らかに細粒パーライト鋼においてはn値(
すなわちε*)、εLともに改善され、延性の著しい向
上が認められる。
Figure 2 clearly shows that the n value (
That is, both ε*) and εL are improved, and a significant improvement in ductility is recognized.

これらの事実は、延性向上に果す組織改善の役割の大き
いことを示唆し、上述の組織微細化が、延靭性改善の有
力な解決策であることを示している。
These facts suggest that microstructure improvement plays a large role in improving ductility, and show that the above-mentioned microstructure refinement is an effective solution for improving ductility.

機械的性質の異方性解消に関するものとして、(3)等
方的組織化と主要添加元素のミクロ偏析による作用の平
滑化による異方性の解消がある。
Regarding the elimination of anisotropy in mechanical properties, there is (3) elimination of anisotropy by smoothing of the effect due to isotropic organization and micro-segregation of main additive elements.

実用合金鋼は添加または随伴元素の偏析を必然的に伴な
う。
Practical alloy steels inevitably involve segregation of added or accompanying elements.

しかしながら、フエライトーパーライトの場合、フエラ
イトマトリックスを除いた、最終変態相、介在物などが
低減され、微細、かつ均一に分散され、そのためにMn
,Si,Orなどの強化元素およびそれらと相互作用を
有する随伴不純物(C,0,Sなど)の偏析及び介在物
、析出物があったとしても、それら組織の微細化により
、それら元素の有害作用の局在化を全体として分散稀薄
化するならば、無偏析状態に近い効果を生み、異方性が
解消され、等方的材料を得ることが可能であるとの結論
を得た。
However, in the case of ferrite-topperlite, the final transformed phase, inclusions, etc. other than the ferrite matrix are reduced, finely and uniformly dispersed, and therefore Mn
Even if there is segregation, inclusions, and precipitates of reinforcing elements such as , Si, and Or, and accompanying impurities (C, O, S, etc.) that interact with them, the harmful effects of these elements are reduced due to the refinement of their structures. It was concluded that if the localized action is dispersed and diluted as a whole, an effect close to a non-segregation state can be produced, anisotropy can be eliminated, and an isotropic material can be obtained.

そこで、本発明者等は等方的に延靭性のすぐれた高強度
鋼をうるための解決策として、 (1)n値向上、 (2)変態生成相(フエライト粒、パーライト)の微細
、かつ均一分散化、パーライトおよび有害介在物の低減
、 (3)主要添加元素のミクロ偏析による作用平滑化、の
三項について、種々実験を行なった結果、これを効果的
に具体化する独創的方策を発明した。
Therefore, the present inventors have developed the following solutions to obtain isotropic high-strength steel with excellent ductility: (1) improving the n value, (2) reducing the fineness of the transformation-generated phases (ferrite grains, pearlite), and As a result of conducting various experiments on the following three items: homogeneous dispersion, reduction of pearlite and harmful inclusions, and (3) smoothing of effects through micro-segregation of major additive elements, we have come up with an original method to effectively materialize this. Invented it.

すなわち本発明は、 [(1)炭 素(C) 0.03〜0.15%珪
素(Si) 0.7〜243%マンガン(Mn
) 0.7〜2.0%硫 黄(S) 0
.01%以下 の範囲においてSi/Mnの成分比が0.6以上1.5
までとし、残余が鉄およびやむを得ない随伴不純物より
なる等方的で、かつ高延靭性のSi添加高強度鋼。
That is, the present invention [(1) Carbon (C) 0.03 to 0.15% silicon]
Element (Si) 0.7-243% Manganese (Mn
) 0.7-2.0% Sulfur (S) 0
.. In the range of 0.01% or less, the Si/Mn component ratio is 0.6 or more and 1.5
Si-added high-strength steel that is isotropic and has high ductility and toughness, with the remainder consisting of iron and unavoidable accompanying impurities.

(2)炭 素(C) 0.03〜0.15%珪
素(Si) 0.7〜2.3%マンガン(Mn)
.0.7〜2.0%クローム(Cr)
0.3%未満 硫 黄(S) 0.01%以下 の範囲においてSi/Mnの成分比が0.6以上1.5
までとし、残余が鉄およびやむを得ない随伴不純物より
なる等方的で、かつ高延靭性のSi添加高強度鋼。
(2) Carbon (C) 0.03-0.15% silicon
Element (Si) 0.7-2.3% Manganese (Mn)
.. 0.7-2.0% chromium (Cr)
Less than 0.3% Sulfur (S) In the range of 0.01% or less, the Si/Mn component ratio is 0.6 or more and 1.5
Si-added high-strength steel that is isotropic and has high ductility and toughness, with the remainder consisting of iron and unavoidable accompanying impurities.

(3)炭 素(C) 0.03〜0.15%珪
素(Si) 0.7〜2.3%マンガン(Mn)
0.7〜2.0%の範囲においてSi/Mnの
成分比が0.6以上1.5までとし、かつ、Ce/S;
1.5 〜2.0 42>Ti/S>4 ,5>Zr
/S>2なるごとくCe,Ti或いはZrを添加し、残
余が鉄およびやむを得ない随伴不純物よりなる等方的で
、かつ高延靭性のSi添加高強度鋼。
(3) Carbon (C) 0.03-0.15% silicon
Element (Si) 0.7-2.3% Manganese (Mn)
The Si/Mn component ratio is 0.6 to 1.5 in the range of 0.7 to 2.0%, and Ce/S;
1.5 ~ 2.0 42>Ti/S>4,5>Zr
/S>2 Ce, Ti, or Zr is added to the steel, and the remainder is iron and unavoidable accompanying impurities, which is an isotropic Si-added high-strength steel with high ductility and toughness.

(4)炭 素(C) 0.03〜0.15%珪
素(Si) 0.7〜2.3%マンガン(Mn
) 0. 7 〜2.0 %クローム(Cr)
0.3%未満 硫 黄(S) 0.01%以下 の範囲においてSi/Mnの成分比が0.6以上1.5
までとし、更にNb,V,Tiの1種もしくは2種を複
合して0.4%以下添加し、残余が鉄およびやむを得な
い随伴不純物よりなる等方的で、かつ高延靭性のSi添
加高強度鋼。
(4) Carbon (C) 0.03-0.15% silicon
Element (Si) 0.7-2.3% Manganese (Mn
) 0. 7 to 2.0% chromium (Cr)
Less than 0.3% Sulfur (S) In the range of 0.01% or less, the Si/Mn component ratio is 0.6 or more and 1.5
In addition, one or two of Nb, V, and Ti are added in a combined amount of 0.4% or less, and the remainder is iron and unavoidable accompanying impurities. strength steel.

(5)炭 素(C) 0.03〜0.15%珪
素(Si) 0.7〜2.3%マンガン(Mn
) 0. 7 〜2.0%クローム(Cr)
0.3%未満 の範囲においてSi/Mnの成分比が0.6以上1.5
までとし、かつ、Ce/S : 1. 5 〜2. 0
.42>Ti/S>4 .5>Zr/S>2なるごと
くCe,Ti或いはZrを添加し、残余が鉄およびやむ
を得ない随伴不純物よりなる等方的で、かつ高延靭性の
Si添加高強度鋼。
(5) Carbon (C) 0.03-0.15% silicon
Element (Si) 0.7-2.3% Manganese (Mn
) 0. 7 ~2.0% chromium (Cr)
In the range of less than 0.3%, the Si/Mn component ratio is 0.6 or more and 1.5
Up to and Ce/S: 1. 5 ~2. 0
.. 42>Ti/S>4. 5>Zr/S>2 Ce, Ti, or Zr is added, and the remainder is iron and unavoidable accompanying impurities, which is an isotropic Si-added high-strength steel with high ductility and toughness.

」である。”.

以下本発明における前記各方策の解決策と上記各成分の
限定理由について説明する。
Below, solutions to each of the above-mentioned measures in the present invention and reasons for limiting each of the above-mentioned components will be explained.

(1) n値向上方策 第3図は本発明鋼を含む各種高強度鋼の真応力ー真歪曲
線とし10%−15%の2点法で求めたn値を示す。
(1) Measures to improve n value Figure 3 shows the true stress-true strain curves of various high-strength steels, including the steel of the present invention, and the n value determined by the two-point method of 10%-15%.

AおよびBは本発明鋼で、いずれも0. 7 %以上の
Siを添加してある。
A and B are steels of the present invention, both of which are 0. 7% or more of Si is added.

Eは3%SiFe合金である。E is a 3% SiFe alloy.

変形曲線の特徴としてAおよびBは、いずれも4%伸び
歪以上から、変形応力の増加率、すなわち加工硬化率が
急激に大きく変化する。
A characteristic of the deformation curves is that for both A and B, the rate of increase in deformation stress, that is, the work hardening rate, changes rapidly and greatly from an elongation strain of 4% or more.

(図中の矢印部分からの変化をさす。)すなわち均一伸
び変形範囲での変形応力の増加は従来材に比べ著しく改
善され、均一伸びが大きくなっている。
(This refers to the change from the arrow in the figure.) In other words, the increase in deformation stress in the uniform elongation deformation range has been significantly improved compared to the conventional material, and the uniform elongation has become larger.

一方、表1に記入したn値は、本発明鋼の従来鋼に対す
る明らかな優位を示す。
On the other hand, the n values listed in Table 1 indicate the clear superiority of the steel of the present invention over the conventional steel.

その主因は高Si添加によるものと考えられる。The main reason for this is thought to be the high Si addition.

ちなみに3%Si FeのEも同様の傾向を示す。Incidentally, E of 3% Si Fe shows a similar tendency.

本発明者等はこれら新知見から、次の結論に達した。The present inventors have reached the following conclusion from these new findings.

高Si添加鋼はほぼ同じ強度の鋼種間では、Siのより
低い鋼に較べn値を高水準に維持する。
Among steel types with approximately the same strength, high Si-added steel maintains the n value at a higher level than steel with lower Si content.

その添加量下限は0、7%である。またAおよびBのS
iとMn量とはほぼ同量で、成分比Si/Mnにして0
.89 〜1.07にわたり、Si/Mnが下るに従っ
てn値は低下し、高n値を示すSi/’Mnの下限は0
.6程度である。
The lower limit of its addition amount is 0.7%. Also, S of A and B
The amount of i and the amount of Mn are almost the same, and the component ratio Si/Mn is 0.
.. 89 to 1.07, the n value decreases as Si/Mn decreases, and the lower limit of Si/'Mn showing a high n value is 0.
.. It is about 6.

(2)組織の微細化、第二相の均一分散化および低減
標記の組織改変が延性(ε*,εLともに)を改善する
ことは、すでに第7図、第2図で説明したところである
(2) Refinement of structure, uniform dispersion and reduction of second phase
It has already been explained in FIGS. 7 and 2 that the structural modification described above improves ductility (both ε* and εL).

そこで本発明と本発明以外の鋼の特性を対比するため、
n値向上元素であるSiを含め、C以外の有効な強化元
素M’n ,’ C rについてその1種もしくは2種
をそれぞれ1%以上添加した表1に示す組成表2の実験
方法で製作した試料の顕微鏡組織と偏析状態を調べた。
Therefore, in order to compare the characteristics of the present invention and steels other than the present invention,
Produced by the experimental method of composition table 2 shown in Table 1, in which 1% or more of each of effective reinforcing elements M'n and 'Cr other than C, including Si, which is an n-value improving element, is added. The microscopic structure and segregation state of the sample were investigated.

実験方法 真空誘導加熱溶解(20kg) 1200°G−1/2hr加熱 13パス連続圧延 1000〜950℃仕上 板厚 1 2 mm t−{ ”微鏡観察空冷 EPM
,’#析 第8図イ,口,ハの写真にみるようにSiの単独添加は
フエライト粒の細粒整粒化は勿論、パーライトもコロニ
ーサイズが小さく、ほぼ均一に分散し、前述した延性向
上に必要な理想組織に近い。
Experimental method Vacuum induction heating melting (20kg) 1200°G-1/2hr heating 13 passes continuous rolling 1000-950°C Finished plate thickness 12 mm t-{"Microscopic observation air cooling EPM
,'#Analysis As seen in the photographs in Figure 8, A, C, and C, the addition of Si alone not only makes the ferrite grains finer, but also improves the ductility of pearlite, which has a small colony size and is almost uniformly dispersed. Close to the ideal organization necessary for improvement.

しかしながらMn,Crを単独で添加したものは、いず
れもパーライトコロニーサイズは大きく、いわゆるパー
ライトバンドを形成する。
However, when Mn or Cr is added alone, the pearlite colony size is large and a so-called pearlite band is formed.

のみならず、フエライ ト・マトリックス粒も混粒状態
を示し、延性に対しては不利であり、異方性に対しても
それを助長するかのごとき形一を示す。
In addition, ferrite matrix grains also exhibit a mixed grain state, which is disadvantageous for ductility and exhibits a shape that seems to promote anisotropy.

ところで第8図二,ホ,への写真に示す2種複合添加S
i,Mnの場合に、極めて顕著な変化が現われる訃 Mn,Crの複合添加はそれぞれの単独添加の悪影響を
重ね合せた著しいバンド組織である。
By the way, the two types of composite addition S shown in the photos in Figure 8 2, E and
In the case of i and Mn, a very remarkable change appears.The combined addition of Mn and Cr results in a remarkable band structure in which the negative effects of each addition alone are superimposed.

一方、Si,Crの複合添加は、いわゆるバンド組織が
殆ど完全に消失している。
On the other hand, with the combined addition of Si and Cr, the so-called band structure almost completely disappears.

しかしながら、つぎに述べるS i , Mn複合添加
を含め、3者の中で、もつとも結晶粒径が粗く、パーラ
イトコロニーサイズは極端に大きくなっている。
However, among the three, including the combined addition of Si and Mn described below, the crystal grain size is coarser and the pearlite colony size is extremely large.

これは組織的に見る限り異方性解消すには有利であると
しても延性改善には不充分であり、Si,Mn複合添加
鋼の結果からみて疑問のあるところである。
Although this is advantageous in eliminating anisotropy from a microstructural perspective, it is insufficient for improving ductility, and is questionable in light of the results of Si and Mn composite addition steels.

Si,Mn複合添加鋼は、Si単独添加鋼のみに見られ
た理想組織に近い組織が再現されている。
The Si and Mn composite addition steel reproduces a structure close to the ideal structure that was observed only in the Si-only addition steel.

理想組織に近い高Si鋼の組織はMnの添加によっても
殆んど崩れることがない。
The structure of high-Si steel, which is close to the ideal structure, hardly collapses even when Mn is added.

このような理想組織をうる条件はSi/Mnの成分比で
決まり、Si/Mnは0.6(第3,4図より得られた
結果)から無限大(MnなしのSi単独)まで可能であ
る。
The conditions for obtaining such an ideal structure are determined by the Si/Mn component ratio, and Si/Mn can range from 0.6 (results obtained from Figures 3 and 4) to infinity (Si alone without Mn). be.

本実験結果Si/Mn〜1.5はその中に入っている。As a result of this experiment, Si/Mn~1.5 is included therein.

ほかの制約は別として、組織に関する限り結論として
S i /Mnが0.6〜艶の範囲であればパーライト
分率が少なく、パーライトコロニーサイズが小さく、か
つ均一に分散した組織を得て、かつn値を向上させる。
Apart from other constraints, the bottom line as far as the organization is concerned is that
If S i /Mn is in the range of 0.6 to gloss, the pearlite fraction is small, the pearlite colony size is small, a uniformly dispersed structure is obtained, and the n value is improved.

そのために必要なSiの下限量が0. 7 %であるこ
とから、S i/Mn o. 6で規制されるMnの下
限の添加量は0.45%である。
For this purpose, the lower limit amount of Si required is 0. 7%, so S i/Mno. The lower limit addition amount of Mn regulated by 6 is 0.45%.

一方、介在物については、S i + Mnの増加は介
在物の組成の変化をもたらし、圧延時にこまかく分断さ
れマトリックス中に微細に均一に分散する。
On the other hand, regarding inclusions, an increase in S i + Mn brings about a change in the composition of the inclusions, which are finely divided during rolling and are finely and uniformly dispersed in the matrix.

この効果は延性の向上に直接的影響を与えている。This effect has a direct impact on improving ductility.

(3)異方性の解消 Si,Mnの増加、とくにSi/Mn>0.6で、介在
物組成の変化は介在物の微細化、分布の均一性を助長し
延性のみならず、延靭性の異方性改善にも寄与し、その
ため、ほとんど等方的な材料となることが明らかとなっ
た。
(3) Elimination of anisotropy Increase in Si and Mn, especially when Si/Mn > 0.6, changes in inclusion composition promote finer inclusions and uniformity of distribution, improving not only ductility but also ductility and toughness. It has become clear that this contributes to the improvement of the anisotropy of the material, resulting in an almost isotropic material.

それはそれらの介在物の形態のほかに、強化元素たるS
i ,Mnのミクロ偏析の特色に依存すると考えられる
0 第8図二,ホ,への写真に示す複合添加鋼において、S
t t Mn複合添加鋼はEPMA線分析結果のごと
<、Si,Mnの偏析の高低は相反して起る。
In addition to the form of these inclusions, the strengthening element S
i, which is thought to depend on the characteristics of the micro-segregation of Mn.
As shown in the results of EPMA line analysis, the segregation of Si and Mn in steel with Mn composite addition is contradictory.

すなわち、Siの高い所がMnの低い所に対応し、あた
かも偏析を平滑化し、作用効果として均等化されている
ことが想像される。
That is, it can be imagined that areas with high Si correspond to areas with low Mn, as if the segregation were smoothed and equalized as an effect.

このようなSi,Mnのミクロ偏・析の特異分布はいず
れも異方性解消に有効であり、本発明鋼(Si>0.
7 , S i/Mn > 0. 6 )の等方的性質
はこの辺から発生しているものと認め、このような観点
でみる限り、Si,Cr添加鋼の両元素の分配の高低が
完全に重なり、Si,Crの濃厚偏析は依然として残り
、従って上記元素およびそれらと相互作用のある有害元
素の局在化を助長し、Si,Cr添加鋼と同じ偏析傾向
を示すMn,Cr複合添加鋼と同様に異方性の解消には
疑問が残る。
Such a unique distribution of micro-segregation of Si and Mn is effective for eliminating anisotropy, and the present invention steel (Si>0.
7, S i/Mn > 0. It is recognized that the isotropic property of 6) originates from this area, and from this point of view, the heights of the distribution of both elements in Si and Cr-added steel completely overlap, and the concentrated segregation of Si and Cr does not occur. However, in order to eliminate the anisotropy, similar to Mn and Cr composite steel, which has the same segregation tendency as Si and Cr steel, it still remains and therefore promotes the localization of the above elements and harmful elements that interact with them. Questions remain.

実施例で述べるように、本発明鋼は上の推測を裏づける
ように、圧延方向(匂、クロス方向(C)のみならず、
45°方向(至)においても延靭性の差はなく、極めて
等方的である。
As described in the examples, the steel of the present invention supports not only the rolling direction (cross direction (C)) but also the rolling direction (cross direction (C)),
There is no difference in ductility even in the 45° direction (up to), and it is extremely isotropic.

以上の種々の結果から異方性解消には組織面の改変は勿
論、介在物の問題、ミクロ偏析にまで多岐に亘るコント
ロールが必要である。
From the various results mentioned above, in order to eliminate anisotropy, a wide range of controls are required, including not only modification of the structure, but also the problem of inclusions and micro-segregation.

Si量と成分比Si/Mnの単純な規制によって、これ
まで到達が困難であった等方的材料の製造を可能にした
例はない。
There is no example in which it has been possible to manufacture an isotropic material, which has been difficult to achieve, by simply regulating the amount of Si and the component ratio Si/Mn.

Si/Mnの適正値が上の種々の実験から0.6〜1.
5の範囲内で、本発明の目的の一つである異方性解消を
達することを確認した。
From the above various experiments, the appropriate value of Si/Mn is 0.6 to 1.
It was confirmed that within the range of 5, the anisotropy elimination, which is one of the objectives of the present invention, was achieved.

かかる等方的な極めて特徴的な組織、介在物形態および
ミクロ偏析による作用の平滑化などは強度、延靭性にお
いてもその異方性を解消することは明らかである。
It is clear that the smoothing of the effects due to the very characteristic isotropic structure, inclusion morphology, and micro-segregation eliminates the anisotropy in strength and ductility.

すなわち、機械的性質において等方的材料の出現を意味
する。
This means the appearance of a material that is isotropic in mechanical properties.

これについては実施例において明らかにする。This will be explained in the examples.

以上累々述べたごとく、延靭性向上と異方性解消とは、
■Siの添加によるn値向上、■Si /Mnの適正値
内でのSi,Mnの添加による組織、介在物の改善、元
素のミクロ偏析の効果的分配による作用の平滑化、を図
ることにより可能であるから、これを達成するのに明ら
かにしておくべきSi ,Si−Mnバランスおよびそ
れらに対する強化元素C,Cr添加の影響を検討した。
As mentioned above, improving ductility and eliminating anisotropy are:
■Improve the n value by adding Si, ■Improve the structure and inclusions by adding Si and Mn within the appropriate value of Si/Mn, and smooth the effect by effectively distributing the micro-segregation of elements. Since this is possible, we investigated the Si and Si-Mn balances that should be clarified in order to achieve this, and the effects of the addition of reinforcing elements C and Cr on them.

最も適当と思われる尺度としてε*を選んだ。We selected ε* as the most appropriate measure.

第4図はそ検討結果である。Figure 4 shows the results of this study.

いずれも20kg真空溶解鋼塊を1 250℃−2時間
均熱し、930℃仕上温度を目標に6mmまで熱間圧延
した後空中放冷した試料について求めた結果である。
All of these results were obtained using a sample in which a 20 kg vacuum melted steel ingot was soaked at 1250°C for 2 hours, hot rolled to a thickness of 6 mm with a finishing temperature of 930°C, and then cooled in the air.

ただ図中bに示した0.I C−I Mn −0.2
5c r −[¥] ( s i添加量のみを変数とす
る意味、以下同様)のみは板厚4.5mmである。
However, 0.0 shown in b in the figure. I C-I Mn -0.2
Only 5cr - [¥] (meaning that only the amount of s i added is a variable, the same applies hereinafter) has a plate thickness of 4.5 mm.

図中aは最も標準的なSi添加量1%、かつS i /
Mn〜1のベース鋼における0.15%までのC添加量
とε*、n値との関%を調査した結果である。
In the figure, a indicates the most standard Si addition amount of 1%, and S i /
These are the results of investigating the relationship between the C addition amount up to 0.15% and the ε* and n values in Mn~1 base steel.

50〜60kg/一の強度範囲において0.2以上のn
値が得られることがわかる。
n of 0.2 or more in the strength range of 50 to 60 kg/1
You can see that the value is obtained.

bは下限Si量をはさんだ上下の成分量(0.3%およ
び1% s s %従ってS i/Mn : O、3お
よび1)に0.25%のCrを添加し、その影響をみた
In b, 0.25% Cr was added to the upper and lower component amounts (0.3% and 1% s s %, so Si/Mn: O, 3 and 1) across the lower limit Si amount, and the effect was observed. .

Crはε*を低下させるが、Si添加量、Si/Mnが
適切であれば、低下量がかなり抑制されることが新しい
知見として得られた。
Although Cr lowers ε*, a new finding has been obtained that if the amount of Si added and Si/Mn are appropriate, the amount of decrease can be suppressed considerably.

この結果は低Si鋼と、高SiかつSi/Mn〜1を満
足する成分鋼の両者の組織差、変動成分Si,Crの分
配量、分布の違いによって説明されるものであろう。
This result may be explained by the structural difference between the low-Si steel and the high-Si steel that satisfies Si/Mn~1, and the difference in the amount and distribution of the variable components Si and Cr.

Cは低炭素−Nb鋼に下限量0.7%に近いSiを添加
し、Si/Mn最適範囲を調べたものである。
In C, Si was added to a low carbon-Nb steel in an amount close to the lower limit of 0.7%, and the optimum Si/Mn range was investigated.

図のとと(Mn添加と共にε*は低下するが劣化度は小
さく、ε*≧0.19の高水準をうるためのSi/Mn
の範囲は1.1〜0,61である。
In the figure (ε* decreases with the addition of Mn, but the degree of deterioration is small, and Si/Mn
ranges from 1.1 to 0.61.

先の結果と全く同じ下限値0.6を得た。A lower limit value of 0.6, which is exactly the same as the previous result, was obtained.

dは0. I C−I S i −I Mnを母成分と
する50〜60kg/m4級鋼におけるCrの影響を示
している。
d is 0. It shows the influence of Cr on 50-60 kg/m4 grade steel whose base component is I C-I Si-I Mn.

図のごとくCrの添加によるε*の低下は単位添加量当
りの低下においてはCの1/10であるが、同一強度を
うるに必要なCr量は極めて多量を要し(第5図参照)
、強化およびε*向上についてはそれ程効果的元素では
ない。
As shown in the figure, the reduction in ε* due to the addition of Cr is 1/10 of that of C per unit addition amount, but the amount of Cr required to obtain the same strength is extremely large (see Figure 5).
, is not a very effective element for strengthening and improving ε*.

しかしながら、第5図にみるごとく、0.3%までのC
rの添加はn値(ε*)の低下があるにもかかわらず、
全伸び( T. E7 )の変化がない。
However, as shown in Figure 5, C up to 0.3%
Although the addition of r causes a decrease in the n value (ε*),
There is no change in total elongation (T.E7).

この事実は極めて重要である。This fact is extremely important.

何となれば、Crが少なければn値(ε*)は高い。After all, the less Cr, the higher the n value (ε*).

しかし絞り値(≠(曲げ性成性とよい相関あり)は0.
5%までの範囲ではCr量増加と共に増える。
However, the aperture value (≠ (good correlation with bendability) is 0.
In the range up to 5%, it increases as the Cr content increases.

すなわち、くびれ伸び(εL)を増加していることにな
る。
In other words, the waist elongation (εL) is increased.

この範囲ではε*とεLの向上、低下が相補的となる特
異領域である。
This range is a unique region in which the improvements and decreases in ε* and εL are complementary.

n値に重点をおくときはCrを不可避不純物の程度まで
可能な限り少くすることが望ましく、また曲げ成形性の
ためにはCrを0. 3 %までの範囲で添加するとよ
い。
When placing emphasis on the n value, it is desirable to reduce Cr to the level of an unavoidable impurity as much as possible, and for bending formability, Cr should be reduced to 0. It is recommended to add up to 3%.

さらにまた、理由は明らかでないが、Si≧0.7,S
i /Mn 〉0. 6の成分にCrを0.3%未満
の範囲で添加するときは異常スケールやサビの発生が抑
制される。
Furthermore, although the reason is not clear, Si≧0.7, S
i/Mn 〉0. When Cr is added to component 6 in a range of less than 0.3%, the occurrence of abnormal scale and rust is suppressed.

以上、説明したようにn値が高く延靭性にすぐれ異方性
のない高強度鋼として組織、介在物の改善、強化元素の
偏析の適正配分と平滑分布を可能とする本発明鋼の成分
は、Si/Mnが0.6以上1.5まで、望ましくはS
i /Mn〜1の付加条件下で、(1)炭 素(C)
:0.03〜0.15%(2)シリコン(Si)
:0.7〜2.3%(3)マンガン(Mn)
:0.7 〜2.0%であり、更に クローム(Cr) :0.3%未満 とすることである。
As explained above, the composition of the steel of the present invention is a high-strength steel with a high n value, excellent ductility, and no anisotropy, which enables improvement of the structure and inclusions, and proper distribution and smooth distribution of segregation of reinforcing elements. , Si/Mn is from 0.6 to 1.5, preferably S
Under the addition conditions of i/Mn~1, (1) carbon (C)
:0.03~0.15% (2) Silicon (Si)
:0.7-2.3% (3) Manganese (Mn)
: 0.7 to 2.0%, and chromium (Cr): less than 0.3%.

更に、本発明の目的である等方性に加えてC方向の加工
性、衝撃特性などの改善策として用いられるo.o1o
%以下までの脱硫の実施、あるいは通常の製鋼法で得ら
れるSの上限値である0.0 2 5%以下の場合にC
e/S 1. 5 〜2. 0,4 2 >T i/S
>4 .5>.Zr/S>2になるようにCe,Ti
,Zrのいずれか一種以上を添加するときは、C方向
特性を阻害する細長く伸びたA系介在物(MnSのごと
き)を粒状に形状制御することによって本発明鋼の特徴
である等方的高延靭性を更に助長し高強度では避けられ
ないLC異方性を解消する。
Furthermore, in addition to isotropy, which is the objective of the present invention, o. o1o
% or less, or when S is less than 0.025%, which is the upper limit of S obtained by normal steelmaking methods.
e/S 1. 5 ~2. 0,4 2 >T i/S
>4. 5>. Ce, Ti so that Zr/S>2
, Zr, by controlling the shape of elongated A-based inclusions (such as MnS) that inhibit the C-direction properties into grains, the isotropic high It further promotes ductility and eliminates the LC anisotropy that is inevitable with high strength.

勿論Sがo.o+o%以下の場合に上記の関%を満足す
るようにCe,Ti ,Zrのいずれか一種以上を添加
しても本発明鋼の効果は達成されることは言う迄もない
Of course S is o. It goes without saying that the effects of the steel of the present invention can be achieved even if at least one of Ce, Ti, and Zr is added so as to satisfy the above relationship when the amount is less than o+o%.

(例えば実施例I , J , L’)一方、析出強化
元素Nb,V,Tiの1種もしくは2種を0.4%まで
の範囲で本発明ペース鋼( C r<0.3 %添加)
への添加は有効な強度増が得られるのみならず、従来の
析出強化型高強度鋼がなし得なかったL,C異方性の解
消、高n値、高延靭性を達成することが可能である。
(For example, Examples I, J, L') On the other hand, the present invention's paste steel (Cr<0.3% addition) was prepared by adding one or two of the precipitation strengthening elements Nb, V, and Ti in an amount up to 0.4%.
Not only can the addition of ferrite effectively increase strength, but it can also eliminate L and C anisotropy, achieve high n-values, and high ductility toughness, which conventional precipitation-strengthened high-strength steels could not achieve. It is.

本発明鋼における各成分についての限定理由を要約する
と次のようである。
The reasons for limiting each component in the steel of the present invention are summarized as follows.

(1)炭素(C) Cは、安価かつ強力な強化元素として最も有効である。(1) Carbon (C) C is most effective as an inexpensive and powerful reinforcing element.

しかしCによる強化はパーライト分率に依存し、その分
率増は延性を著しく阻害するので多量の添加は好ましく
ない。
However, strengthening with C depends on the pearlite fraction, and an increase in the fraction significantly impedes ductility, so it is not preferable to add a large amount of C.

強度と延性のバランスについて0.15%程度までは問
題を生じないので、上限を0.15%とした。
Since no problem occurs up to about 0.15% regarding the balance between strength and ductility, the upper limit was set at 0.15%.

一方、強度の許す範囲でCを低減することは延性の面で
極めて有利であるが、50kg/一以上の強度を保証す
ること、および現場での製造限界を考慮して下限を0.
03%とした。
On the other hand, reducing C to the extent permitted by strength is extremely advantageous in terms of ductility, but it is necessary to guarantee a strength of 50 kg/1 or more, and the lower limit is set to 0.000 kg/1 in consideration of on-site manufacturing limits.
03%.

(2)珪素(Si ) SiはCに較べると強化能はそれ程大きくはないが、C
量を低く抑えたときの強度増には不可欠のものであり、
補助的強化元素として有効である。
(2) Silicon (Si) Compared to C, Si has a less reinforcing ability, but C
It is essential for increasing strength when the amount is kept low,
Effective as a supplementary strengthening element.

それにも増して重要な効果は先に説明したとおりn値の
飛躍的向上効果とMnとの複合添加により組織改善など
の効果である。
Even more important effects are, as explained earlier, the effect of dramatically improving the n value and the effect of improving the structure due to the combined addition with Mn.

n値向上効果は0.42%以下では現われず、0.7%
以上で顕著に現われてくる。
The n-value improvement effect does not appear below 0.42%, and 0.7%
The above becomes evident.

従って下限を0.7%とした。Therefore, the lower limit was set at 0.7%.

一方、3%Si量においても依然としてSiの効果は残
る。
On the other hand, even at a Si content of 3%, the effect of Si still remains.

従って3%程度までの添加は有効と思われるが、しかし
製造時(α+γ)領域を避け、本発明の骨子たる微細、
均一、組織と平滑なミクロ偏析をうるに必要な単相γ域
での鋼塊乃至スラブの均熱を可能にするには、状態図か
ら見てSi量を2.3%以上にすることは許されない。
Therefore, it seems to be effective to add up to about 3%, but it is important to avoid the (α+γ) region during manufacturing, and to
In order to make it possible to soak the steel ingot or slab in the single-phase γ range, which is necessary to obtain a uniform structure and smooth micro-segregation, it is necessary to increase the Si content to 2.3% or more based on the phase diagram. Unacceptable.

(五弓・阿部:珪素鋼板、7頁)、そのほか表面スケー
ル性状の不良など品質上、操業上にも多量のSiの添加
は不利となるので、上限を2.3%とした。
(Goyumi and Abe: Silicon Steel Plate, p. 7) In addition, the addition of a large amount of Si is disadvantageous in terms of quality and operation, such as poor surface scale properties, so the upper limit was set at 2.3%.

(3)マンガン(Mr1) MnはC,Siに較べると固溶体硬化そのものは低いが
、延性をそれ程阻害しない元素として有用である。
(3) Manganese (Mr1) Although solid solution hardening itself is lower than that of C and Si, Mn is useful as an element that does not significantly inhibit ductility.

特に、前述のごとくSi/Mnとして0.6〜1.5の
範囲で両元素を添加し、その適正分配と分布の平滑性を
計るときは、異方性解消を可能にする。
Particularly, as described above, when both elements are added in a Si/Mn ratio of 0.6 to 1.5 to ensure proper distribution and smoothness of the distribution, anisotropy can be eliminated.

等方的材料をうるのに不可欠の元素としてMnは重要で
ある。
Mn is important as an essential element to obtain an isotropic material.

この効果を充す下限量はSiが0.7%であるから0.
42%で充分である。
The lower limit amount that satisfies this effect is 0.7% Si, so 0.
42% is sufficient.

しかし、強度を維持し、かつSi,Mnの分配、分布の
適正を保持するには下限はo.7%、上限は2.0%が
必要である。
However, in order to maintain strength and appropriate distribution of Si and Mn, the lower limit is o. 7%, and the upper limit is 2.0%.

(4)クローム(Cr) Crは1%以上の添加で強化元素としての作用が現われ
る。
(4) Chromium (Cr) Cr acts as a reinforcing element when added in an amount of 1% or more.

Mnとの共存では異方性が大きくなるが、ε*は高い水
準を維持するので、その意味ではCrの添加には意味が
あるが、強化能が低く多量の添加を必要とするので、コ
スト的に不利である。
Coexistence with Mn increases the anisotropy, but ε* remains at a high level, so in that sense it is meaningful to add Cr, but it has low reinforcing ability and requires a large amount of addition, so it is costly. This is disadvantageous.

逆にCrを0. 3 %からCr O%へ逓減するとき
は強度がほとんど変化しないにも拘らず、均一伸びは急
速に増大する。
Conversely, if Cr is 0. When decreasing from 3% to CrO%, the uniform elongation increases rapidly even though the strength hardly changes.

すなわち、Crは出来うる限り添加しない方がn値には
有利である。
That is, it is advantageous for the n value to avoid adding Cr as much as possible.

しかしながら、0.31%未満のCrの添加は絞り値(
≠を向上させる効果があり(第5図)、曲げ成形性向上
に有利である。
However, the addition of less than 0.31% Cr reduces the aperture value (
This has the effect of improving ≠ (Fig. 5), and is advantageous in improving bending formability.

また同じ0.5%以下のCrの添加は本発明のSi,M
n添加量範囲では異常スケール、サビの発生を抑制する
ので、これを合せてCrの上限を0.3%未満とした。
Furthermore, the addition of 0.5% or less of Cr is the same as that of Si, M of the present invention.
Since the occurrence of abnormal scale and rust is suppressed within the n addition amount range, the upper limit of Cr is set to less than 0.3%.

(5)硫黄(S) 前述したとおり、加工法、衝撃特性の向上および本発明
の目的(異方性の解消)達成のためにその量を決定した
(5) Sulfur (S) As mentioned above, the amount of sulfur was determined in order to improve the processing method, impact properties, and achieve the purpose of the present invention (elimination of anisotropy).

すなわちCe + T i + Z rのいずれか一種
以上を添加するときは通常の製鋼で普通に得られる硫黄
上限値(0、025%)を越えない範囲で添加すること
とし、C e + T I +Zrのいずれか一種以上
を添加しない場合はo.o1%以下に脱硫することによ
り目的が達成される。
In other words, when adding one or more of Ce + Ti + Zr, it should be added within a range that does not exceed the upper limit of sulfur (0.025%) normally obtained in normal steelmaking, and Ce + Ti + Zr. + If one or more of Zr is not added, o. The objective is achieved by desulfurizing to below 1% o.

なお、Sが0.010%以下の場合にCe.Ti ,Z
rのいずれか一種以上を本特許請求の範囲内で添加して
も本発明の効果が達成されることは勿論である。
In addition, when S is 0.010% or less, Ce. Ti,Z
It goes without saying that the effects of the present invention can be achieved even if one or more of r is added within the scope of the claims.

以下これらの限定成分範囲内の本発明鋼と、従来鋼とを
対比し、本発明.4の特徴を明確にする。
The present invention steel within these limited component ranges and conventional steel will be compared below. Clarify the characteristics of 4.

実施例 1 本発明鋼においては、50kg/一級鋼を対象とし0.
I C I.O Si−1.0Mnをベースとし、0
.2%のCrおよびCrなしあ成分鋼、比較材としては
SiとCrを同量1%程度とし、それらの一のMn量を
添加したS i −C r −M n鋼のそれぞれ2
0kgfia真空溶製鋼塊を1250℃−2時間均熱後
930℃仕上温度を目標に6mmまで熱間圧延し、空中
放冷した試料について機械的性質を測定した。
Example 1 In the steel of the present invention, 50 kg/first class steel was targeted and 0.
I C I. Based on O Si-1.0Mn, 0
.. 2% Cr and Cr-free steels; comparative materials include Si-Cr-Mn steels with the same amount of Si and Cr at about 1%, and 2% of each of Si-Cr-Mn steels;
A 0 kgfia vacuum melted steel ingot was soaked at 1250° C. for 2 hours, hot rolled to a thickness of 6 mm with a finishing temperature of 930° C., and the mechanical properties of the sample were measured after cooling in the air.

表3(2)に示すように比較材は従来鋼の最高水準の性
質と思われるが、本発明鋼は異方性がなく飛躍的に高い
n値と延性を示し抜群の性能である。
As shown in Table 3 (2), the comparative material seems to have the highest level of properties of conventional steel, but the steel of the present invention has no anisotropy and exhibits a dramatically high n value and ductility, giving it outstanding performance.

また曲げ成形性と対応のよい絞り値が0.2%のCrの
添加で向上していることも判る。
It is also seen that the reduction of area, which corresponds well to bending formability, is improved by adding 0.2% Cr.

また絞り値は比較材(1.02%Cr添加鋼)と同等以
上にあり、いずれも75%を越えている。
Furthermore, the reduction of area is equal to or higher than that of the comparative material (steel with 1.02% Cr added), and both exceed 75%.

C方向でも密着曲げ可能なことを確めている。It has been confirmed that close bending is possible even in the C direction.

上記試料はSを0.006%としたが、本発明鋼は等方
的であったが、比較材はL,Cの異方性が認められた。
In the above sample, the S content was 0.006%, and while the steel of the present invention was isotropic, the comparative material showed anisotropy in L and C.

ミクロ偏析もしくは介在物の差にもとづくものと推定さ
れる。
It is presumed that this is due to differences in micro-segregation or inclusions.

実施例 2. 上表のごとくSiと■以外はほとんど大きい組成の違い
のない両者を選び比較した。
Example 2. As shown in the table above, both were selected and compared, with almost no major differences in composition except for Si and ■.

両者とも転炉で溶製した現場材である。Both are in-situ materials melted in a converter.

本発明鋼Fは犬鋼塊材であるにもかかわらず、第6図の
ように、コイルトップからボトムまで鋼塊部位によるバ
ラッキ、L(圧延方向)、C(圧延方向と直角方向)、
D(圧延方向と45゜の方向)の異方性もなく、極めて
等方的で、良好な歩留りを示している。
Although the steel F of the present invention is a dog steel ingot material, as shown in Fig. 6, there are variations depending on the steel ingot parts from the coil top to the bottom, L (rolling direction), C (perpendicular direction to the rolling direction),
There is no anisotropy in D (direction at 45° with respect to the rolling direction), and it is extremely isotropic, showing a good yield.

機械的試験結果は鋼塊中央(ミドル)部分である。The mechanical test results are for the middle part of the steel ingot.

50kg/mm級本発明鋼A,Bの場合と同様、強度−
延性のバランスと等方性とは驚異性にすぐれ、従来鋼に
較べ飛曜的にn値、延性が高く、曲げ特性もC方向いず
れも密着曲げ可能であることを示し、本発明鋼が極めて
高水準の性能をもつことが認められる。
As in the case of 50 kg/mm class inventive steels A and B, the strength -
The balance of ductility and isotropy are amazing, and compared to conventional steels, the n-value and ductility are significantly higher, and the bending properties indicate that close bending is possible in both the C direction, indicating that the steel of the present invention is extremely Recognized as having a high level of performance.

特に比較材が6mm材であるのに対し、薄手の2.3m
m材においてさえも延性にすぐれた性能を示している点
は注目される。
In particular, the comparison material is 6mm material, whereas the thinner 2.3m material
It is noteworthy that even the M material shows excellent ductility.

また第9図および第10図のごとくバンド組織らしく見
える部分がエッジ部に僅かあるにもかかわらず、第6図
のように異方性は殆どなく等方的である。
In addition, although there is a slight portion at the edge that looks like a band structure as shown in FIGS. 9 and 10, there is almost no anisotropy and the film is isotropic as shown in FIG.

実施例 3 本実施例は本願の特許請求の範囲第3項および第4項に
関するものであり、I,J,M,Nは本発明ベース鋼(
S i /Mnそれぞれ1.1から0.96まで)に
Tiを添加し、またM,Nは本発明ベース鋼に0.01
%以上0.025%未満のSを添加した鋼に、本発明成
分範囲のCeおよびZrを添加したものである。
Example 3 This example relates to claims 3 and 4 of the present application, and I, J, M, and N are the base steels of the present invention (
Ti is added to S i /Mn (each from 1.1 to 0.96), and M and N are added to 0.01 to the base steel of the present invention.
% or more and less than 0.025% of S, to which Ce and Zr within the composition range of the present invention are added.

一方比較鋼としてM,Nと同程度のSを添加した本発明
ベース鋼(比較鋼2)を用意した。
On the other hand, as a comparative steel, a base steel of the present invention (comparative steel 2) in which S was added to the same extent as M and N was prepared.

製造条件は実施例1と同じとし6mm厚に仕上げた。The manufacturing conditions were the same as in Example 1, and the thickness was 6 mm.

表5(2)のように従来の50 .60 .65乃至7
0kg/mm級鋼に比較して、その強度一延性のバラン
スは最高水準で、かつ、飛曜的に大きなn値を有し、L
,Cの異方性が殆ど認められない極めてすぐれた等方的
高延性鋼である。
As shown in Table 5 (2), the conventional 50. 60. 65 to 7
Compared to 0kg/mm class steel, its strength-ductility balance is at the highest level, and it has an extremely large n value, and L
, C is an extremely excellent isotropic high ductility steel with almost no recognized anisotropy.

従来のNb鋼、Nb−V鋼、Ti鋼にありがちなL,C
の異方性、n値の低下は本発明鋼により一挙に解決され
た。
L and C that are common in conventional Nb steel, Nb-V steel, and Ti steel
The problems of anisotropy and decrease in n value were solved at once by the steel of the present invention.

本結果は、本発明ベース鋼の本来の性能がTiの添加に
よってもそのまま引継がれるという極めて特異な性能を
もつことが確認された。
This result confirms that the base steel of the present invention has extremely unique performance in that the original performance can be inherited even with the addition of Ti.

一方、M,Nのごとく0.01%以上0.025%未満
のSを含む鋼は本願特許請求の範囲第4項の実施例を示
すもので、比較鋼2と対比すればわかるように、Zrを
添加したM鋼( 5>Z r/S>2)、およびCeを
添加したN鋼( Ce/S〜1. 8 )のC方向の延
性、絞り値および曲げ成形性はいずれもSの少い鋼の値
まで回復し、これらの元素の添加によってSの機械的性
質に与える有害な影響を除去することができる。
On the other hand, steel containing S of 0.01% or more and less than 0.025%, such as M and N, represents an example of claim 4 of the present application, and as can be seen by comparing it with comparative steel 2, The C-direction ductility, reduction of area, and bending formability of Zr-added M steel (5>Zr/S>2) and Ce-added N steel (Ce/S~1.8) are all the same as those of S. The deleterious influence of S on the mechanical properties can be eliminated by the addition of these elements.

実施例 4. 本実施例はCrを約0. 2 %添加した本発明ベース
鋼にTi,NbないしNb−V,Nb−Tiを複合添加
し、実施例1と同じ製造条件で6關厚に仕上げたもので
、本発明特許請求の範囲4,5項に関するものである。
Example 4. In this example, Cr is about 0. Ti, Nb or Nb-V, Nb-Ti are added to the base steel of the present invention with a 2% addition, and finished to a thickness of 6 mm under the same manufacturing conditions as in Example 1. This relates to item 5.

実施例1の本発明鋼A,BにみられたCrの有無による
絞り値の特徴が本発明Cr添加ベース鋼へのNb,Ti
の単味かおよび複合添加(Vも含む)によっても変らず
、またSが0.01%以上0.025係未満の場合実施
例3で示したと同様Ce,Zrの本願特許請求の範囲内
の添加によっても、またSが0.010%以上のNb添
加鋼でもTiの添加により強度、延性、n値のL,C方
向の異方性解消がほとんど完全に達成され、本発明の特
徴である等方的高延性が失われない。
The characteristics of the reduction of area depending on the presence or absence of Cr observed in the present invention steels A and B in Example 1 are similar to those observed in the present invention steels A and B.
It does not change even if S is added alone or in combination (including V), and when S is 0.01% or more and less than 0.025%, Ce and Zr are within the scope of the present patent claims as shown in Example 3. Even by adding Ti, even in Nb-added steel with S content of 0.010% or more, the strength, ductility, and n-value anisotropy in the L and C directions can almost completely be eliminated, which is a feature of the present invention. High isotropic ductility is not lost.

以上、本発明成分範囲で溶製した試料の特徴を述べたが
、よく知られるごとく燐Pは周期率表からもわかるよう
に、Siと同族であると同時に鉄中での原子半径が小さ
いこと、固溶強化元素としての効果においても類似は強
く、種々の点で共通の性質をもっている。
Above, we have described the characteristics of the samples melted within the composition range of the present invention.As is well known, phosphorus P is homologous to Si and has a small atomic radius in iron, as can be seen from the periodic table. , they have strong similarities in their effects as solid solution strengthening elements, and have common properties in various respects.

従ってPはSiと置換し添加しうる可能性がある。Therefore, there is a possibility that P can be added to replace Si.

また本発明鋼は固溶強化を基体としていることから、そ
の後冷間圧延、焼鈍を行っても熱間圧延におけるすぐれ
た性質はほとんど失われないことはいうまでもない。
Moreover, since the steel of the present invention is based on solid solution strengthening, it goes without saying that even if it is subsequently cold rolled and annealed, the excellent properties obtained during hot rolling will hardly be lost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋼および従来鋼の均一伸び(ε*)のn
値の関係を示す図表、第2図は同一スラブを用いて組織
(粒径、パーライト分率た9を制御した試料のパーライ
ト分率と延性すなわち全伸び(T.E7)およびn値と
の関係を示す図表、第3図は本発明鋼および従来鋼の真
応力一真歪曲線と2点法(10−15%)で求めたn値
を示す図表、第4図は均一伸び(ε*)とC ,Si,
Mn,Cr添加量との関係を示す図表、第5図は第4図
dに示した本発明ベース鋼における強度、延性特に絞り
値(φ)のCrの添加量との関係を示す図表、第6図は
実施例2における本発明鋼のコイル長手方向の機械的性
質の変化を示す図表、第7図a,b,c,d,e,fは
同一スラブより出発した結晶粒、パーライト分率をコン
トロールした各種試料の顕微鏡写真、第8図イ,口,ハ
はSi,Mn ,Crの1種を同二,ホ,へは、Si*
Cr,Mnの2種をそれぞれ1チ以上添加したときのし
断面顕微鏡組織とEPMA線分析結果とを示す写真、第
9図は本発明鋼のM部(コイル長手の中央部)のL断面
顕微鏡組織写真、第10図は第9図と同じ位置の高倍率
顕微鏡組織写真である。
Figure 1 shows the uniform elongation (ε*) n of the inventive steel and conventional steel.
Figure 2 shows the relationship between pearlite fraction and ductility, that is, total elongation (T.E7), and n value of samples using the same slab and controlling the structure (grain size, pearlite fraction, etc.). Figure 3 is a diagram showing the true stress-true strain curves of the inventive steel and conventional steel and the n value determined by the two-point method (10-15%). Figure 4 is a diagram showing the uniform elongation (ε*). and C, Si,
Figure 5 is a diagram showing the relationship between Mn and the amount of Cr added; Figure 6 is a chart showing changes in mechanical properties in the longitudinal direction of the coil of the steel of the present invention in Example 2, Figure 7 a, b, c, d, e, and f show crystal grains and pearlite fractions starting from the same slab. Fig. 8 Micrographs of various samples with controlled conditions.
Photographs showing the cross-sectional microstructure and EPMA line analysis results when 1 or more of each of the two types of Cr and Mn are added. Figure 9 is an L cross-sectional micrograph of the M section (center of the longitudinal coil) of the steel of the present invention. The structure photograph, FIG. 10, is a high-magnification microscopic structure photograph taken at the same position as FIG. 9.

Claims (1)

【特許請求の範囲】 1 炭 素(C) 0.03〜0.15%珪 素
(Si) 0.7〜2.3%マンガン(Mn)
0.7 〜2.0%硫 黄(S) 0.
01%以下 の範囲においてSi/Mnの成分比が0.6以上1.5
までとし、残余が鉄およびやむを得ない随伴不純物より
なる等方的でかつ高延靭性のSi添加高強度熱間圧延鋼
。 2 炭 素(C) 0.03〜0.15%珪 素
(Si) 0.7〜2.3%マンガン(Mn)
0.7〜2.0%クローム(Cr) 0.
3%未満 硫 黄(S) 0.01%以下 の範囲においてSi/Mnの成分比が0.6以上1.5
までとし、残余が鉄および、やむを得ない随伴不純物よ
りなる等方的でかつ高延靭性のSi添加高強度熱間圧延
鋼。 3 炭 素(C) 0.03〜0.15%珪 素
(Si) 0.7〜2.3%マンガン(Mn)
o.’7 〜2.0%硫 黄(S) 0
.025%未満の範囲においてSi/Mnの成分比が0
.6以上1.5までとし、かつCe/S 1.5 〜
2.0.42>Ti/S>4.5>Zr/S>2なるご
とくCe,Ti或いはZrのいずれか一種以上を添加し
、残余が鉄およびやむを得ない随伴不純物よりなる等方
的でかつ高延靭性のSi添加高強度熱間圧延鋼。 4 炭 素(C) 0.03〜0.15%珪 素
(Si) 0.7〜2.3%マンガン(Mn)
0.7 〜2.0%クローム(Cr) 0
.3%未満 硫 黄(S) 0.01%未満 の範囲においてSi/Mnの成分比が0.6以上1.5
までとし、更にNb,V,Tiの一種もしくは二種を複
合して0.4%以下添加し、残余が鉄およびやむを得な
い随伴不純物よりなる等方的でかつ高延靭性のSi添加
高強度熱間圧延鋼。 5 炭 素(C) 0.03〜0.15%珪 素
( S i ) 0. 7〜2.3%マンガン(
Mn) 0.7 〜2.0%クローム(Cr)
0.3%未満 硫 黄(3) 0.025%未満の範囲におい
てSi/Mnの成分比が0.6以上1.5までとし、か
つCe/S 1.5 〜2.0.42>Ti/S>4
,医≧Zr/S>2なるごとくCe、T i或いはZr
のいずれか一種以上を添加し、残余が鉄およびやむを得
ない随伴不純物よりなる等方的でかつ高延靭性のSi添
加高強度熱間圧延鋼。
[Claims] 1 Carbon (C) 0.03-0.15% Silicon (Si) 0.7-2.3% Manganese (Mn)
0.7-2.0% Sulfur (S) 0.
In the range of 0.01% or less, the Si/Mn component ratio is 0.6 or more and 1.5
Si-added high-strength hot-rolled steel that is isotropic and has high elongation toughness, with the remainder consisting of iron and unavoidable accompanying impurities. 2 Carbon (C) 0.03-0.15% Silicon (Si) 0.7-2.3% Manganese (Mn)
0.7-2.0% chromium (Cr) 0.
Less than 3% Sulfur (S) In the range of 0.01% or less, the Si/Mn component ratio is 0.6 or more and 1.5
Si-added high-strength hot-rolled steel that is isotropic and has high elongation toughness, with the remainder consisting of iron and unavoidable accompanying impurities. 3 Carbon (C) 0.03-0.15% Silicon (Si) 0.7-2.3% Manganese (Mn)
o. '7 ~2.0% Sulfur (S) 0
.. The Si/Mn component ratio is 0 in the range of less than 0.025%.
.. 6 or more and up to 1.5, and Ce/S 1.5 ~
Isotropic and Si-added high strength hot rolled steel with high elongation toughness. 4 Carbon (C) 0.03-0.15% Silicon (Si) 0.7-2.3% Manganese (Mn)
0.7 to 2.0% chromium (Cr) 0
.. Less than 3% Sulfur (S) In the range of less than 0.01%, the Si/Mn component ratio is 0.6 or more and 1.5
In addition, one or two types of Nb, V, and Ti are added in a combined amount of 0.4% or less, and the remainder is iron and unavoidable accompanying impurities. Inter-rolled steel. 5 Carbon (C) 0.03-0.15% Silicon (S i ) 0. 7-2.3% manganese (
Mn) 0.7 to 2.0% chromium (Cr)
Less than 0.3% Sulfur (3) In the range of less than 0.025%, the Si/Mn component ratio is 0.6 to 1.5, and Ce/S 1.5 to 2.0.42>Ti /S>4
, Medical≧Zr/S>2, Ce, T i or Zr
A Si-added high-strength hot-rolled steel which is isotropic and has high elongation toughness, with the remainder being iron and unavoidable accompanying impurities.
JP48065538A 1973-06-11 1973-06-11 Touhou Teki Dekatsukou Engine Seino SI Expired JPS582261B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP48065538A JPS582261B2 (en) 1973-06-11 1973-06-11 Touhou Teki Dekatsukou Engine Seino SI
SE7407542A SE414513B (en) 1973-06-11 1974-06-07 ISOTOP AND HOGHALLFAST STEEL PLATE WITH HIGH SI-CONTENT
DE2427837A DE2427837B2 (en) 1973-06-11 1974-06-08 Use of a high-strength silicon steel
FR7419982A FR2232609B1 (en) 1973-06-11 1974-06-10
GB2579874A GB1441057A (en) 1973-06-11 1974-06-11 High strength steel sheet or plate
BR4792/74A BR7404792D0 (en) 1973-06-11 1974-06-11 STEEL SHEET ISOTROP HIGH RESISTANCE HIGH SILICIO CONTENT WITH HIGH DUCTILITY AND TENACITY IN ALL DIRECTIONS INDEPENDENTLY FROM THE DIRECTION OF LAMINATION
IT23832/74A IT1014941B (en) 1973-06-11 1974-06-11 ISOTROPIC STEEL SHEET WITH HIGH SILICON CONTENT AND HIGH RESISTANCE
US05/632,692 US4043805A (en) 1973-06-11 1975-11-17 Isotropic and high-strength high silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48065538A JPS582261B2 (en) 1973-06-11 1973-06-11 Touhou Teki Dekatsukou Engine Seino SI

Publications (2)

Publication Number Publication Date
JPS5013216A JPS5013216A (en) 1975-02-12
JPS582261B2 true JPS582261B2 (en) 1983-01-14

Family

ID=13289878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48065538A Expired JPS582261B2 (en) 1973-06-11 1973-06-11 Touhou Teki Dekatsukou Engine Seino SI

Country Status (7)

Country Link
JP (1) JPS582261B2 (en)
BR (1) BR7404792D0 (en)
DE (1) DE2427837B2 (en)
FR (1) FR2232609B1 (en)
GB (1) GB1441057A (en)
IT (1) IT1014941B (en)
SE (1) SE414513B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033338A (en) * 1983-08-02 1985-02-20 Nissan Motor Co Ltd Steel to be carburized
JPH0441616A (en) * 1990-06-06 1992-02-12 Nkk Corp Production of low-hardness water-resistant steel excellent in wear resistance and bendability
FR2722773B1 (en) * 1994-07-25 1996-10-04 Rhone Poulenc Chimie USE OF BARIUM SULFIDE OR STRONTIUM SULFIDE FOR REMOVAL OF HEAVY METALS IN INDUSTRIAL SULFURIC SOLUTIONS AND METHOD OF REMOVAL USING SUCH REAGENTS

Also Published As

Publication number Publication date
BR7404792D0 (en) 1975-09-30
SE7407542L (en) 1974-12-12
DE2427837B2 (en) 1979-10-25
SE414513B (en) 1980-08-04
IT1014941B (en) 1977-04-30
FR2232609B1 (en) 1977-03-11
JPS5013216A (en) 1975-02-12
DE2427837A1 (en) 1975-01-23
GB1441057A (en) 1976-06-30
FR2232609A1 (en) 1975-01-03

Similar Documents

Publication Publication Date Title
US20210292862A1 (en) High-strength cold rolled steel sheet with low material non-uniformity and excellent formability, hot dipped galvanized steel sheet, and manufacturing method therefor
KR101638719B1 (en) Galvanized steel sheet and method for manufacturing the same
JP2009545676A (en) High manganese-type high-strength steel sheet with excellent impact characteristics and manufacturing method thereof
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP2022509655A (en) High-strength steel with excellent durability and its manufacturing method
JP5145315B2 (en) Aging-resistant cold-rolled steel sheet with excellent workability and method for producing the same
KR20200011742A (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
JP2023139168A (en) Hot rolled steel sheet and method for producing the same
JP7482231B2 (en) Low carbon, low cost, ultra-high strength multi-phase steel sheet/strip and manufacturing method thereof
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP4867177B2 (en) High tensile hot rolled steel sheet excellent in bake hardenability and formability and method for producing the same
JP2022521604A (en) Ultra-high-strength steel plate with excellent shear workability and its manufacturing method
JP4788291B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent stretch flangeability
WO2006118423A1 (en) Cold rolled steel sheet having superior formability , process for producing the same
KR20090069870A (en) Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
EP3061840B1 (en) High manganese steel sheet having high strength and excellent vibration-proof properties and method for manufacturing same
JPS582261B2 (en) Touhou Teki Dekatsukou Engine Seino SI
US11220731B2 (en) Hot-rolled coated steel sheet with excellent workability and manufacturing method therefor
KR100946064B1 (en) Method for manufacturing high strength cold rolled steel sheets with baking hardening property having excellent strain aging resistance at room temperature
KR100270395B1 (en) The manufacturing method forlow alloy composite structure type high strength cold rolling steel sheet with excellent press workability
JP3236339B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3871722B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent deep drawability
JP4133003B2 (en) High-strength steel sheet with excellent formability and its manufacturing method
RU2810993C1 (en) Dent-resistant cold-rolled steel sheet with excellent dent resistance characteristics, dent-resistant clad steel sheet and method for its manufacture
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same