JPS5822538B2 - Heat treatment method for cobalt-based casting alloys - Google Patents

Heat treatment method for cobalt-based casting alloys

Info

Publication number
JPS5822538B2
JPS5822538B2 JP54021707A JP2170779A JPS5822538B2 JP S5822538 B2 JPS5822538 B2 JP S5822538B2 JP 54021707 A JP54021707 A JP 54021707A JP 2170779 A JP2170779 A JP 2170779A JP S5822538 B2 JPS5822538 B2 JP S5822538B2
Authority
JP
Japan
Prior art keywords
heat treatment
cobalt
less
hardness
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54021707A
Other languages
Japanese (ja)
Other versions
JPS55113864A (en
Inventor
杉谷純一
村上震一
土田公司
平石久志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP54021707A priority Critical patent/JPS5822538B2/en
Publication of JPS55113864A publication Critical patent/JPS55113864A/en
Publication of JPS5822538B2 publication Critical patent/JPS5822538B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】 本発明はコバルト基鋳造合金の高温耐破損性を改善する
熱処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment method for improving the high temperature fracture resistance of cobalt-based cast alloys.

CoベースにC,W、Cr等の元素を添加してなるコバ
ルト基鋳造合金は、常温・高温にて優れた硬度と圧縮強
度を有し、特に高温での耐損耗・耐変形性には優れてい
るため高温用型鋼工具類等には盛んに使用されている現
状にある。
Cobalt-based cast alloys, which are made by adding elements such as C, W, and Cr to a Co-base, have excellent hardness and compressive strength at room and high temperatures, and are especially excellent in wear and deformation resistance at high temperatures. Therefore, it is currently widely used in high-temperature type steel tools.

このようにコバルト基鋳造合金は、高温での硬度と圧縮
強さが高く耐損耗・耐変形性に優れた特性を有するもの
であるが、半面高温(700〜800°C)においても
その延性が極めて低いものであり、このため従来この種
合金ではその使用中に割れを多発するという欠点がみら
れた。
In this way, cobalt-based cast alloys have high hardness and compressive strength at high temperatures, and excellent wear and deformation resistance, but on the other hand, their ductility is low even at high temperatures (700 to 800°C). This is extremely low, and for this reason, conventional alloys of this type have had the disadvantage of frequently cracking during use.

このコバルト基鋳造合金をその結晶組織の面からみると
、高温圧縮強さを向上させるためには鋳造品の顕微鏡組
織を微細化することが効果的であるが、この場合同時に
鋳造品の変形能をより低下させるものとなり、わずかな
熱的・機械的衝撃により破損し易いものとなり、又鋳造
品の顕微鏡組織を粗くすることは多少鋳造品の変形能向
上に寄与するが、この場合同時にその高温圧縮強さが低
下するため却って破損し易いものとなり、結局例れにし
ても単に結晶組織を調整するだけでは割れの問題を解消
できないのである。
Looking at this cobalt-based cast alloy from the aspect of its crystal structure, it is effective to refine the microstructure of the cast product in order to improve its high-temperature compressive strength, but at the same time, it is effective to refine the microstructure of the cast product. However, making the microstructure of the cast product rougher contributes to improving the deformability of the cast product to some extent, but at the same time, the high temperature Since the compressive strength decreases, it becomes more prone to breakage, and in the end, the problem of cracking cannot be solved simply by adjusting the crystal structure.

そこで、この割れを起す主たる原因についてみると、コ
バルト基鋳造合金の組織中にはC−Cr系及びC−W−
Co系の炭化物が多量に存在しており、この炭化物が硬
くて脆く、その形状が角状であり、しかもそれが方向性
又はネット状の分布状態に存在しているためと考えられ
る。
Therefore, when we look at the main cause of this cracking, we find that the structure of the cobalt-based cast alloy contains C-Cr and C-W-
This is believed to be because a large amount of Co-based carbide is present, and this carbide is hard and brittle, has an angular shape, and is distributed in a directional or net-like manner.

而して、この特殊な分布状態で粗大に析出した炭化物を
分断微細化し、応力集中を起し易い角状の炭化物を球状
化し、併せて炭化物と炭化物との間に存在するオーステ
ナイト基地の硬度を下げるコトニヨッテ、コバルト基鋳
造合金には、その微細な顕微鏡組織が具備するところの
高い高温圧縮強さを低下させることなく延性を向北させ
ることができ、これによって割れ発生の問題を解消でき
るものとなるのである。
In this way, the coarsely precipitated carbides in this special distribution state are divided and refined, the angular carbides that tend to cause stress concentration are made spheroidal, and the hardness of the austenite matrix that exists between the carbides is reduced. It is believed that the ductility of cobalt-based casting alloys can be improved without reducing the high-temperature compressive strength possessed by their fine microstructures, thereby eliminating the problem of cracking. It will become.

本発明は、割れ対策に有効となるこのような組織の改良
を熱処理によって達成することに成功したものであり、
本発明の熱処理法は、C:1.5〜3.0%、Si:1
.0%以下、Mn : 1.0%以下、Cr:25〜3
5%、W:8〜17%、Fe:3.0%以下、P、S:
0.03係以丁、Ni:1.0%以下、残部実質的にC
oよりなる鋳造合金を、1150〜12000Gに4〜
30時間加熱保持しそのオーステナイト基地の硬度をH
v500以下にすることを特徴とするものである。
The present invention has succeeded in achieving such structural improvement through heat treatment, which is effective in preventing cracks.
The heat treatment method of the present invention includes C: 1.5 to 3.0%, Si: 1
.. 0% or less, Mn: 1.0% or less, Cr: 25-3
5%, W: 8-17%, Fe: 3.0% or less, P, S:
0.03%, Ni: 1.0% or less, remainder substantially C
4 to 1150 to 12000G
After heating and holding for 30 hours, the hardness of the austenite base was H.
It is characterized by having v500 or less.

尚この種コバルト基鋳造合金においても、従来よりその
歪取り焼純の目的で熱処理を施すものとなっていたが、
これは本発明によるものと処理条件を異にするは勿論の
こと、全くその趣旨を別異とするものである。
This type of cobalt-based casting alloy has traditionally been heat treated for the purpose of strain relief and sintering.
This is not only different in processing conditions from the one according to the present invention, but also completely different in purpose.

以下本発明を詳述するに当り、先ず本発明がその対象と
するコバルト基鋳造合金の成分範囲限定理由について説
明する。
In describing the present invention in detail below, the reason for limiting the range of components of the cobalt-based casting alloy to which the present invention is directed will first be explained.

C:1.5〜3.0% Cは組織中に各種の炭化物を生出するものであるが、1
.5係以下で炭化物量が少なく硬度が不足し、耐損耗・
耐変形性が劣化することになる。
C: 1.5-3.0% C produces various carbides in the structure, but 1
.. If the ratio is lower than 5, the amount of carbide is small and hardness is insufficient, and wear resistance and
Deformation resistance will deteriorate.

一方、C3,01以上では炭化物が多量に生出し過ぎる
ため、鋳造品の脆化が顕著となる。
On the other hand, at C3.01 or higher, too many carbides are produced, and the cast product becomes noticeably brittle.

尚伸びが良く高硬度を有する鋳造品を得るための望まし
い範囲としては、C1,9〜2.5%である。
The desirable range for obtaining a cast product with good elongation and high hardness is C1.9 to 2.5%.

Si:1.0%以下 Siは溶湯の脱酸剤として、又制酸化性の改善に有効で
鋳造性も良くする元素であるが、高温強度を低下させる
ために1.0%以下とする。
Si: 1.0% or less Si is an element that acts as a deoxidizing agent for molten metal, is effective in improving antioxidation properties, and improves castability, but is kept at 1.0% or less in order to reduce high-temperature strength.

Mn : 1.0係以下 Mnは鋳造性を改善し、脱酸剤としても有効な元素であ
るが、高温強度を低下させるため1.0%以下とする。
Mn: 1.0% or less Mn is an element that improves castability and is effective as a deoxidizing agent, but it is kept at 1.0% or less because it reduces high temperature strength.

Cr : 25〜35% Crは25%未満では高温での耐酸化性が不足し、又C
r系炭化物の晶出及び析出量が少なく硬度も不足して好
ましくない。
Cr: 25-35% If Cr is less than 25%, oxidation resistance at high temperatures is insufficient, and Cr
It is not preferable because the amount of r-based carbide crystallized and precipitated is small and the hardness is insufficient.

一方、35係を越えた場合ではCr系炭化物が多過ぎて
、それによる脆化が顕著となる。
On the other hand, when the ratio exceeds 35, there are too many Cr-based carbides, and the resulting embrittlement becomes noticeable.

W:8〜17% Wが8%未満ではW系炭化物の晶出量が少なく硬度が不
足することになる。
W: 8 to 17% If W is less than 8%, the amount of W-based carbides crystallized will be small, resulting in insufficient hardness.

一方、逆に17fbを越えると、W系炭化物の晶出量が
多過ぎて脆化が著しく、同時に鋳造も困難となる。
On the other hand, if it exceeds 17 fb, the amount of W-based carbides crystallized is too large, resulting in significant embrittlement and at the same time making casting difficult.

Wの望ましい範囲としては9〜14φである。The desirable range of W is 9 to 14φ.

Fe:3.0%以下、P、S:0.03fb以下、Ni
:□ 1.0φ以下 これらの元素は通常の不純物として取扱われるもので少
ない程望ましい。
Fe: 3.0% or less, P, S: 0.03fb or less, Ni
:□ 1.0φ or less These elements are treated as normal impurities, and the smaller the amount, the better.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

下記第2表は、一例として第1表にその化学組成を記載
するコバルト基鋳造合金について種々の処理条件で熱処
理を施し、その常温並びに高温での機械的性質を測定し
たものである。
Table 2 below shows, as an example, the cobalt-based cast alloys whose chemical compositions are listed in Table 1, which were heat-treated under various treatment conditions, and their mechanical properties at room temperature and high temperature were measured.

第2表について説明すると1,461は熱処理を施さな
い鋳放し状態のものを示し、/462は従来から一般に
実施されている応力除去、歪取りを目的とする熱処理で
ある。
To explain Table 2, 1,461 indicates the as-cast condition without heat treatment, and /462 indicates heat treatment for the purpose of stress relief and strain relief, which has been conventionally generally performed.

そこで、この/16.2の熱処理による場合を基準にす
ると、43 、A4の1100°Cで熱処理した場合で
は、伸びが0.1%とわずかに増加するだけで左程大き
な改良効果は認められない。
Therefore, based on the case of heat treatment of /16.2, in the case of heat treatment of 43 and A4 at 1100°C, the elongation increased by only 0.1%, but the improvement effect was not as large as that on the left. do not have.

これに対し、本発明の実施例に該当する扁6、扁7の1
150°C乃至1200°Cの温度で熱処理した場合で
は、全体の硬度HRC(ロックウェル硬度)は若干低下
するも伸びの増加には著しいものがあり、同時に又引張
強さも増大している6然し、熱処理温度が1200’C
を越える篤8の場合では、伸びが大巾に増大するものの
、全体の硬度HRCの低下が著しく高温時における耐損
耗・耐変形性が劣化するものと考えられる。
In contrast, 1 of flat plate 6 and flat plate 7 corresponding to the embodiment of the present invention
In the case of heat treatment at a temperature of 150°C to 1200°C, although the overall hardness HRC (Rockwell hardness) slightly decreases, there is a significant increase in elongation, and at the same time, the tensile strength also increases6. , heat treatment temperature is 1200'C
In the case of grade 8, which exceeds 8, although the elongation greatly increases, the overall hardness HRC decreases significantly, and it is considered that the wear resistance and deformation resistance at high temperatures deteriorate.

即ち、熱処理温度の上昇に伴い炭化物と炭化物との間に
存在するオーステナイト基地の硬度Hv(ビッカース硬
度)が低下しその延性改良効果によって全体の伸びが増
加するのであり、特に扁6゜/16.7 、.468の
場合に示す如くオーステナイト基地のビッカース硬度が
500以下のものであると、伸びの増加は顕著にみられ
るのであるが、熱処理温度が余り高<1200°Cを越
えた場合では、全体の硬度HRCの低下が顕著となり本
来の特性を阻害するものとなるのである。
That is, as the heat treatment temperature increases, the hardness Hv (Vickers hardness) of the austenite base existing between the carbides decreases, and the overall elongation increases due to the ductility improvement effect. 7. As shown in the case of No. 468, when the Vickers hardness of the austenite base is less than 500, an increase in elongation is noticeable, but when the heat treatment temperature is too high and exceeds 1200°C, the overall hardness decreases. The decrease in HRC becomes significant and the original characteristics are impaired.

従って、本発明ではコバルト基鋳造合金の優れた硬度を
低下させることなく、その延性即ち伸びを改良する熱処
理の温度範囲として1150〜1200°Cを特定する
ものである。
Therefore, the present invention specifies a temperature range of 1150 DEG to 1200 DEG C. for heat treatment to improve the ductility or elongation of the cobalt-based cast alloy without reducing its excellent hardness.

尚この熱処理温度範囲にあっても、/I65の場合のよ
うに例えば熱処理時間が3hrと短いものでは、その効
果が不充分であり、熱処理時間は最低4hr以上を要す
る。
Even within this heat treatment temperature range, if the heat treatment time is as short as 3 hr, as in the case of /I65, the effect is insufficient, and the heat treatment time must be at least 4 hr.

しかし熱処理時間は余り長過ぎても好ましくなく、実質
的には30hrの加熱保持が限度である。
However, it is not preferable if the heat treatment time is too long, and the practical limit is 30 hours of heat treatment.

すなわち、かかる長時間を超えて熱処理してもそれ以上
の有益な組織改善効果は得られず、むしろ硬度低下が著
しくなるためである。
That is, even if heat treatment is performed for a longer period of time than this, no further beneficial effect of improving the structure can be obtained, but rather a significant decrease in hardness occurs.

このような本発明の熱処理法を、コバルト基鋳造合金に
対する具体的な組織の改良の面から見ると、第1図乃至
第4図の顕微鏡写真は1例として下記第3表に示す化学
組成のものについての改良を示している。
When looking at the heat treatment method of the present invention from the perspective of improving the specific structure of cobalt-based cast alloys, the micrographs shown in Figures 1 to 4 are examples of the chemical composition shown in Table 3 below. It shows improvements in things.

即ち第2図は、熱処理前には主として柱状晶組織つまり
炭化物が方向性を有し細長く直線状に分布している第1
図の組織から、1200 ’CX4hr→炉冷の熱処理
によりその炭化物を分断し且つ粒状化させた組織を示し
、第4図は、熱処理前には主として粒状晶組織つまり炭
化物がネット状に分布している第3図の組織から、同じ
<1200°CX4h、r→炉冷の熱処理によりその炭
化物を均一に且つ粒状化させた組織を示すものである。
In other words, FIG. 2 shows that before heat treatment, there is mainly a columnar crystal structure, that is, a first columnar crystal structure in which carbides have directionality and are distributed in elongated and straight lines.
The structure shown in the figure shows a structure in which the carbide is divided and granularized by heat treatment of 1200'CX4hr→furnace cooling.Figure 4 shows that before the heat treatment, the granular crystal structure, that is, the carbide is mainly distributed in a net shape. This shows a structure in which the carbides were made uniform and granular by the same heat treatment of <1200° CX4h, r→furnace cooling from the structure shown in FIG.

このように本発明の熱処理法によれは、コバルト基鋳造
合金の組織中に特殊な分布状態で和犬に析出した炭化物
を分断微細化し且つ救状化させることができる。
As described above, according to the heat treatment method of the present invention, carbides precipitated in a special distribution state in the structure of a cobalt-based cast alloy can be divided into fine particles and brought into relief.

以上説明したように、本発明の熱処理法はコバルト基鋳
造合金に1150〜1200°Cの極めて高温で特定時
間熱処理を施すことにより、その組織中の炭化物を均一
に分散し且つ粒状化させ、炭化物を起点とする割れ発生
を防止することができ、同時に又炭化物と炭化物との間
に存在するオーステナイト基地の硬度Hvを500以下
の延性に富むものに改良させ、これによって一層の割れ
防止及び割れ伝播の防止のできるものとされたのである
As explained above, the heat treatment method of the present invention heat-treats a cobalt-based cast alloy at an extremely high temperature of 1150 to 1200°C for a specific period of time, thereby uniformly dispersing and granulating carbides in the structure. At the same time, the hardness of the austenite base existing between carbides is improved to less than 500, which is highly ductile, thereby further preventing cracks and crack propagation. It was decided that it would be possible to prevent this.

従って、本発明によれば、コバルト基鋳造合金の優れた
高温での耐損耗・而」変形性を損うことなく、その割れ
発生の問題を効果的に角イ消し得るものとなるのである
Therefore, according to the present invention, the problem of cracking can be effectively eliminated without impairing the excellent high-temperature wear resistance and deformability of cobalt-based casting alloys.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図はコバルト基鋳造合金の組織を示す顕
微鏡写真であり、第1図、第3図は熱処理前のものを示
し、第2図、第4図は熱処理後のものを示す。
Figures 1 to 4 are micrographs showing the structure of the cobalt-based cast alloy, with Figures 1 and 3 showing the structure before heat treatment, and Figures 2 and 4 showing the structure after heat treatment. .

Claims (1)

【特許請求の範囲】[Claims] I C:1.5〜3.0%、Si:1.0%以下、M
n:1.0%以下、Cr : 25〜35% 、W:
8〜17%、Fe:3.0%以下、P、S:0.03
%以下、Ni:1.0%以下、残部実質的にCoよりな
る鋳造合金を、1150〜12000Cに4〜30時間
加熱保持しそのオーステナイト基地の硬度をHv500
以下にすることを特徴とするコバルト基鋳造合金の熱処
理法。
IC: 1.5-3.0%, Si: 1.0% or less, M
n: 1.0% or less, Cr: 25-35%, W:
8-17%, Fe: 3.0% or less, P, S: 0.03
% or less, Ni: 1.0% or less, and the remainder substantially Co, is heated and held at 1150 to 12000 C for 4 to 30 hours to reduce the hardness of the austenite base to Hv500.
A method for heat treating a cobalt-based casting alloy, characterized by:
JP54021707A 1979-02-24 1979-02-24 Heat treatment method for cobalt-based casting alloys Expired JPS5822538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54021707A JPS5822538B2 (en) 1979-02-24 1979-02-24 Heat treatment method for cobalt-based casting alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54021707A JPS5822538B2 (en) 1979-02-24 1979-02-24 Heat treatment method for cobalt-based casting alloys

Publications (2)

Publication Number Publication Date
JPS55113864A JPS55113864A (en) 1980-09-02
JPS5822538B2 true JPS5822538B2 (en) 1983-05-10

Family

ID=12062520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54021707A Expired JPS5822538B2 (en) 1979-02-24 1979-02-24 Heat treatment method for cobalt-based casting alloys

Country Status (1)

Country Link
JP (1) JPS5822538B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120468A (en) * 1974-03-08 1975-09-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50120468A (en) * 1974-03-08 1975-09-20

Also Published As

Publication number Publication date
JPS55113864A (en) 1980-09-02

Similar Documents

Publication Publication Date Title
CN103114245B (en) A kind of abrasion-proof backing block and preparation method thereof
CN105568151A (en) Aluminum-strengthened maraging steel and preparing method thereof
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPS59200743A (en) Sintered alloy steel
JP3217661B2 (en) High strength ductile cast iron
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP2652449B2 (en) Cast iron and its modification method
US2416515A (en) High temperature alloy steel and articles made therefrom
JPS5822538B2 (en) Heat treatment method for cobalt-based casting alloys
JP2879930B2 (en) Free-cutting stainless steel for molds with excellent rust resistance
JP2870156B2 (en) Coil spring and manufacturing method thereof
JPH07278651A (en) Forging method of tough composite roll material
JP3428576B2 (en) Roll for hot rolling
JP3760535B2 (en) Roughened grain-hardened case-hardened steel, surface-hardened parts excellent in strength and toughness, and method for producing the same
US2974035A (en) Nodular graphite steel
JP2929680B2 (en) Coil spring and manufacturing method thereof
JP2003183766A (en) Tool material for hot working
WO2022210125A1 (en) Steel wire for mechanical structural component and manufacturing method therefor
JPS62120453A (en) Ni-metal material for nitriding
JP3188625B2 (en) B-containing austenitic stainless steel excellent in hot workability and method for producing the same
JP2745647B2 (en) Method for producing high-temperature wear-resistant Co-based alloy with excellent hot workability
JPS5871353A (en) High-strength ni-resist cast iron
JPS58107464A (en) Mold material for precipitation hardening type continuous casting
JP3482349B2 (en) Hot working tool materials
JPH0598392A (en) Wear resistant and thermal cracking resistant roll material for hot rolling