JPS58221305A - Burner - Google Patents
BurnerInfo
- Publication number
- JPS58221305A JPS58221305A JP10490982A JP10490982A JPS58221305A JP S58221305 A JPS58221305 A JP S58221305A JP 10490982 A JP10490982 A JP 10490982A JP 10490982 A JP10490982 A JP 10490982A JP S58221305 A JPS58221305 A JP S58221305A
- Authority
- JP
- Japan
- Prior art keywords
- air
- flame
- port
- chamber
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/26—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid with provision for a retention flame
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は給湯器や暖房器などの家庭用燃焼器具のうち、
ファンなどを用いた強制燃焼を行なわせ火炎長を短くし
て燃焼室を小さくし燃焼部の小型化を図った燃焼装置に
関するものである。[Detailed Description of the Invention] The present invention applies to household combustion appliances such as water heaters and space heaters.
This invention relates to a combustion device that uses a fan or the like to perform forced combustion to shorten the flame length, thereby reducing the size of the combustion chamber and reducing the size of the combustion section.
従来、この種の燃焼装置の一例としては第6図に示すよ
うな構成をもったものがある。この装置の構成は左右対
称の一対の成形体11oを接合して形成される空間に、
混合気通路111.絞り部先端に二次空気口112をも
つ二次空気室113および前記二次空気室1130両側
に炎口部114を一体成形したバーナ素子115を挿入
して前記バーナ素子115と成形体110で仕切られた
2つの空間がそれぞれ混合気室116および燃焼室11
7を構成するようにしてなる燃焼装置である。Conventionally, one example of this type of combustion apparatus has a configuration as shown in FIG. The configuration of this device is such that in a space formed by joining a pair of bilaterally symmetric molded bodies 11o,
Mixture passage 111. A secondary air chamber 113 having a secondary air port 112 at the tip of the constriction portion and a burner element 115 having a burner port 114 integrally molded on both sides of the secondary air chamber 1130 are inserted and partitioned by the burner element 115 and the molded body 110. The two spaces are the mixture chamber 116 and the combustion chamber 11, respectively.
7.
このような構成において、混合気は混合気通路111を
通って混合気室116に流出し、バーナ素子116と成
形体11Qの隙間を通り炎口部114に達する。炎口部
114を通過した混合気は、炎口部114上で図に示す
よう々火炎を形成する。一方二次空気は、二次空気室1
13より絞り部を通り、先端部に設けられた二次空気口
112より噴出し、前記火炎に強制供給される。In such a configuration, the mixture flows out into the mixture chamber 116 through the mixture passage 111, passes through the gap between the burner element 116 and the molded body 11Q, and reaches the flame port 114. The air-fuel mixture that has passed through the flame port 114 forms a flame on the flame port 114 as shown in the figure. On the other hand, the secondary air is
13, passes through the constriction part, is ejected from the secondary air port 112 provided at the tip, and is forcibly supplied to the flame.
この様な装置では下流に伸長する主にH2やCOなとの
未燃成分による拡散炎の火炎長を短くするために、二次
空気口112がら供給される二次空気の噴出速度は比較
的大きく設計され、未燃成分との混合を促進して短炎化
が図られている。ここで二次空気の噴出速度を大きくす
れば、二次空気口112近傍の炎口部114上に形成さ
れている、火炎の安定性に大きな影響を及ばず火炎基部
が乱される。すなわち形成される火炎は非定常火炎とな
り火炎帯が破れたり、消炎を発生したりして不完全燃焼
を生じてしまう0従って通常はこの対策として一次空気
比(−燃料と混合する一次空気量/ア11論空気量)を
大きめ(燃料過濃側の可燃限界以」二)に設定し、−次
空気比に比例した燃焼速度を−にげ、火炎基部に安定1
〜た予混含炭を作るように設計されている。しかし−次
空気比を大きく設定して火炎基部の安定化を図ることは
、燃焼速度が太きくなり火炎が炎口に近づくため炎口部
114の赤熱や異音の発生する振動燃焼が生じ易くなる
危険がおる。従って短炎化による燃焼室の小型化は実現
されるが一次空気比、即ち送風量の許容変動範囲は狭く
なる〇
一方、他の従来例として液体燃料のポット式燃焼装置と
して第6図に示す構成をもりた装置、5.Eある。この
装置の構成は、中央に加熱室118をもち、径の異なる
多数の穴を設けられた燃焼宙制御体119が、燃料パイ
プ120を接続された71fツト121内に挿入されて
気化室122と混合室123を構成し、さらにその外周
には71ン124f:接続されたケース126によって
空気通路126を構成している0このような構成におい
て、燃焼用空気はファン124により空気通路126を
3市りて気化室122と混合室123に供給され、一方
燃料は燃料パイプ120を通りボット121内に供給さ
れる。気化室122内で気化した燃料は。In such a device, the ejection speed of the secondary air supplied from the secondary air port 112 is relatively low in order to shorten the flame length of the diffusion flame caused by unburned components such as H2 and CO that extend downstream. It is designed to be large, promoting mixing with unburned components and shortening the flame. If the ejection speed of the secondary air is increased here, the flame base formed on the flame port 114 in the vicinity of the secondary air port 112 will be disturbed without significantly affecting the stability of the flame. In other words, the flame that is formed becomes an unsteady flame, causing the flame band to break or the flame to go out, resulting in incomplete combustion. Therefore, as a countermeasure against this, the primary air ratio (- amount of primary air mixed with fuel/ A11 The theoretical air amount) is set to a large value (below the flammable limit on the rich fuel side), the combustion speed proportional to the -air ratio is reduced, and the flame base is stabilized.
~ Designed to make pre-mixed coal. However, setting a large negative air ratio to stabilize the flame base increases the combustion speed and brings the flame closer to the flame nozzle, which tends to cause vibratory combustion that causes red heat at the flame nozzle 114 and abnormal noise. There is a danger that Therefore, the combustion chamber can be made smaller by shortening the flame, but the permissible fluctuation range of the primary air ratio, that is, the amount of air blown, becomes narrower.On the other hand, as another conventional example, a pot-type combustion device for liquid fuel is shown in Fig. 6. A device having the configuration shown, 5. There is E. The configuration of this device includes a heating chamber 118 in the center and a combustion space control body 119 provided with a number of holes of different diameters, which is inserted into a 71ft trunk 121 to which a fuel pipe 120 is connected. A mixing chamber 123 is formed, and an air passage 126 is formed by a connected case 126. In this configuration, combustion air is distributed between three air passages 126 by a fan 124. The fuel is supplied to the vaporizing chamber 122 and the mixing chamber 123 through the fuel pipe 120, while the fuel is supplied into the bot 121 through the fuel pipe 120. The fuel vaporized in the vaporization chamber 122.
−邪気化室122内で拡散炎aを形成して燃料の蒸発を
促進(−1残りは混合室123と加熱室118に入る0
混合室123内では空気と気化燃料力(再混合し、加熱
室118内に予混含炭すを形成してここを通過する気化
燃料をさらに熱分解してその上方に拡散#ICを形成す
る0
このような燃焼装置では気化燃料と空気が段階的に混合
して火炎を形成するので安定な燃焼75;得られ、又送
風量が変動してもa、b、cの火炎長が変化するだけで
あり送風量の許容変動範囲は広い。しかし一方火炎Cは
拡散炎であり、分子拡散によって周囲の酸素が供給され
るため火炎は長伸し、従って燃焼室、を小型にすること
はできない。- Promote evaporation of fuel by forming a diffusion flame a in the evil vaporization chamber 122 (-1 The remainder enters the mixing chamber 123 and heating chamber 118.
In the mixing chamber 123, the air and vaporized fuel are remixed to form a premixed carbon-containing carbon in the heating chamber 118, and the vaporized fuel passing through this is further thermally decomposed to form a diffusion #IC above it. 0 In such a combustion device, vaporized fuel and air are mixed in stages to form a flame, resulting in stable combustion75; and even if the air flow rate changes, the flame lengths of a, b, and c change. However, since flame C is a diffusion flame, the surrounding oxygen is supplied by molecular diffusion, so the flame elongates, and therefore the combustion chamber cannot be made smaller. .
以上説明したように、これら従来の燃焼装置では短炎化
による燃焼装置の小型化と、燃焼制御の際に必要な送風
量の許容変動範囲の拡大を同時に実現するものではなか
った。As explained above, in these conventional combustion devices, it has not been possible to simultaneously reduce the size of the combustion device by shortening the flame and expand the permissible variation range of the air flow required for combustion control.
本発明はこれら従来の欠点全解消し、短炎化による燃焼
装置の小型化と、送風量の許容変動範囲の拡大による燃
焼制御の簡単化および燃焼量可変範囲(以後TDRと言
う)の拡大を図ること全目的と゛する。L、
この目的を達成するために本発明では、多数の炎口を並
べてなる炎口部の両側に補助空気室を備え、炎口部近傍
には炎口より流出する混合気とほぼ平行に空気を噴出す
るように構成された補助空気口を補助空気室に連通して
設けるとともに、炎口部の下流側には空気室を炎口部の
両側に備え。The present invention eliminates all of these conventional drawbacks, and achieves miniaturization of the combustion device by shortening the flame, simplification of combustion control by expanding the permissible variation range of the air flow rate, and expansion of the combustion rate variable range (hereinafter referred to as TDR). The whole purpose is to achieve this goal. L. In order to achieve this objective, the present invention provides auxiliary air chambers on both sides of a burner port formed by arranging a large number of burner ports, and provides air in the vicinity of the burner port almost parallel to the air-fuel mixture flowing out from the burner port. An auxiliary air port configured to eject air is provided in communication with the auxiliary air chamber, and air chambers are provided on both sides of the burner port on the downstream side of the burner port.
混合気の噴出方向に対し空気を傾斜して噴射するように
空気口を空気室に連通して設け、力1つ補J1JJ空気
口の空気噴出速度と空気流量を空気口の空気噴出速度と
空気量よりも小さくしたものであるOこの構成によって
炎口部両tll11の補助空気口力)らの空気流は低速
でかつ混合気流に対しは1平?1であるので、形成され
る火炎基部を乱きず、−次空気比が大きな火炎ではそれ
自体の安定性をさらに増し、低い火炎でも十分な量の空
気が低速で供給されるので十分拡散混合した小火炎が保
炎として炎口部近傍に形成されることになり、火炎基部
の安定化が増し火炎全体の安定化につながり、また下流
側では高速の傾斜空気噴流により、拡散炎中に強制的な
空気。供給と強制混合がおこなわれるため燃焼反応が促
進され火炎は短くなる0また高速の空気流は下流側に傾
斜して噴出されるため上流側の火炎基部を乱すこともな
い。An air port is provided in communication with the air chamber so as to inject air at an angle with respect to the direction in which the air-fuel mixture is ejected. Due to this configuration, the air flow from the auxiliary air ports of both tll11 of the flame port is at a low speed and is equal to the air mixture flow. 1, it does not disturb the flame base that is formed, further increases the stability of the flame with a large -order air ratio, and even with a low flame, a sufficient amount of air is supplied at a low speed to ensure sufficient diffusion and mixing. Small flames are formed near the flame opening as flame holding, which increases the stability of the flame base and leads to the stabilization of the entire flame.Furthermore, on the downstream side, a high-speed inclined air jet forces the diffusion flame to form. atmosphere. Since the supply and forced mixing are performed, the combustion reaction is promoted and the flame is shortened. Also, since the high-speed air flow is ejected at an angle to the downstream side, it does not disturb the flame base on the upstream side.
以下本発明の一実施例](りいて第1図〜第4図に基づ
いて説明する0
第1図〜第3図において、1は燃焼用空気を供給するフ
ァンで、吐出口には開口面積比に応じて3種類の二次空
気と1種類の一次空気に空気を分割するための分割板2
f:介してバーナ本体3に接続されている。分割板2の
上流側には制御弁4を途中にもった燃料管6とその先端
にノズル6が設けられている。バーナ本体3は左右対称
の成形体7と中央部に挿入されている通路ft l?と
がら成る。Embodiment of the present invention] (This will be explained below based on FIGS. 1 to 4.) In FIGS. 1 to 3, 1 is a fan that supplies combustion air, and the outlet has an opening area. Dividing plate 2 for dividing air into three types of secondary air and one type of primary air according to the ratio
f: Connected to the burner body 3 via. On the upstream side of the dividing plate 2, there is provided a fuel pipe 6 with a control valve 4 in the middle, and a nozzle 6 at the tip thereof. The burner body 3 has a symmetrical molded body 7 and a passage inserted in the center. Consists of spikes.
成形体7には両側に多数のスリット状の炎口9より成る
炎口部1oと、炎口部近傍に多数の補助空気口11を備
えた補助空気室12と、炎口部1゜の下流側には傾面に
多数の空気口14を備えた空気室16が設けられ、かつ
補助空気室12と空気室16は絞り口16により互いに
連通している。The molded body 7 includes a flame port 1o consisting of a large number of slit-shaped flame ports 9 on both sides, an auxiliary air chamber 12 equipped with a large number of auxiliary air ports 11 near the flame port, and a flame port 1o downstream of the flame port 1°. An air chamber 16 having a number of air ports 14 on its inclined surface is provided on the side, and the auxiliary air chamber 12 and the air chamber 16 communicate with each other through the throttle port 16 .
一方通路2体8には仕切壁で仕切られた混合気室17と
、先端に絞り部18をもり空気室19と、絞り部両側に
絞り口20で連通した補助空気室21がけられている。On the other hand, the two passages 8 are provided with a mixture chamber 17 partitioned by a partition wall, an air chamber 19 having a constriction part 18 at its tip, and an auxiliary air chamber 21 communicating with the constriction part through a constriction port 20 on both sides of the constriction part.
通路体8は成形体T内に挿入されており1通路体80両
側には隙間26を構成する。The passage body 8 is inserted into the molded body T, and gaps 26 are formed on both sides of the passage body 80.
なお通路体8は補助空気室21の外壁に設けられた段部
により炎口部10を介し両側より成形体7に支持されて
いる。バーナ本体3の下流側には燃焼室26とその下流
側に多数のフィンを持った熱交換器27および排気フー
ド28と排気口29が接続されている。また燃焼室26
の一部外壁には水管30が設けられ、熱交換器2了に接
続されている。Note that the passage body 8 is supported by the molded body 7 from both sides via the flame port 10 by a stepped portion provided on the outer wall of the auxiliary air chamber 21. A combustion chamber 26 is connected to the downstream side of the burner body 3, and a heat exchanger 27 having a large number of fins, an exhaust hood 28, and an exhaust port 29 are connected to the downstream side of the combustion chamber 26. Also, the combustion chamber 26
A water pipe 30 is provided on a part of the outer wall of the tank, and is connected to a heat exchanger 2.
次に上記の構成に膠ける作用を説明すると、ファン1に
より供給された燃焼用空気は1分割板2によって通路体
8の混合室17内に供給される・−次空気と、空気室1
9内に供給される二次空気と。Next, to explain the effect of the above configuration, the combustion air supplied by the fan 1 is supplied into the mixing chamber 17 of the passage body 8 by the one-part plate 2.
With secondary air supplied within 9.
成形体7の左右の空気室16内に供給される二次空気に
分割される。一方燃料は制御弁4で所定の流量に設定さ
れ、燃料管5を通って先端のノズル6より噴射供給され
て、−次空気と共に混合室17内に入る。混合室17内
で・−次空気と燃料は混合しながら通路体8内を流れ、
両側の流出口24より混合気となって隙間26に流れ、
さらに隙間26を通る間に均一分配され炎口部1oに向
かい、炎口9より燃焼室26内に流出する。空気室19
内に入った二次空気は一部が絞り口20で流量を適当に
制御され、補助空気室20に流入し、さらに減速されて
補助空気口23より炎口9の近傍に低速で流出して混合
気と拡散混合し、第3図に示す如く炎口9端部に安定し
た小火炎Aを形成する。The secondary air is divided into secondary air supplied into the left and right air chambers 16 of the molded body 7. On the other hand, the fuel is set at a predetermined flow rate by the control valve 4, is injected and supplied from the nozzle 6 at the tip through the fuel pipe 5, and enters the mixing chamber 17 together with the secondary air. Inside the mixing chamber 17, the air and fuel flow through the passage body 8 while mixing.
The air-fuel mixture flows from the outlet ports 24 on both sides to the gap 26,
Furthermore, while passing through the gap 26, it is uniformly distributed, heads toward the flame port 1o, and flows out from the flame port 9 into the combustion chamber 26. Air chamber 19
Part of the secondary air that has entered the chamber is appropriately controlled in flow rate by the throttle port 20, flows into the auxiliary air chamber 20, is further decelerated, and flows out at low speed from the auxiliary air port 23 to the vicinity of the flame port 9. It diffuses and mixes with the air-fuel mixture, forming a stable small flame A at the end of the flame port 9 as shown in FIG.
残りの大部分は絞り部18で流速を増し空気口22から
両側に形成される火炎Bに向かって下流方向に傾射して
噴射供給され、強制混合して燃焼反応を促進する。同様
にして成形体7の両側の空気室16に入った二次空気も
一部が絞り口16゜補助空気室12.補助空気口へと流
出し火炎の安定化に使用され、残りの大部分は空気口1
4より高速で噴射されて火炎長を短くするのに使用され
る。燃焼を完了した燃焼排ガスは燃焼室26内がら熱交
換器で熱を放・出した後排気フ・−ドに集められ、排気
口29を通って外気に排出される0また燃焼室26の外
周の水管3oにより燃焼室壁の冷却が行なわれている。Most of the remaining part increases the flow velocity in the throttle part 18 and is injected and supplied from the air port 22 toward the flame B formed on both sides in a downstream direction, and is forcibly mixed to promote the combustion reaction. Similarly, some of the secondary air that has entered the air chambers 16 on both sides of the molded body 7 enters the auxiliary air chamber 12 at the throttle opening 16°. It flows out to the auxiliary air port and is used for flame stabilization, and most of the remaining air flows to the air port 1.
4 is used to inject at higher speeds and shorten the flame length. The combustion exhaust gas that has completed combustion releases heat from the inside of the combustion chamber 26 in a heat exchanger, is collected in an exhaust hood, and is discharged to the outside through an exhaust port 29. The combustion chamber wall is cooled by a water pipe 3o.
1゜
このように2つの炎口部10上に形成される火炎は、第
3図に示すように補助空気口11および23から供給さ
れる低速の空気によって一次空気比が高い時には燃焼速
度も大きくそれ自体安定な一次炎Cをより安定化させ、
また−次空気比が低い時には安定な一次炎Cは存在しな
い代わりに拡散混合した安定小火炎Aが炎口9の両端に
形成され保炎構能を果たす。従って広い一次空気比の範
囲に渡って安定した火炎を得ることができる0こf+、
を従来の装置と比較して示したのが第4図である。第6
図で示したような従来例の場合には一次空気比が低くな
った場合、保炎用小火炎を持たないため、−次空気比の
低い側ではGo 、に、02で示す燃焼性能が低下する
曲線eのような特性を示す。1° The flame thus formed on the two flame ports 10 has a high combustion speed when the primary air ratio is high due to the low-velocity air supplied from the auxiliary air ports 11 and 23, as shown in FIG. The primary flame C, which itself is stable, is made more stable,
Further, when the secondary air ratio is low, stable primary flames C do not exist, but stable small flames A that are diffused and mixed are formed at both ends of the flame port 9, achieving a flame-holding function. Therefore, a stable flame can be obtained over a wide range of primary air ratios.
FIG. 4 shows a comparison between the conventional device and the conventional device. 6th
In the case of the conventional example shown in the figure, when the primary air ratio becomes low, since there is no small flame for flame stabilization, the combustion performance shown by Go, 02 decreases at the low primary air ratio. It shows characteristics like curve e.
一方第6図で示したような従来例では一次空気即ちファ
ン風量に対する火炎の安定性は良好であるが高速の二次
空気噴流を作る機構がないため、火炎が伸び燃焼室を小
型にした場合熱交換器などの冷却部に触れ不完全燃焼を
してしまう。従って同じ燃焼室容態の中での燃焼性能は
曲線mのようになる。このように本発明では従来の燃焼
装置に比べ一次空気比の広い範囲で良好な燃焼性能を得
ることができる。さらに空気口14および22から供給
される下流方向に傾斜した大部分の量の二次空気の高速
空気噴流によって拡散炎B中に強制的に空気を供給し、
同′14に強制混合して燃焼反応を促進するので火炎長
が短くなり2又下流方向に傾斜して供給されるため、流
速が太きくなっても上流側の火炎人を乱すことも々い。On the other hand, in the conventional example shown in Fig. 6, the stability of the flame with respect to the primary air, that is, the fan air volume, is good, but there is no mechanism to create a high-speed secondary air jet, so if the flame grows and the combustion chamber is made smaller. Touching cooling parts such as heat exchangers and causing incomplete combustion. Therefore, the combustion performance in the same combustion chamber condition is as shown by curve m. As described above, in the present invention, better combustion performance can be obtained over a wider range of primary air ratios than in conventional combustion devices. Furthermore, air is forcibly supplied into the diffusion flame B by a high-speed air jet of a large amount of secondary air inclined in the downstream direction supplied from the air ports 14 and 22;
Since the combustion reaction is promoted by forced mixing at the same time, the flame length is shortened and the flame is supplied at an angle in the downstream direction, so even if the flow velocity increases, it often disturbs the upstream flame. .
同様にこれを第5図で示したような従来の装置と比べた
ものが第4図口である。従来の燃焼性能に比ベニ次空気
噴出速度の高い側では傾斜噴流による火炎基部−の影響
がないこと、低い側では1つの火炎に両側より空気を供
給するため火炎長が伸び始める値がより小さくなること
により、より広い二次空気の噴出速度範囲で良好な燃焼
性能を得ることができるものである。。Similarly, FIG. 4 shows a comparison of this with a conventional device as shown in FIG. Compared to conventional combustion performance, on the side where the secondary air ejection speed is high, there is no effect on the flame base due to the inclined jet, and on the low side, air is supplied to one flame from both sides, so the value at which the flame length starts to grow is smaller. By doing so, it is possible to obtain good combustion performance over a wider range of secondary air ejection speeds. .
以北の説明から明らか々ように本発明の燃焼装置によれ
ば以下の効果が得られる。As is clear from the following explanation, the combustion apparatus of the present invention provides the following effects.
′(1)補助空気口から供給される小量の低速空気流に
より、−次空気比が高い場合には一次炎の安定性をより
増加させ、−次空気比の低い場合には拡散混合による小
火炎による保炎構部をもつため、−次空気比の広い範囲
に渡って安定火炎が得られ、また短炎化用の高速噴流も
下流方向に傾斜しているので火炎基部を乱さず、安定燃
焼域が広く燃焼制御を行う場合の風量制御の許容バラツ
キを大きくとれ、制御が容易になる3゜(2)補助空気
口から供給される空気量は、小火炎が炎口端部のみに形
成されれば十分保炎機能をもつことができるため小量で
よく、また空気口から供給される空気量は多量でしかも
高速であるから拡散炎中に強制供給され強制混合による
燃焼反応の促進によって火炎は短くなるので燃焼室を小
さくすることができ、燃焼装置を小型にすることができ
る。(1) A small amount of low-velocity air flow supplied from the auxiliary air port increases the stability of the primary flame more when the negative air ratio is high, and by diffusion mixing when the negative air ratio is low. Because it has a flame-holding structure with a small flame, a stable flame can be obtained over a wide range of negative air ratios, and the high-speed jet for shortening the flame is also inclined downstream, so it does not disturb the flame base. 3° (2) The amount of air supplied from the auxiliary air port allows small flames to be distributed only at the end of the flame port. Once formed, it can have a sufficient flame-holding function, so only a small amount is required, and since the amount of air supplied from the air port is large and at high speed, it is forced into the diffusion flame and promotes the combustion reaction by forced mixing. Since the flame becomes shorter, the combustion chamber can be made smaller, and the combustion device can be made smaller.
(3) −次空気比の広い範囲で安定火炎を維持−す
ることができるので−次空気比を低く設定できしかも短
炎化により高温域の滞溜時間が短くなるのでNO40発
生量が少くまた一次空気比を低く設定することにより振
動燃焼を防止することができる。(3) Since it is possible to maintain a stable flame over a wide range of primary air ratios, the secondary air ratio can be set low, and the residence time in the high temperature range is shortened due to the short flame, resulting in less NO40 generation. Vibratory combustion can be prevented by setting the primary air ratio low.
(4)炎口部の両側から空気を供給されるため、より低
い二次空気噴出速度でも短炎化が図られることになり、
従って送風圧が低くて小型の静かなファンが使える。(4) Since air is supplied from both sides of the flame port, a shorter flame can be achieved even at a lower secondary air ejection speed.
Therefore, a small, quiet fan with low blowing pressure can be used.
第1図は本発明の一実施例を示す燃焼装置の全体断面図
、第2図は第1図の・要部を示す断面斜視図、第3図は
同装置により形成される火炎の形態を示す断面図、第4
図は燃焼性能を従来のものと比較説明するためのもので
イは一次空気比に対する特性を示した特性図、口は二次
空気噴出速度に対する特性を示した特性図、第6図は従
来例のt面図、第6薗は他の従来例の断面図である。
9・・・・・・炎口、1o・・・・・炎口部、12 、
21・・・・・・補助空気室、11.23・・・・・補
助空気口、1ら、19・・・・・・空気室−14,22
・・・・・・空気口。
代理埋入の氏名 弁理士 中 尾 敏 男 ほか1基筒
1 図
第2図
第3図
第4図
一次空気比 FAI%)Fig. 1 is an overall sectional view of a combustion device showing an embodiment of the present invention, Fig. 2 is a sectional perspective view showing the main parts of Fig. 1, and Fig. 3 shows the form of flame formed by the same device. Sectional view shown, No. 4
The figures are for comparing and explaining the combustion performance with the conventional one. A is a characteristic diagram showing the characteristics with respect to the primary air ratio, the opening is a characteristic diagram showing the characteristics with respect to the secondary air ejection velocity, and Figure 6 is the conventional example. The t-side view of FIG. 6 is a sectional view of another conventional example. 9...flame mouth, 1o...flame mouth part, 12,
21... Auxiliary air chamber, 11.23... Auxiliary air port, 1, 19... Air chamber -14, 22
...Air vent. Name of proxy embedding Patent attorney Toshio Nakao and 1 other cylinder 1 Figure 2 Figure 3 Figure 4 Primary air ratio FAI%)
Claims (1)
前記炎口蔀近傍には炎口より流出する混合気とほぼ平行
に空気を噴出するように構成された補助空気口を前記空
気室に連通して設けるとともに、前記炎口部の下流側に
は空気室を前記炎口部の両側に備え、混合気の噴出方向
に対し空気を傾斜して噴射するように空気口を前記空気
室に連通して設け、かつ補助空気口の空気噴出速度と空
気流量を空気口の空気噴出速度と空気量よりも小さくし
た燃焼装置。Equipped with auxiliary air chambers on both sides of the flame port where many flame ports are lined up,
An auxiliary air port configured to blow out air substantially parallel to the air-fuel mixture flowing out from the burner port is provided in the vicinity of the burner port, and is connected to the air chamber, and an auxiliary air port is provided on the downstream side of the burner port portion to communicate with the air chamber. Air chambers are provided on both sides of the flame port, and the air ports are provided in communication with the air chamber so as to inject air at an angle with respect to the direction in which the air-fuel mixture is ejected, and the air ejection speed of the auxiliary air port and the air A combustion device in which the flow rate is smaller than the air jet speed and air volume of the air port.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10490982A JPS58221305A (en) | 1982-06-17 | 1982-06-17 | Burner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10490982A JPS58221305A (en) | 1982-06-17 | 1982-06-17 | Burner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58221305A true JPS58221305A (en) | 1983-12-23 |
Family
ID=14393242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10490982A Pending JPS58221305A (en) | 1982-06-17 | 1982-06-17 | Burner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58221305A (en) |
-
1982
- 1982-06-17 JP JP10490982A patent/JPS58221305A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3914348A (en) | Platelet-venturi carburetor for combustion engine | |
JPS58221305A (en) | Burner | |
JPH02157514A (en) | Low noise high load combustion device | |
JP2956242B2 (en) | Combustion equipment | |
JP2956229B2 (en) | Combustion equipment | |
JPS586A (en) | Combustion device | |
JPS60233419A (en) | Combustion device | |
JP2998291B2 (en) | Combustion equipment | |
JP2956215B2 (en) | Combustion equipment | |
JP2956243B2 (en) | Combustion equipment | |
JPS6327606B2 (en) | ||
JPS59109710A (en) | Burner | |
JPS587A (en) | Combustion device | |
JP3269283B2 (en) | Combustion equipment | |
JPS58120013A (en) | Burner | |
JPS631493B2 (en) | ||
JPH0221111A (en) | High load-burner | |
JPS5883112A (en) | Burner | |
JPH07190367A (en) | Fuel nozzle for gas combustion | |
JPH01302010A (en) | High load combustion device | |
JPH0221113A (en) | High load-burner | |
JPH01222105A (en) | Burner | |
JP2830716B2 (en) | Liquid fuel combustion device | |
JPH0448106A (en) | Combustion apparatus | |
JPS5899607A (en) | Burner |