JPS586A - Combustion device - Google Patents
Combustion deviceInfo
- Publication number
- JPS586A JPS586A JP56097883A JP9788381A JPS586A JP S586 A JPS586 A JP S586A JP 56097883 A JP56097883 A JP 56097883A JP 9788381 A JP9788381 A JP 9788381A JP S586 A JPS586 A JP S586A
- Authority
- JP
- Japan
- Prior art keywords
- secondary air
- combustion
- flame
- combustion chamber
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M9/00—Baffles or deflectors for air or combustion products; Flame shields
- F23M9/02—Baffles or deflectors for air or combustion products; Flame shields in air inlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/04—Regulating air supply or draught by operation of single valves or dampers by temperature sensitive elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2237/00—Controlling
- F23N2237/16—Controlling secondary air
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Air Supply (AREA)
- Combustion Of Fluid Fuel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は給湯機器、暖房機器などでファン等を用いた強
制空気供給の燃焼装置に係り、以下の項目を満足する燃
焼装置を提供することを目的とするものである。[Detailed Description of the Invention] The present invention relates to a combustion device for supplying forced air using a fan or the like in hot water supply equipment, heating equipment, etc., and an object of the present invention is to provide a combustion device that satisfies the following items. .
(1)燃焼室負荷が107θ/hm3オーダの高負荷燃
焼を実現し、燃焼室の小型化を図る。(1) Achieve high-load combustion with a combustion chamber load on the order of 107θ/hm3, and aim to downsize the combustion chamber.
(2)機器への応用の際、使い勝手を向上させるため、
燃焼量が広範囲で変化しても良好な燃焼の維持を図る。(2) To improve usability when applied to equipment,
To maintain good combustion even if the amount of combustion changes over a wide range.
(3) 特性の異なる種々の燃料を用いても良好な燃
焼を維持し・肚焼装置のユニバーサル化を図る。(3) To maintain good combustion even when using various fuels with different characteristics and to make the roasting device universal.
(4)燃焼装置を簡単な構成にするとともにファンも含
めた燃焼システム全体の小型化を図る。(4) Make the combustion device simple in structure and downsize the entire combustion system including the fan.
一般の家庭用燃焼機器において、バーナの炎口から噴出
されだ予混合気は炎口上に一次炎を形成し、その下流域
に周囲の空気を巻き込んで燃焼する二次炎が形成される
。一般に炭化水素系燃料では二次炎はCOやH2を多量
に含む未燃成分の酸化過程で、酸素供給はいわゆるエン
トレメント(周囲空気巻き込み)と分子拡散によってお
こなわれるだめ反応速度も遅く、火炎は後流に向って伸
長する。−次空気比を増すと反応はほとんど一次炎で生
じるため、二次炎が短かくなる。−次空気を増して理論
空気を越えた燃焼、いわゆる全−火燃焼では二次炎がほ
とんど見られなくなるが、反面振動燃焼を発生し易く、
又火炎が炎口に密着するため、炎口が加熱されフラッシ
ュバックを生じることが多い。また燃焼範囲が比較的狭
いだめ、高精度の予混合空気量の制御が要求される。更
に給湯や暖房においては季節による水温、気温変化。In general household combustion equipment, the premixed gas ejected from the burner nozzle forms a primary flame above the flame nozzle, and a secondary flame is formed in the downstream region of the flame that entrains surrounding air and burns. In general, in hydrocarbon fuels, the secondary flame is an oxidation process of unburned components containing large amounts of CO and H2, and oxygen supply is achieved by so-called entrainment (entrainment of surrounding air) and molecular diffusion, so the reaction rate is slow, and the flame is Extends toward the wake. -Increasing the primary air ratio causes most of the reaction to occur in the primary flame, which shortens the secondary flame. In combustion that exceeds theoretical air by increasing secondary air, so-called full-fire combustion, secondary flames are hardly seen, but on the other hand, oscillating combustion is likely to occur.
Furthermore, since the flame comes into close contact with the flame nozzle, the flame nozzle is heated and often causes a flashback. Furthermore, since the combustion range is relatively narrow, highly accurate control of the amount of premixed air is required. Furthermore, when it comes to hot water supply and space heating, water temperature and air temperature change depending on the season.
又負荷(多栓給湯、多室暖房時)変動に対応して燃焼量
を大きく可変することが要求され名。即ち良好な燃焼状
態を維持できる最大燃焼量と最小燃焼量の比、いわゆる
T D R(Turn Down Ratio)を大き
くとることが要求される。従ってTDRを大きく設定す
れば、微少流量で高精度の流量制御が必要になり、装置
が複雑で大型化する欠点を有している。In addition, it is required to greatly vary the amount of combustion in response to load fluctuations (when heating multiple taps or heating multiple rooms). That is, it is required to have a large ratio between the maximum combustion amount and the minimum combustion amount, so-called TDR (Turn Down Ratio), which allows maintaining a good combustion state. Therefore, if the TDR is set to a large value, highly accurate flow rate control is required at a minute flow rate, which has the disadvantage of making the device complicated and large.
一方、−火中気量を理論空気量以下に設定するブンゼン
燃焼では燃焼範囲が広くなっている。従って一次及び二
次空気量を前記、全−次燃焼はど高精度の制御を用いな
くても、TDRを大きくすることが可能である。しかし
、二次炎が大きく伸長するため、このままの方式では高
負荷燃焼を実現できない。そこでファン等を用いて強制
的に空気を送り込み、燃焼反応を促進させ短炎化を図っ
て高負荷燃焼を実現させようとする試みが多くなされて
きた。On the other hand, Bunsen combustion, in which the amount of air in the flame is set below the theoretical amount of air, has a wider combustion range. Therefore, it is possible to increase the TDR without using highly accurate control of the primary and secondary air amounts and the total combustion. However, because the secondary flame expands significantly, high-load combustion cannot be achieved with this method. Therefore, many attempts have been made to achieve high-load combustion by forcibly feeding air using a fan or the like to accelerate the combustion reaction and shorten the flame.
その一つの従来例として第7図に示す如くバーナ101
の近傍にファン102より供給された二次空気をガイド
板103によって偏向させ火炎に導入する構成を持つ燃
焼装置がある。この場合、供給空気量を増すとバーナ1
0oの炎口基部にも空気が高速で供給され火炎そのもの
が不安定となる。逆に供給量を少なくするとガイド板1
03で絞られ大部分が燃焼ガスと平行流になり、火炎中
への供給量が減少し火炎は短かくならない。さらにガイ
ド板103は高温となるため、その材質や耐久性が問題
となり、火炎近傍まセ延長するのが困難となるなど高負
荷化には限界がある。As one conventional example, a burner 101 as shown in FIG.
There is a combustion device in the vicinity of which has a structure in which secondary air supplied by a fan 102 is deflected by a guide plate 103 and introduced into the flame. In this case, increasing the amount of supplied air will cause burner 1
Air is also supplied to the base of the flame outlet at 0o at high speed, making the flame itself unstable. Conversely, if the supply amount is reduced, guide plate 1
At step 03, most of the gas flows parallel to the combustion gas, reducing the amount of gas supplied into the flame and preventing the flame from becoming shorter. Furthermore, since the guide plate 103 becomes hot, its material and durability become problematic, and there is a limit to the high load, as it becomes difficult to extend it near the flame.
同様な構成を持つものに第8図に示す他の従来例がある
。これはバーナ104の近傍を通過した二次空気がバク
フル105によって偏向され火炎に供給されるものであ
る。この場合には第7図の場合より構造が複雑になると
ともにバックル105を含む燃焼室の熱容量が大きくな
る。従って火炎を冷却して不完全燃焼を生じ易く燃焼範
囲が狭くなる。このだめ各部の加工寸法条件や供給空気
量制御に制約があり、TDRを大きくとれない。There is another conventional example shown in FIG. 8 that has a similar configuration. This is because secondary air that has passed near the burner 104 is deflected by the backflush 105 and supplied to the flame. In this case, the structure becomes more complicated than the case shown in FIG. 7, and the heat capacity of the combustion chamber including the buckle 105 becomes larger. Therefore, the flame is cooled and incomplete combustion tends to occur, resulting in a narrow combustion range. There are restrictions on the machining dimensional conditions of each part and the control of the amount of air supplied, making it impossible to obtain a large TDR.
又第9図に示す他の実施例では水冷された燃焼室壁10
6に沿って火炎を形成し、燃焼室の中央部の二次空気噴
出口107から火炎に向って空気を供給する構成を持っ
ている。この方式は構造が比較的簡単で高負荷燃焼が実
現できる。しかし燃焼室壁10了により、火炎が常に冷
却されるため燃焼量を絞っていくと発熱量よりも燃焼室
壁107に奪われる熱量が増し、火炎冷却が発生し燃焼
反応が凍結されGOなどの未燃分がそのまま排出される
ことがある。従ってTI)Rは大きく設定できない。In another embodiment shown in FIG. 9, a water-cooled combustion chamber wall 10 is used.
6, and air is supplied toward the flame from a secondary air outlet 107 in the center of the combustion chamber. This method has a relatively simple structure and can achieve high-load combustion. However, since the flame is constantly cooled by the combustion chamber wall 107, when the combustion amount is reduced, the amount of heat taken by the combustion chamber wall 107 increases more than the calorific value, and flame cooling occurs, the combustion reaction is frozen, and GO etc. Unburned fuel may be discharged as is. Therefore, TI)R cannot be set large.
更に他の従来例として第10図に示す燃焼装置がある。Furthermore, there is a combustion device shown in FIG. 10 as another conventional example.
これは燃焼室を形成する内筒108内に炎口板109が
挿入されており、内筒10Bの外周には外筒110を設
は二次空気室111を構成する。ここに供給された二次
空気は内筒108に設けられた二次空気噴出口112か
ら炎口板1刃上に形成された火炎に向って噴出供給され
、強制混合により短炎化を図り、高負荷燃焼を実現しよ
うとするものである。この場合火炎が燃焼室の中央部だ
けでなく内筒108近傍にも形成されることになる。従
って内筒108が高温になり耐熱性。A flame port plate 109 is inserted into an inner cylinder 108 forming a combustion chamber, and an outer cylinder 110 is provided around the outer periphery of the inner cylinder 10B to form a secondary air chamber 111. The secondary air supplied here is ejected from the secondary air outlet 112 provided in the inner cylinder 108 toward the flame formed on the flame port plate 1 blade, and the flame is shortened by forced mixing. The aim is to achieve high-load combustion. In this case, flame is formed not only in the center of the combustion chamber but also in the vicinity of the inner cylinder 108. Therefore, the inner cylinder 108 becomes high temperature and is heat resistant.
耐久性が問題になると同時に二次空気室111内の空気
が加熱されて膨張し、二次空気室111内圧が上昇する
。よって必要空気量を二次空気噴出口112を通って燃
焼室内に送り込むためには、送風圧の大きなファンが必
要となり、ファンが大型化し、騒音レベルも高くなる欠
点を有し、高負荷化への対応力は十分でない。At the same time that durability becomes a problem, the air within the secondary air chamber 111 is heated and expanded, and the internal pressure of the secondary air chamber 111 increases. Therefore, in order to send the required amount of air into the combustion chamber through the secondary air outlet 112, a fan with high blowing pressure is required, which has the disadvantage of increasing the size of the fan and increasing the noise level, resulting in a high load. The ability to respond is not sufficient.
以下説明した如く、従来の高負荷を目的とした燃焼装置
にあっては、いずれも高負荷燃焼とTDRの拡大を同時
に満足するものではなかった。又燃焼装置が複雑になり
ファンも含めた燃焼器全体としての小型化は十分追究さ
れていなかった。As explained below, none of the conventional combustion devices intended for high-load combustion can simultaneously satisfy high-load combustion and expansion of TDR. Furthermore, the combustion device has become complicated, and miniaturization of the entire combustor including the fan has not been sufficiently pursued.
本発明は燃焼室壁をフィンと水管によって構成し熱交換
器としその一部に二次空気噴出口を多段に設け、二次空
気温度の安定化(常温レベル)と負荷に応じた空気供給
を行うことにより、上記従来欠点を解消するものである
。以下本発明の一実施例について第1図〜第6図に基づ
いて説明する。In the present invention, the combustion chamber wall is constructed of fins and water pipes, and a heat exchanger is provided with secondary air jet ports in multiple stages to stabilize the secondary air temperature (normal temperature level) and supply air according to the load. By doing so, the above-mentioned conventional drawbacks can be solved. An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.
第1図〜第2図において、1は燃焼用空気を供給するフ
ァンであり、その供給口1′は一次空気通路2と二次空
気供給通路の第1通路3.第2通路4と連通している。1 and 2, 1 is a fan that supplies combustion air, and its supply port 1' is connected to the primary air passage 2 and the first passage 3. of the secondary air supply passage. It communicates with the second passage 4.
それぞれの通路2,3.4内には空気調整用の可動ダン
パー5.6.7を途中に設けている。第1通路3はその
下流部に設けられた均圧室を兼ねた二次空気室8に連通
し、第2通路は同じく二次空気室9に至っている。二次
空気室8,9は燃焼室16を形成するフィン、パイプ一
体化熱交換器部16に密着しその一部に設けた二次空気
噴出口10.11と連通している。A movable damper 5.6.7 for air adjustment is provided in each passage 2, 3.4. The first passage 3 communicates with a secondary air chamber 8 provided downstream thereof and also serves as a pressure equalization chamber, and the second passage also leads to a secondary air chamber 9. The secondary air chambers 8 and 9 are in close contact with the fin and pipe integrated heat exchanger section 16 forming the combustion chamber 16, and communicate with secondary air jet ports 10.11 provided in a part thereof.
13はバーナ本体で炎口14は燃焼室16に臨む構成で
あり、炎口14の下流の燃焼室16において二次空気噴
出口10.11と段階的に位置している。バーナ本体1
4の上流は一次空気通路2が連通し、通路内には燃料噴
射用ノズル12を設置している。17はフィンパイブ一
体化熱交換器16の水通路であり、18は燃焼室15の
下流に設ける排気出口である。Reference numeral 13 denotes a burner main body, and the burner port 14 faces the combustion chamber 16, and is located in stages with the secondary air jet ports 10 and 11 in the combustion chamber 16 downstream of the burner port 14. Burner body 1
A primary air passage 2 communicates with the upstream side of the primary air passage 4, and a fuel injection nozzle 12 is installed in the passage. 17 is a water passage of the fin-pipe integrated heat exchanger 16, and 18 is an exhaust outlet provided downstream of the combustion chamber 15.
上述の構成よりなる本発明の燃焼装置における動作9作
用について述べる。ファン1により供給される燃焼用空
気はその一部か−・水空気通路2を通り可動ダンパー6
で適切な供給量に調整された後、途中に設けられた燃料
噴射ノズル12より噴出された燃料と混合して混合気と
なり、バーナ本体13に送り込まれる。バーナ本体13
に供給された混合気はさらに混合を促進し整流された後
、炎口14より均一に燃焼室15内部に噴出され火炎を
形成する一方、第1通路3及び第2通路を通って供給さ
れる二次空気は可動ダンパー6.7でそれぞれ適切な供
給量に調整された後、二次空気8.9に入り、二次空気
噴出口10.11を通って均一に燃焼室15内に形成さ
れる火炎に向って噴出する。火炎はこの二次空気噴流の
ため燃焼室。The operation 9 of the combustion apparatus of the present invention having the above-mentioned configuration will be described. A part of the combustion air supplied by the fan 1 passes through the water-air passage 2 and the movable damper 6.
After adjusting the supply amount to an appropriate amount, it is mixed with fuel injected from a fuel injection nozzle 12 provided midway to form an air-fuel mixture, which is sent to the burner body 13. Burner body 13
After further promoting mixing and rectifying the supplied air-fuel mixture, it is uniformly injected into the combustion chamber 15 from the flame port 14 to form a flame, while being supplied through the first passage 3 and the second passage. After the secondary air is adjusted to an appropriate supply amount by the movable damper 6.7, it enters the secondary air 8.9, passes through the secondary air outlet 10.11, and is uniformly formed in the combustion chamber 15. It erupts towards the flames. The flame is caused by this secondary air jet in the combustion chamber.
16全域に渡って広がり、フィン・パイブ一体化熱交換
器17と熱交換を行った後、排気出口18より排出され
る。17の水通路内の熱媒体は通常、水を用いるが目的
に応じて油、フレオンガスなど9搬送可能な熱媒体なら
問題はない。After exchanging heat with the fin-pipe integrated heat exchanger 17, it is discharged from the exhaust outlet 18. Water is normally used as the heat medium in the water passage 17, but depending on the purpose, any heat medium that can be transported such as oil or Freon gas may be used.
次に上記燃焼装置の作用について第3図〜第6図を用い
て説明する。燃焼量が大きい場合には第3図に示すよう
に第1通路3.第2通路4の途中に設けられた可動ダン
、C−6,7を開き上流側及び下流側の二次空気噴出口
10.11から二次空気を燃焼室15内に形成されてい
る火炎に向って噴射させる。ここで前述した如く、二次
炎はCOやH2などの未燃成分が多量に含壕れているが
、この火炎への二次空気噴射による強制空気供給及び強
制混合により酸化反応が著しく促進される。このように
二次炎ムは第3図に示すように、二次空気噴流のため燃
焼室15のほぼ全域に広げられ、燃焼室16の空間を十
分に利用してその全域で燃焼反応が行なわれる。従って
燃焼室16が小さくても大容量の燃焼が可能となり、燃
焼室の負荷が1〜2θX 10’/hm3程度も可能と
なる。又燃焼室16内のほぼ全域に広げられた火炎はフ
ィン・パイプ一体化熱交換器17で十分に熱交換を行う
ため、二次空気室8,9内の二次空気温度上昇を大幅に
減少すると同時に二次空気噴出口10.11の温度上昇
も少なく安定した二次空気供給を維持する。従って二次
空気供給のだめの送風圧は小さくても可能でファン1も
小型化となり騒音も小さくなる。Next, the operation of the above combustion device will be explained using FIGS. 3 to 6. When the amount of combustion is large, the first passage 3. The movable dungeons C-6 and C-7 provided in the middle of the second passage 4 are opened to supply secondary air to the flame formed in the combustion chamber 15 from the secondary air jet ports 10.11 on the upstream and downstream sides. Spray it towards you. As mentioned above, the secondary flame contains a large amount of unburned components such as CO and H2, but the oxidation reaction is significantly accelerated by forced air supply and forced mixing by secondary air injection to this flame. Ru. In this way, as shown in Fig. 3, the secondary flame is spread over almost the entire area of the combustion chamber 15 due to the secondary air jet, and the combustion reaction is carried out in the entire area by fully utilizing the space of the combustion chamber 16. It will be done. Therefore, even if the combustion chamber 16 is small, large-capacity combustion is possible, and the load on the combustion chamber can be about 1 to 2θX 10'/hm3. In addition, the flame spread over almost the entire area inside the combustion chamber 16 undergoes sufficient heat exchange with the fin-pipe integrated heat exchanger 17, which greatly reduces the temperature rise of the secondary air inside the secondary air chambers 8 and 9. At the same time, the temperature rise at the secondary air outlet 10.11 is also small, and a stable secondary air supply is maintained. Therefore, the blowing pressure of the secondary air supply reservoir can be lowered, and the fan 1 is also made smaller and the noise is reduced.
一方この状態のまま絞っていくと、第4図に示すように
二次炎Bは二次空気噴出口1oから供給される二次空気
の影響を強く受け、炎口14に近接していく。ここで燃
焼室負荷とCO濃度の関係を示した第6図に基づいて説
明する。燃焼速度の小さい燃料や拡散速度の小さい燃料
の場合には、火炎基部への二次空気噴出口10から二次
空気噴射による急冷却のため燃焼反応による発熱速度と
のバランスが崩れ、燃焼反応の凍結やリフティングを生
じる。そのため曲線乙に示したように、低燃焼室負荷に
なると急激に、GOなどの未燃成分が発生する。又燃焼
速度の大きな燃料では火炎が炎口14に密着し曲線すの
斜線部b′の領域で炎口14を赤熱する場合があり、フ
ラッシュバックを誘発することがある。しかしながら本
発明のように第、1通路3内に設けられた可動ダンパー
6を閉じて、二次空気室8への空気供給を減少させれば
第5図に示すように、二火炎Cは下流側の二次空気を供
給する二次空気噴出口11に位置まで酸素不足のだめ伸
長し且つ広がる。この場合、第4図の時のような火炎基
部の急冷がないだめ、−火炎は安定した火炎になる。そ
のため二次空気噴出口11よりも上流側は安定した高温
度領域となるため、二次空気による急激な火炎冷却が避
けられ、燃焼速度の小さい燃料や拡散速度の小さい燃料
の時でも燃焼室16内で広がった火炎Cは安定した燃焼
を継続する。更に燃焼速度の大きな燃料の場合でも二火
炎Cは燃焼室16で大きく広がるだめ、炎口14から離
れこれを加熱する効果は著しく低下する。従って前述し
た炎口14の赤熱、フラッシュバック現象を完全に防止
できる。このような条件を満すことによって、いずれの
燃料の場合でも第6図に示す曲線Cの特性を得ることが
可能であり、広い燃焼室負荷の範囲、即ちTDRの大き
な領域で良好燃焼を実現することができる。On the other hand, if the flame is narrowed in this state, the secondary flame B will be strongly influenced by the secondary air supplied from the secondary air outlet 1o, as shown in FIG. 4, and will approach the flame outlet 14. An explanation will now be given based on FIG. 6, which shows the relationship between combustion chamber load and CO concentration. In the case of fuel with a low combustion rate or a fuel with a low diffusion rate, the rapid cooling caused by the secondary air injection from the secondary air jet port 10 to the flame base disrupts the balance with the heat generation rate due to the combustion reaction, causing the combustion reaction to slow down. Causes freezing and lifting. Therefore, as shown in curve B, when the combustion chamber load becomes low, unburned components such as GO are suddenly generated. In addition, if the fuel has a high burning speed, the flame may come into close contact with the flame nozzle 14 and cause the flame nozzle 14 to become red hot in the area indicated by the diagonal line b' of the curve, which may induce flashback. However, if the movable damper 6 provided in the first passage 3 is closed to reduce the air supply to the secondary air chamber 8 as in the present invention, the second flame C will be moved downstream as shown in FIG. The secondary air outlet 11 that supplies secondary air on the side expands and expands to the point where there is a lack of oxygen. In this case, unless there is rapid cooling of the flame base as in the case of FIG. 4, the flame becomes a stable flame. Therefore, the upstream side of the secondary air jet port 11 becomes a stable high-temperature region, so rapid flame cooling by the secondary air can be avoided, and even when fuel with a low combustion rate or a low diffusion rate is used, the combustion chamber 16 The flame C that spreads inside continues stable combustion. Furthermore, even in the case of a fuel with a high combustion speed, the two flames C cannot spread widely in the combustion chamber 16, and the effect of separating from the flame nozzle 14 and heating it is significantly reduced. Therefore, the red heat of the flame port 14 and the flashback phenomenon described above can be completely prevented. By satisfying these conditions, it is possible to obtain the characteristics of curve C shown in Figure 6 for any fuel, and achieve good combustion in a wide range of combustion chamber loads, that is, in a large TDR region. can do.
以上の説明から明らかのように、本発明の燃焼装置によ
れば次の効果が得られる。As is clear from the above description, the combustion apparatus of the present invention provides the following effects.
(1)火炎に対して二次空気を噴射し、強制空気供給と
強制混1合により燃焼室空間のほぼ全域で燃焼反応を行
い、且つこれを促進して小さな燃焼室で大容量の燃焼を
実現できるので燃焼装置の小型化を実現する。(1) Secondary air is injected into the flame, and by forced air supply and forced mixing, a combustion reaction occurs in almost the entire combustion chamber space, and this is promoted to achieve large-capacity combustion in a small combustion chamber. This makes it possible to downsize combustion equipment.
(2)燃焼ガスの流れ方向に互いに独立した複数の二次
空気室を設け、火炎への二次空気供給を大燃焼量時は全
空気噴出口より空気を供給し、小燃焼時には下流側の空
気供給を少なくすることにより、高負荷時燃焼の実現と
低負荷時の安定燃焼を可能とじTDR燃焼の制御範囲を
より広くすることができる。(2) A plurality of independent secondary air chambers are provided in the flow direction of combustion gas, and secondary air is supplied to the flame from all air outlets during large combustion, and from the downstream side during small combustion. By reducing the air supply, it is possible to realize combustion under high load and stable combustion under low load, and to widen the control range of TDR combustion.
(3)上記の二次空気供給法の制御と合わせて、燃焼室
内にガイド板やバッフルを設けなくてもよいため、燃焼
室は簡単な構成となると共に特性の異なる種々の燃料に
対して、いずれも良好な燃焼を維持でき燃焼装置のユニ
バーサル化が図れる。(3) In addition to controlling the secondary air supply method described above, since there is no need to provide a guide plate or baffle inside the combustion chamber, the combustion chamber has a simple configuration and is suitable for various fuels with different characteristics. Both can maintain good combustion and make combustion devices universal.
(4)燃焼室壁を熱交換部として構成し且つ噴出口を設
けることにより、二次空気室の温度上昇の防止と空気加
熱が減少し、内圧を低下させることが実現でき、送風圧
の小さい小型のファンが使用できるため、騒音が小さく
なると共に燃焼器システム全体の小型、軽量化を図るこ
とができる。更にコストメリットも十分である。(4) By configuring the combustion chamber wall as a heat exchange part and providing a jet nozzle, it is possible to prevent the temperature rise in the secondary air chamber, reduce air heating, and lower the internal pressure, resulting in low blowing pressure. Since a small fan can be used, noise is reduced and the entire combustor system can be made smaller and lighter. Furthermore, the cost advantage is also sufficient.
第1図は本発明の燃焼装置の一実施例を示す全体構成断
面図、第2図は同燃焼装置の一断面を示す斜視図、第3
図〜第5図は同燃焼装置により形成される火炎を説明す
るだめの構成断面図、第6図は同燃焼装置におけるTD
R特性の一つを示すもので、燃焼室負荷に対するCO濃
度を示した各燃焼方式の比較特性図、第7図〜第10図
は従来例の断面図である。
1・・・・・・ファン、3・・・・・・第1通路、4・
・−・・−第2通路、8,9・・・・・・二次空気室、
1o、11・・・・・・二次空気噴出口、13・・・・
・・バーナ本体、14・・・・・・炎口、15・・・・
・・燃焼室、16・・・・・・フィン・パイプ一体型熱
交換器、ム、B、C・・・・・・二火炎。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第3図
第4図
第5図
第 6 図
燃焼室勇倚Xl07(kc勿□39
第7図
18図FIG. 1 is a cross-sectional view of the overall configuration of an embodiment of the combustion device of the present invention, FIG. 2 is a perspective view of a cross-section of the combustion device, and FIG.
Figures 5 to 5 are cross-sectional views of the structure of the flame formed by the same combustion device, and Figure 6 is the TD in the same combustion device.
This shows one of the R characteristics, and is a comparative characteristic diagram of each combustion method showing the CO concentration with respect to the combustion chamber load. FIGS. 7 to 10 are cross-sectional views of the conventional example. 1...Fan, 3...1st aisle, 4.
・・・・Second passage, 8, 9...Secondary air chamber,
1o, 11... Secondary air outlet, 13...
...Burner body, 14... Flame mouth, 15...
... Combustion chamber, 16... Fin-pipe integrated heat exchanger, M, B, C... Two flames. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. Combustion chamber
Claims (1)
炎口を臨ませたバーナの炎口上に二次空気を導入する手
段を備えた燃焼装置において、前記燃焼室の壁をフィン
とパイプ等によって加工した熱交換器で構成し、複数の
二次空気噴出口を前記熱交換器に設けることを特徴とす
る燃焼装置。A combustion apparatus comprising a combustion chamber, a device for supplying combustion air, and a means for introducing secondary air onto the flame port of a burner facing into the combustion chamber, the wall of the combustion chamber being formed by fins and pipes. 1. A combustion device comprising a heat exchanger processed by a method such as a heat exchanger, the heat exchanger being provided with a plurality of secondary air jet ports.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56097883A JPS586A (en) | 1981-06-24 | 1981-06-24 | Combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56097883A JPS586A (en) | 1981-06-24 | 1981-06-24 | Combustion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS586A true JPS586A (en) | 1983-01-05 |
JPS6316005B2 JPS6316005B2 (en) | 1988-04-07 |
Family
ID=14204140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56097883A Granted JPS586A (en) | 1981-06-24 | 1981-06-24 | Combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS586A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6091135A (en) * | 1983-10-25 | 1985-05-22 | Matsushita Electric Ind Co Ltd | Controller of gas combustion |
JPS60200007A (en) * | 1984-03-21 | 1985-10-09 | Sumitomo Metal Ind Ltd | Combustion of pulverized coal |
JPH0410214U (en) * | 1990-04-26 | 1992-01-29 | ||
US5139764A (en) * | 1988-01-21 | 1992-08-18 | Union Carbide Industrial Gases Technology Corporation | Sulfur recovery process for ammonia-containing feed gas |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50101928A (en) * | 1974-01-07 | 1975-08-12 | ||
JPS5260442A (en) * | 1975-11-12 | 1977-05-18 | Matsushita Electric Ind Co Ltd | Preliminary mixing type gas burner |
JPS5534157U (en) * | 1978-08-28 | 1980-03-05 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54115396A (en) * | 1978-02-28 | 1979-09-07 | Hokuriku Pharmaceutical | 22dithienylmethylene quinolitidine quaternary salt derivative |
-
1981
- 1981-06-24 JP JP56097883A patent/JPS586A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50101928A (en) * | 1974-01-07 | 1975-08-12 | ||
JPS5260442A (en) * | 1975-11-12 | 1977-05-18 | Matsushita Electric Ind Co Ltd | Preliminary mixing type gas burner |
JPS5534157U (en) * | 1978-08-28 | 1980-03-05 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6091135A (en) * | 1983-10-25 | 1985-05-22 | Matsushita Electric Ind Co Ltd | Controller of gas combustion |
JPS60200007A (en) * | 1984-03-21 | 1985-10-09 | Sumitomo Metal Ind Ltd | Combustion of pulverized coal |
JPH0235885B2 (en) * | 1984-03-21 | 1990-08-14 | Sumitomo Metal Ind | |
US5139764A (en) * | 1988-01-21 | 1992-08-18 | Union Carbide Industrial Gases Technology Corporation | Sulfur recovery process for ammonia-containing feed gas |
JPH0410214U (en) * | 1990-04-26 | 1992-01-29 |
Also Published As
Publication number | Publication date |
---|---|
JPS6316005B2 (en) | 1988-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5494437A (en) | Gas burner | |
JPH09280516A (en) | Combustion device and heating device equipped with this combustion device | |
US5562440A (en) | Gas burner with radiant retention head | |
JPS586A (en) | Combustion device | |
JPS587A (en) | Combustion device | |
JPS5849816A (en) | Burner | |
JPS5883112A (en) | Burner | |
JPS58182018A (en) | Burner | |
CN115585457B (en) | Partial premixed combustion rate regulation and control straight flame combustor | |
US4474551A (en) | Combustion apparatus | |
JPS58120013A (en) | Burner | |
JP2956215B2 (en) | Combustion equipment | |
JPH01107010A (en) | Burner | |
JPS5843322A (en) | High-loaded combustor | |
JP2000283418A (en) | LOW-NOx RADIANT TUBE BURNER AND METHOD FOR CONTROLLING ITS OPERATION | |
JP2548399B2 (en) | Burner | |
KR870000662B1 (en) | Combustion apparatus | |
JP2877486B2 (en) | Combustion equipment | |
JPS60164110A (en) | High load burner | |
JPH0518516A (en) | Burner | |
JPS5883111A (en) | Burner | |
JPS62401B2 (en) | ||
JPH08285236A (en) | Low nox combustion method of fuel gas, employing variable supply type surface combustion, and burner therefor | |
JPH0261405A (en) | Burner | |
JPS58120012A (en) | Burner |