JPS587A - Combustion device - Google Patents
Combustion deviceInfo
- Publication number
- JPS587A JPS587A JP56099494A JP9949481A JPS587A JP S587 A JPS587 A JP S587A JP 56099494 A JP56099494 A JP 56099494A JP 9949481 A JP9949481 A JP 9949481A JP S587 A JPS587 A JP S587A
- Authority
- JP
- Japan
- Prior art keywords
- secondary air
- combustion
- flame
- combustion chamber
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M9/00—Baffles or deflectors for air or combustion products; Flame shields
- F23M9/02—Baffles or deflectors for air or combustion products; Flame shields in air inlets
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は給湯機器、暖房機器などでファン等を用いた強
制空気供給の燃焼装置に係り、以下の項目を満足する燃
焼装置を提供することを目的とするものである。[Detailed Description of the Invention] The present invention relates to a combustion device for supplying forced air using a fan or the like in hot water supply equipment, heating equipment, etc., and an object of the present invention is to provide a combustion device that satisfies the following items. .
(1)燃焼室負荷が1dKC2L1/hm5オーダの高
負荷燃焼を実現し、燃焼室の小型化を図る。(1) Achieve high-load combustion with a combustion chamber load on the order of 1 dKC2L1/hm5, and aim to downsize the combustion chamber.
(2)機器への応用の際、使い勝手を向上させるため、
燃焼量が広範囲で変化しても良好な燃焼の維持を図る。(2) To improve usability when applied to equipment,
To maintain good combustion even if the amount of combustion changes over a wide range.
(3)特性の異なる種々の燃料を用いても良好な燃焼を
維持し燃焼装置のユニバーサル化を図る。(3) To maintain good combustion even when using various fuels with different characteristics and to make the combustion device universal.
(4)燃焼装置を簡単な構成にするとともにファンも含
めた燃焼システム全体の小型化の実現と燃焼装置の信頼
性向上と機器への対応力の強化を図る。(4) In addition to simplifying the configuration of the combustion device, we aim to downsize the entire combustion system including the fan, improve the reliability of the combustion device, and strengthen its ability to respond to various devices.
一般の家庭用燃焼機器において、バーナの炎口から噴出
された予混合気は炎口上に一次炎を形成し、その下流域
に周囲の空気を巻き込んで燃焼する二火炎が形成される
。炭化水素系燃料では二火炎はCOやH2を多量に含む
未燃成分の酸化過程で、酸素供給はいわゆるエントレメ
ント (周囲空気巻き込み)と分子拡散によっておこな
われるため反応速度も遅く、火炎は後流に向って伸長す
る。−火中気比を増すと反応はほとんど一次炎で生じる
ため、二火炎が短かくなる。−火中気を増して理論空気
を越えた燃焼、いわゆる全−次燃焼では二火炎がほとん
ど見られなくなるが、反面振動燃焼を発生し易く、又火
炎が炎口に密着するため、炎口が加熱されフラッシュバ
ックを生じることが多い。まだ燃焼範囲が比較的狭いだ
め、高精度の予混合空気量の制御が要求される。更に給
湯や暖房においては季節による水温、気温変化、又負荷
(多栓給湯、多室暖房時)変動に対応して燃焼量を大き
く可変することが要求される。即ち良好な燃焼状態を維
持できる最大燃焼量と最小燃焼量の比、いわゆるT D
R(Turn Down Ratio)を大きくとる
ことが要求される。従ってテl11Rを大きく設定すれ
ば、微少流量で高精度の流量制御が必要になり、装置が
複雑で大型化する欠点を有している。In general household combustion equipment, the premixed gas ejected from the burner nozzle forms a primary flame above the flame nozzle, and a secondary flame is formed in the downstream region of the flame that entrains surrounding air and burns. In hydrocarbon fuels, two-flame is an oxidation process of unburned components containing large amounts of CO and H2, and the oxygen supply is performed by so-called entrainment (entrainment of surrounding air) and molecular diffusion, so the reaction rate is slow, and the flame is in the wake. Stretch towards. -Increasing the fire/air ratio causes most of the reaction to occur in the primary flame, so the secondary flame becomes shorter. - In combustion in which the air in the flame is increased to exceed the theoretical air, so-called secondary combustion, secondary flames are almost never seen, but on the other hand, oscillatory combustion is likely to occur, and since the flame is in close contact with the flame nozzle, the flame nozzle is It often heats up and causes flashbacks. Since the combustion range is still relatively narrow, highly accurate control of the amount of premixed air is required. Furthermore, in hot water supply and space heating, it is required to greatly vary the amount of combustion in response to seasonal changes in water temperature and air temperature, as well as changes in load (during multiple hot water supply and multiple room heating). In other words, the ratio between the maximum combustion amount and the minimum combustion amount that can maintain good combustion conditions, so-called T D
It is required to increase R (Turn Down Ratio). Therefore, if T111R is set to a large value, highly accurate flow rate control is required at a minute flow rate, which has the disadvantage of making the device complicated and large.
一方、−火中気量を理論空気量以下に設定するブンゼン
燃焼では燃焼範囲が広くなっている。従って一次及び二
次空気量を前記、全−次燃焼はど高精度の制御を用いな
くても、TI)Rを大きくすることが可能である。しか
し、二火炎が大きく伸長するため、このままの方式では
高負荷燃焼を実現できない。そこでファン等を用いて強
制的に空気を送り込み、燃焼反応を促進させ短炎化を図
って高負荷燃焼を実現させようとする試みが多くなされ
てきた。On the other hand, Bunsen combustion, in which the amount of air in the flame is set below the theoretical amount of air, has a wider combustion range. Therefore, it is possible to increase TI)R without using highly accurate control of the primary and secondary air amounts and the total combustion. However, because the two flames elongate significantly, high-load combustion cannot be achieved with this method. Therefore, many attempts have been made to achieve high-load combustion by forcibly feeding air using a fan or the like to accelerate the combustion reaction and shorten the flame.
その一つの従来例として第7図に示す如くバーナ101
の近傍に、ファン102より供給された二次空気をガイ
ド板103によって偏向させ火炎に導入する構成を持つ
燃焼装置がある。この場合、供給空気量を増すとバーナ
100の炎口基部にも空気が高速で供給され火炎そのも
のが不安定となる。逆に供給量を少なくするとガイド板
103で絞られ大部分が燃焼ガスと平行流になり、火炎
中への供給量が減少し火炎は短かくならない。さらにガ
イド板103は高温となるため、その材質や耐久性が問
題となり、火炎近傍まで延長するのが困難となるなど高
負荷化には限界がある。As one conventional example, a burner 101 as shown in FIG.
Nearby there is a combustion device having a configuration in which secondary air supplied by a fan 102 is deflected by a guide plate 103 and introduced into the flame. In this case, when the amount of supplied air is increased, air is also supplied to the base of the burner 100 at a high speed, making the flame itself unstable. Conversely, if the supply amount is reduced, the guide plate 103 restricts the flow and most of the gas flows parallel to the combustion gas, reducing the amount of gas supplied into the flame and preventing the flame from becoming shorter. Furthermore, since the guide plate 103 becomes hot, its material and durability become problematic, and there is a limit to how high the load can be applied, as it becomes difficult to extend the guide plate 103 close to the flame.
同様な構成を持つものに第8図に示す他の従来例がある
。これはバーナ104の近傍を通過した二次空気がバッ
フル105によって偏向され、火炎に供給されるもので
ある。この場合には第7図の場合より構造が複雑になる
とともに、バッフル105を含む燃焼室の燃容量が大き
くなる。従って火炎を冷却して不完全燃焼を生じ易く、
燃焼範囲が狭くなる。このため各部の加工寸法条件や供
給空気量制御に制約があり、TDRを大きくとれない。There is another conventional example shown in FIG. 8 that has a similar configuration. This is because secondary air that has passed near the burner 104 is deflected by a baffle 105 and supplied to the flame. In this case, the structure becomes more complicated than the case shown in FIG. 7, and the fuel capacity of the combustion chamber including the baffle 105 becomes larger. Therefore, it is easy to cool the flame and cause incomplete combustion,
The combustion range becomes narrower. For this reason, there are restrictions on the machining dimensional conditions of each part and the control of the amount of air supplied, making it impossible to obtain a large TDR.
又第9図に示す他の実施例では水冷された燃焼室壁10
6に沿って火炎を形成し、燃焼室の中央部の二次空気噴
出口107から火炎に向って空気を供給する構成を持っ
ている。この方式は構造が比較的簡単で、直接二次空気
が二火炎に噴射供給されるため高負荷燃焼が実現できる
。しかし燃焼室壁107により、火炎が常に冷却される
ため、燃焼量を絞っていくと発熱量よりも燃焼室壁10
7に奪われる熱量が増し、火炎冷却が発生し燃焼反応が
凍結されGOなどの未燃分がそのまま排出されることが
ある。従ってTDRは大きく設定できない。In another embodiment shown in FIG. 9, a water-cooled combustion chamber wall 10 is used.
6, and air is supplied toward the flame from a secondary air outlet 107 in the center of the combustion chamber. This system has a relatively simple structure and can achieve high-load combustion because secondary air is directly injected and supplied to the secondary flames. However, since the flame is constantly cooled by the combustion chamber wall 107, when the combustion amount is reduced, the combustion chamber wall 107
7 increases, flame cooling occurs, the combustion reaction is frozen, and unburned substances such as GO are discharged as they are. Therefore, TDR cannot be set large.
更に他の従来例として第10図に示す燃焼装置がある。Furthermore, there is a combustion device shown in FIG. 10 as another conventional example.
これは燃焼室を形成する内筒108内に炎口板109が
挿入されており、内筒108の外周には外筒11Qを設
は二次空気室111を構成する。ここに供給された二次
空気は内筒108に設けられた二次空気噴出口112か
ら炎口板109上に形成された火炎に向って噴出供給さ
れ、強制混合により短炎化を図り、高負荷燃焼金宋現し
ようとするものである。この場合火炎が燃焼室の中央部
だけでなく、内筒1o8近傍にも形成されることになる
。従って内筒108が高温になり耐熱性、耐久性が問題
になると同時に二次空気室111内の空気が加熱されて
膨張し、二次空気室111内圧が上昇する。よって必要
空気量を二次空気噴出口112を通って燃焼室内に送り
込むためには送風圧の大きなファンが必要となり、ファ
ンが大型化し、騒音レベルも高くなる欠点を有し、高負
荷化への対応力は十分でない。A flame port plate 109 is inserted into an inner cylinder 108 that forms a combustion chamber, and an outer cylinder 11Q is provided around the outer periphery of the inner cylinder 108 to form a secondary air chamber 111. The secondary air supplied here is ejected from the secondary air outlet 112 provided in the inner cylinder 108 toward the flame formed on the flame port plate 109, and by forced mixing, the flame is shortened and the flame is increased. The load is what the Burning Kim Song is trying to manifest. In this case, flame is formed not only in the center of the combustion chamber but also in the vicinity of the inner cylinder 1o8. Therefore, the inner cylinder 108 becomes high in temperature, causing problems in heat resistance and durability, and at the same time, the air in the secondary air chamber 111 is heated and expands, and the internal pressure of the secondary air chamber 111 increases. Therefore, in order to send the required amount of air into the combustion chamber through the secondary air outlet 112, a fan with high blowing pressure is required, which has the disadvantage of increasing the size of the fan and raising the noise level. The ability to respond is not sufficient.
以上説明した如く、従来の高負荷を目的とした燃焼装置
にあっては、いずれも高負荷燃焼とTDFIの拡大を同
時に満足するものではなかった。又燃焼装置が複雑にな
りファンも含めた燃焼器全体としての小型化は十分追究
されていなかった。As explained above, none of the conventional combustion devices intended for high-load combustion can simultaneously satisfy high-load combustion and expansion of TDFI. Furthermore, the combustion device has become complicated, and miniaturization of the entire combustor including the fan has not been sufficiently pursued.
本発明は燃焼室壁をフィンと水管によって構成し熱交換
器とし、その一部に二次空気噴出口を多段に設け、二次
空気温度の安定化(常温レベル)と負荷に応じ空気噴出
速度を変えた空気供給を行うことにより、上記従来欠点
を解消するものである。以下本発明の一実施例について
第1図〜第6図に基づいて説明する。The present invention consists of a combustion chamber wall made up of fins and water pipes to serve as a heat exchanger, and a part of the combustion chamber is provided with multiple secondary air jet ports to stabilize the secondary air temperature (normal temperature level) and air jet speed according to the load. By supplying air with different values, the above-mentioned conventional drawbacks can be overcome. An embodiment of the present invention will be described below with reference to FIGS. 1 to 6.
第1図〜第2図において、1は燃焼用空気を供給するフ
ァンであり、その供給口1′は一次空気通路2と二次空
気供給通路の第1通路3.第2通路4と連通し、二次空
気供給通路の一部から二次バイパス通路19を設けてい
る。それぞれの通路2゜3、−4.19には空気調整用
の可動ダンパー6゜6、7. 21を途中に設けている
。1 and 2, 1 is a fan that supplies combustion air, and its supply port 1' is connected to the primary air passage 2 and the first passage 3. of the secondary air supply passage. A secondary bypass passage 19 is provided which communicates with the second passage 4 and extends from a part of the secondary air supply passage. Movable dampers 6°6, 7. for air adjustment are installed in each passage 2°3, -4.19. 21 is placed in the middle.
第1通路3はその下流部に設−けられた均圧室を兼ねた
二次空気室8に連通し、第2通路4は同じく二次空気室
9に至っている。二次空気室8,9は燃焼室16を形成
するフィン、パイプ一体化熱交換器部16に密着し、そ
の一部に設けた二次空気噴出口10,11と連通してい
る。二次バイノース通路19は燃焼室15の下流に設け
られている排気室20と連通している。The first passage 3 communicates with a secondary air chamber 8 which also serves as a pressure equalization chamber provided downstream thereof, and the second passage 4 also leads to a secondary air chamber 9. The secondary air chambers 8 and 9 are in close contact with the fin and pipe integrated heat exchanger section 16 forming the combustion chamber 16, and are in communication with secondary air jet ports 10 and 11 provided in a part thereof. The secondary binorth passage 19 communicates with an exhaust chamber 20 provided downstream of the combustion chamber 15.
13はバーナ本体で炎口14は燃焼室15に臨む構成で
あり、炎口14の下流の燃焼室16において二次空気噴
出口10.11と段階的に位置している。バーナ本体1
4の上流は一次空気通路2が連通し、通路内には燃料噴
射用ノズル12を設置している。1了はフィンパイプ一
体化熱交換器16の水通路であり、18は燃焼室16の
下流に設ける排気出口である。Reference numeral 13 denotes a burner main body, and the burner port 14 faces the combustion chamber 15, and is located in stages with the secondary air jet ports 10 and 11 in the combustion chamber 16 downstream of the burner port 14. Burner body 1
A primary air passage 2 communicates with the upstream side of the primary air passage 4, and a fuel injection nozzle 12 is installed in the passage. 1 is a water passage of the fin-pipe integrated heat exchanger 16, and 18 is an exhaust outlet provided downstream of the combustion chamber 16.
上述構成よりなる本発明の燃焼装置における動作2作用
について述べる。ファン1により供給される燃焼用空気
はその一部が一次空気通路2を通り可動ダンパー6で適
切な供給量に調整された後、途中に設けられた燃料噴射
ノズル12より噴出された燃料と混合して混合気となり
、バーナ本体13に送り込まれる。バーナ本体13に供
給された混合気はさらに混合を促進し整流された後、炎
口14より均一に燃焼室15内部に噴出され火炎を形成
する。The second operation of the combustion apparatus of the present invention having the above-mentioned configuration will be described. A part of the combustion air supplied by the fan 1 passes through the primary air passage 2, is adjusted to an appropriate supply amount by the movable damper 6, and is then mixed with fuel injected from the fuel injection nozzle 12 provided midway. The mixture becomes a mixture and is sent to the burner body 13. The air-fuel mixture supplied to the burner body 13 is further mixed and rectified, and then uniformly jetted into the combustion chamber 15 from the flame port 14 to form a flame.
一方、第1通路3及び第2通路を通って供給される二次
空気は可動ダン・<−5,21と二次ノくイパス通路1
9内の可動ダンノζ−7で燃焼量に応じて、適切な供給
量に調整された後、二次空気室8゜9に入り二次空気噴
出口10.11を通って均一に燃焼室16内に形成され
る火炎に向って懐−屯する。火炎はこの二次空気噴流の
ため燃焼室15全域に渡って広がり、フィン・・;イブ
一体化熱交換器17と熱交換を行った後、排気室20で
二次空気バイパス通路19からの空気と混合し排気出口
18より排出される。1了の水通路内の熱媒体は通常、
水を用いるが目的に応じて油、フレオンガスなどの搬送
可能な熱媒体なら問題はない。On the other hand, the secondary air supplied through the first passage 3 and the second passage is connected to the movable air pass passage 1.
After adjusting the supply amount to an appropriate amount according to the combustion amount with the movable Danno ζ-7 in 9, it enters the secondary air chamber 8゜9, passes through the secondary air jet nozzle 10.11, and is evenly distributed into the combustion chamber 16. It turns toward the flames that form within. The flame spreads over the entire combustion chamber 15 due to this secondary air jet, and after exchanging heat with the fin-like integrated heat exchanger 17, air from the secondary air bypass passage 19 flows into the exhaust chamber 20. and is discharged from the exhaust outlet 18. The heat medium in the water passage is usually
Water is used, but depending on the purpose, there is no problem if the heat medium can be transported such as oil or Freon gas.
次に上記燃焼装置の作用について第3〜第6図を用いて
説明する。燃焼量が大きい場合には第3図に示すように
第1通路3.第2通路4の途中に設けられた可動ダンパ
ー6.21を開き・くイノシス用の可動ダンパー7を閉
じ空気量を設定し、上流側及び下流側の二次空気噴出口
10.11からの二次空気を燃焼室16内に形成される
火炎に向って噴射させる。この場合、上流側の二次空気
流速は下流側より大きく設定する条件である。Next, the operation of the above combustion device will be explained using FIGS. 3 to 6. When the amount of combustion is large, the first passage 3. The movable damper 6.21 provided in the middle of the second passage 4 is opened and the movable damper 7 for air purification is closed to set the amount of air. The secondary air is injected towards the flame formed within the combustion chamber 16. In this case, the condition is that the secondary air flow velocity on the upstream side is set higher than that on the downstream side.
ここで前述した如く、二火炎はCOやH2などの未燃成
分が多量に含まれているが、この火炎への二次空気噴射
による強制空気供給及び強制混合により酸化反応が著し
く促進される。特に上流側の空気流速を大きく設定する
ことにより、この傾向はさらに高まる。このように二次
炎ムは第3図に示すように、二次空気噴流のため燃焼室
15のほぼ全域に広げられ、燃焼室15の空間を十分に
利用して、その全域で燃焼反応が行なわれる。従って燃
焼室15が小さくても大容量の燃焼が可能となり、燃焼
室の負荷が1〜2 KcalX10’、i−程度も可能
となる。又燃焼室16内のほぼ全域に広げられた火炎は
フィン・パイプ一体化熱交換器17で十分に熱交換を行
うため、二次空気室8,9内の二次空気温度上昇を大幅
に減少すると同時に二次空気噴出口10.11の温度上
昇も少なく安定した二次空気供給を維持する。従って二
次空気供給のだめの送風圧は小さくても可能でファン1
も小型化となり騒音も小さくなる。As mentioned above, the secondary flame contains a large amount of unburned components such as CO and H2, but the forced air supply and forced mixing by secondary air injection to this flame significantly accelerates the oxidation reaction. In particular, by setting the air flow velocity high on the upstream side, this tendency will further increase. In this way, as shown in Fig. 3, the secondary flame is spread over almost the entire area of the combustion chamber 15 due to the secondary air jet, and the space of the combustion chamber 15 is fully utilized to allow the combustion reaction to take place in that area. It is done. Therefore, even if the combustion chamber 15 is small, a large amount of combustion is possible, and the load on the combustion chamber can be about 1 to 2 KcalX10', i-. In addition, the flame spread over almost the entire area inside the combustion chamber 16 undergoes sufficient heat exchange with the fin-pipe integrated heat exchanger 17, which greatly reduces the temperature rise of the secondary air inside the secondary air chambers 8 and 9. At the same time, the temperature rise at the secondary air outlet 10.11 is also small, and a stable secondary air supply is maintained. Therefore, it is possible even if the blowing pressure of the secondary air supply reservoir is small.
It is also smaller and produces less noise.
一方この状態のまま絞っていくと、第4図に示すように
、二火炎Bは二次空気噴出口10から供給される二次空
気の影響を強く受け、炎口14に近接していく。ここで
燃焼室負荷とCO濃度の関係を示した第6図に基づいて
説明する。燃焼速度の小さい燃料や拡散速度の小さい燃
料の場合には、火炎基部への二次空気噴出口1oから二
次空気噴射による急冷却のため燃焼反応による発熱速度
とのバランスが崩れ、燃焼反応の凍結やリフティングを
生じる。そのため曲線aに示したように、低燃焼室負荷
になると急激にCOなどの未燃成分が発生する。又、燃
焼速度の大きな燃料では火炎が炎口14に密着し曲線す
の斜線部Vの領域で炎口に第1通路3内に設けられた可
動ダンパー6を閉じて、二次バイパス通路14内に設け
られた可動ダンパー7を開きバイパス空気を設定し、二
次空気室8への空気供給を少なくし、空気流速を遅くす
ることにより、第6図に示すように、二火炎Cは下流側
の二次空気を供給する。二次空気噴出口11に位置まで
酸素不足のだめ伸長し、且つ広がる。この場合、第4図
の時のような火炎基部の急冷がないため、−火炎は空気
流れに乱されることなく安定した火炎になる。そのため
二次空気噴出口11よりも上流側は安定した高温度領域
となるため、二次空気による急激な火炎冷却が避けられ
、燃焼速度の小さい燃料や拡散速度の小さい燃料の時で
も燃焼室15内で広がった火炎Cは安定した燃焼を継続
する。更に燃焼速度の大きな燃料の場合でも、二火炎C
は燃焼室16で大きく広がるため、炎口14から離れこ
れを加熱する効果は著しく低下する。従って前述した、
炎口14の赤熱。On the other hand, if the flame is narrowed down in this state, the secondary flame B will be strongly influenced by the secondary air supplied from the secondary air outlet 10 and will approach the flame outlet 14, as shown in FIG. An explanation will now be given based on FIG. 6, which shows the relationship between combustion chamber load and CO concentration. In the case of fuel with a low combustion rate or a fuel with a low diffusion rate, the balance with the heat generation rate due to the combustion reaction is lost due to rapid cooling due to the secondary air injection from the secondary air jet port 1o to the flame base, resulting in a decrease in the combustion reaction. Causes freezing and lifting. Therefore, as shown in curve a, when the combustion chamber load becomes low, unburned components such as CO are suddenly generated. In addition, when using fuel with a high burning speed, the flame adheres closely to the flame nozzle 14, and the movable damper 6 provided in the first passage 3 is closed to the flame nozzle in the shaded area V of the curved line. By opening the movable damper 7 provided in supply secondary air. The secondary air outlet 11 expands and expands due to lack of oxygen. In this case, since there is no rapid cooling of the flame base as in the case of FIG. 4, - the flame becomes a stable flame without being disturbed by air flow. Therefore, the area upstream of the secondary air nozzle 11 becomes a stable high temperature region, so rapid flame cooling by the secondary air can be avoided, and even when fuel with a low combustion rate or a fuel with a low diffusion rate is used, the combustion chamber 15 The flame C that spreads inside continues stable combustion. Furthermore, even in the case of fuel with a high burning speed, two flames C
Since the flame spreads widely in the combustion chamber 16, it separates from the flame nozzle 14 and its effectiveness in heating it is significantly reduced. Therefore, as mentioned above,
The red heat of the flame outlet 14.
フラッシュバック現象を完全に防止できる。このような
条件を満たすことによって、いずれの燃料の場合でも第
6図に示す曲線Cの特性を得ることが可能であり、広い
燃焼室負荷の範囲、即ちTDRの大きな領域で良好燃焼
を実現することができる。Flashback phenomenon can be completely prevented. By satisfying these conditions, it is possible to obtain the characteristics of curve C shown in Figure 6 for any fuel, and achieve good combustion in a wide range of combustion chamber loads, that is, in a large TDR region. be able to.
又二次空気をバイパスさせることによって、ファンを過
負荷の状態で使用することがなく、燃焼装置としての信
頼性の大幅向上になり、且つノ(イパス空気を排気室2
oに送り込む方式であり、排気ガスの結露防止にも効果
的である。又燃焼量変化時においても燃焼側の空気制御
のみであることから排気出口18からの排ガス吐出圧は
十分にあり、FF化、FK化に対しても十分に対応でき
るものである。In addition, by bypassing the secondary air, the fan will not be used in an overloaded state, greatly improving the reliability of the combustion device.
This method is effective in preventing condensation of exhaust gas. Moreover, even when the combustion amount changes, since only the air control on the combustion side is performed, the exhaust gas discharge pressure from the exhaust outlet 18 is sufficient, and it is possible to sufficiently cope with the conversion to FF and FK.
以上の説明から明らかのように、本発明の燃焼装置によ
れば次の効果が得られる。As is clear from the above description, the combustion apparatus of the present invention provides the following effects.
(1)火炎に対して二次空気を噴射し、上流側と下流側
の空気流速を変えることで強制空気供給と強制混合の効
果的な促進を図り、燃焼室空間のほぼ全域で燃焼反応を
行い、且つこれを促進して小さな燃焼室で大容量の燃焼
を実現できるので燃焼装置の小型化を実現する。(1) By injecting secondary air into the flame and changing the air flow velocity on the upstream and downstream sides, forced air supply and forced mixing are effectively promoted, and the combustion reaction is achieved throughout almost the entire combustion chamber space. By promoting this process, large-capacity combustion can be achieved in a small combustion chamber, thereby realizing downsizing of the combustion device.
(2)燃焼ガスの流れ方向に互いに独立した複数の二次
空気室を設け、火炎への二次空気供給を太燃焼量時は全
空気噴出口より空気を供給し、小燃焼時には下流側の空
気供給を少なくし空気流速を遅くすることにより、高負
荷燃焼の実現と低負荷時の安定燃焼を可能としTDR燃
焼の性能面上を実現する。(2) A plurality of independent secondary air chambers are provided in the flow direction of combustion gas, and secondary air is supplied to the flame from all air outlets during large combustion, and from the downstream side during small combustion. By reducing the air supply and slowing the air flow velocity, high-load combustion and stable combustion at low loads are made possible, and the performance of TDR combustion is achieved.
(3)上記の二次空気供給法の制御と合わせて、燃焼室
内にガイド板やバッフルを設けなくてもよいため、燃焼
室は簡単な構成となると共に特性の異なる種々の燃料に
対して、いずれも良好な燃焼を維持でき燃焼装置のユニ
バーサル化が図れる。(3) In addition to controlling the secondary air supply method described above, since there is no need to provide a guide plate or baffle inside the combustion chamber, the combustion chamber has a simple configuration and is suitable for various fuels with different characteristics. Both can maintain good combustion and make combustion devices universal.
(4)燃焼室壁を熱交換部として構成し且つ噴出口を設
けることにより、二次空気室の温度上昇の防止と空気加
熱が減少し、内圧を低下させることが実現でき、送風圧
の小さい小型のファンが使用できるため、騒音が小さく
なると共に燃焼器システム全体の小型、軽量化を図るこ
とができる。更にコストメリットも十分である。(4) By configuring the combustion chamber wall as a heat exchange part and providing a jet nozzle, it is possible to prevent the temperature rise in the secondary air chamber, reduce air heating, and lower the internal pressure, resulting in low blowing pressure. Since a small fan can be used, noise is reduced and the entire combustor system can be made smaller and lighter. Furthermore, the cost advantage is also sufficient.
(5)二次空気バイパス方式であるため、ファンの風量
制御を行なわなくとも、TDR燃焼を簡単に実現できる
と共にバイパス空気による排ガス結露の防止、又排気吐
出圧を変えることがないため、燃焼装置のFF化、FE
化の場合でも、十分に耐風性能を確保できる。(5) Since it is a secondary air bypass system, TDR combustion can be easily achieved without the need to control the air volume of the fan, and exhaust gas condensation due to bypass air is prevented, and the exhaust discharge pressure does not change, so the combustion system FF conversion, FE
sufficient wind resistance performance can be ensured even in the case of
第1−図は本発明の燃焼装置の一実施例を示す全体断面
図、第2図は同燃焼装置の断面を示す斜視図、第3図〜
第5図は同燃焼装置により形成される火炎状態を示す断
面図、第6図は同燃焼装置におけるTDR燃焼時の燃焼
室負荷に対するCO濃度を示す特性図、第7図〜第10
図は従来例の断面図である。
1・・・・・・ファン、3・・・・・・第1通路、4・
・・・・・第2通路、6. 7. 21・・・・・・可
動ダンパー、8,9・・・・・・二次空気室、1o、1
1・・・・・・二次空気噴出口、13・・・・・・バー
ナ本体、14・・・・・・炎口、16・・・・・・燃焼
室、16・・・・・・フィン・パイプ一体型熱交換器、
19・・・・・・二次空気バイパス通路、20・・・・
・・排気室、人。
B、 0・・・・・・二火炎。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
第2図
第 3 図
第4図
第5図
第6図
*v!!、¥’f4’;@ tro’(*rd/H
,p)第7図
第8図
第9図
DGFig. 1 is an overall sectional view showing an embodiment of the combustion apparatus of the present invention, Fig. 2 is a perspective view showing a cross section of the combustion apparatus, and Figs.
Fig. 5 is a cross-sectional view showing the flame state formed by the same combustion device, Fig. 6 is a characteristic diagram showing the CO concentration with respect to the combustion chamber load during TDR combustion in the same combustion device, and Figs.
The figure is a sectional view of a conventional example. 1...Fan, 3...1st aisle, 4.
...Second passage, 6. 7. 21...Movable damper, 8,9...Secondary air chamber, 1o, 1
1... Secondary air outlet, 13... Burner body, 14... Flame port, 16... Combustion chamber, 16... Fin-pipe integrated heat exchanger,
19... Secondary air bypass passage, 20...
...Exhaust room, people. B. 0...Two flames. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 *v! ! , ¥'f4'; @ tro' (*rd/H
, p) Figure 7 Figure 8 Figure 9 DG
Claims (1)
口を臨ませたバーナの炎口上に二次空気を導入する手段
を備えた燃焼装置において、前記燃焼室が熱交換器構成
を有し、かつ燃焼室壁に複数の二次空気噴出口を設ける
とともに、この二次空気噴出口と連通ずる複数の二次空
気室を燃焼室壁外に燃焼ガスの流れ方向に互いに独立し
て段階的に設け、火炎に対して段階的空気供給法を構成
し、二次空気噴出口からの空気流速を二次空気のバイパ
ス回路を排気室に導き制御し燃焼量変化に対応して設定
することを特徴とする燃焼装置。A combustion apparatus comprising a combustion chamber, a device for supplying combustion air, and a means for introducing secondary air onto a burner with a flame port facing into the combustion chamber, wherein the combustion chamber has a heat exchanger configuration. In addition, a plurality of secondary air nozzles are provided in the combustion chamber wall, and a plurality of secondary air chambers communicating with the secondary air nozzles are arranged outside the combustion chamber wall in stages independently of each other in the flow direction of combustion gas. A stepwise air supply method is established for the flame, and the air flow rate from the secondary air outlet is controlled by guiding the secondary air bypass circuit to the exhaust chamber and set in response to changes in the amount of combustion. A combustion device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56099494A JPS587A (en) | 1981-06-25 | 1981-06-25 | Combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56099494A JPS587A (en) | 1981-06-25 | 1981-06-25 | Combustion device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS587A true JPS587A (en) | 1983-01-05 |
Family
ID=14248844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56099494A Pending JPS587A (en) | 1981-06-25 | 1981-06-25 | Combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS587A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5886041A (en) * | 1989-08-15 | 1999-03-23 | Tristrata Technology, Inc. | Amphoteric compositions and polymeric forms of alpha hydroxyacids, and their therapeutic use |
US6236521B1 (en) | 1998-02-09 | 2001-05-22 | Canon Kabushiki Kaisha | Objective lens and image pickup device using the same |
-
1981
- 1981-06-25 JP JP56099494A patent/JPS587A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5886041A (en) * | 1989-08-15 | 1999-03-23 | Tristrata Technology, Inc. | Amphoteric compositions and polymeric forms of alpha hydroxyacids, and their therapeutic use |
US6236521B1 (en) | 1998-02-09 | 2001-05-22 | Canon Kabushiki Kaisha | Objective lens and image pickup device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5494437A (en) | Gas burner | |
EP1205710B1 (en) | Combustion method and burner | |
JPS587A (en) | Combustion device | |
JPS586A (en) | Combustion device | |
JPH01155108A (en) | Pre-mixing type gas burner | |
JPS5883112A (en) | Burner | |
JPS60233419A (en) | Combustion device | |
JPS6327606B2 (en) | ||
JPS604726A (en) | Combustion apparatus for hot water supply | |
JPS5849816A (en) | Burner | |
CN115585457B (en) | Partial premixed combustion rate regulation and control straight flame combustor | |
JPH02157514A (en) | Low noise high load combustion device | |
JP2568965B2 (en) | Water heater | |
JP2956215B2 (en) | Combustion equipment | |
US4474551A (en) | Combustion apparatus | |
KR870000662B1 (en) | Combustion apparatus | |
JPH0229375Y2 (en) | ||
JPH0125846Y2 (en) | ||
JPS5843322A (en) | High-loaded combustor | |
JPS58221305A (en) | Burner | |
JP3350128B2 (en) | Hot air heater | |
JPS5883111A (en) | Burner | |
JP2715463B2 (en) | Burner | |
JPH07293836A (en) | Burner device, reduced in generation of nitrogen oxide | |
JP3269283B2 (en) | Combustion equipment |