JPS6327606B2 - - Google Patents
Info
- Publication number
- JPS6327606B2 JPS6327606B2 JP57065883A JP6588382A JPS6327606B2 JP S6327606 B2 JPS6327606 B2 JP S6327606B2 JP 57065883 A JP57065883 A JP 57065883A JP 6588382 A JP6588382 A JP 6588382A JP S6327606 B2 JPS6327606 B2 JP S6327606B2
- Authority
- JP
- Japan
- Prior art keywords
- flame
- combustion
- air
- small
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002485 combustion reaction Methods 0.000 claims description 98
- 239000000567 combustion gas Substances 0.000 claims description 4
- 239000000446 fuel Substances 0.000 description 35
- 238000002347 injection Methods 0.000 description 13
- 239000007924 injection Substances 0.000 description 13
- 238000009834 vaporization Methods 0.000 description 13
- 230000008016 vaporization Effects 0.000 description 13
- 239000007788 liquid Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 206010016754 Flashback Diseases 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000006200 vaporizer Substances 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 239000007921 spray Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 1
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)
- Gas Burners (AREA)
- Evaporation-Type Combustion Burners (AREA)
- Spray-Type Burners (AREA)
Description
【発明の詳細な説明】
本発明は給湯器や暖房器などの家庭用燃焼器具
のうち、フアンなどを用いて強制燃焼を行なわせ
火炎長を短くして燃焼部の小型化を図つた燃焼装
置に関するものである。[Detailed Description of the Invention] The present invention provides a combustion device for household combustion appliances such as water heaters and space heaters that uses a fan or the like to perform forced combustion and shorten the flame length to reduce the size of the combustion part. It is related to.
従来この種の燃焼装置の一例として第7A図
A,Bに示すような構成のものがある。これは主
として液体燃料の燃焼装置であるが、内部に気化
用ヒータ100を備えた仕切壁部101で仕切ら
れた上部気化室102と下部気化室103のそれ
ぞれ独立した気化室を形成して構成される筒状の
気化体104を設け、この気化体104の各気化
室102,103にはそれぞれ噴霧ノズル10
5,106と液送ポンプ107,108が分岐し
た送油パイプ109により各々独立して供給され
る二系統式の液体燃料供給系が設けられている。
そして気化体104の頂部には各種の仕切板11
0の上部に、多数の炎口溝111を備えた錐筒状
のバーナプレート112が連結され第一の燃料混
合系を形成し、気化体104の下部に設けられた
連通孔113と気化体104の上部両側に多数の
スリツト状炎口114を備えたバーナプレート1
15より成る第二の燃料混合系を形成している。
またバーナプレート115の外側には二次空気室
116が左右一対設けられており、上部には多数
の二次空気の側方噴射口117が備えられた噴射
板118が傾斜して設けられている。なお燃焼用
空気はフアン(図示せず)により送風ダクト11
9より燃焼部に供給される。 An example of a conventional combustion apparatus of this type is one having a configuration as shown in FIGS. 7A and 7B. This is mainly a liquid fuel combustion device, but it is constructed by forming independent vaporization chambers, an upper vaporization chamber 102 and a lower vaporization chamber 103, which are separated by a partition wall 101 that is equipped with a vaporization heater 100 inside. A cylindrical vaporizer 104 is provided, and each vaporization chamber 102, 103 of this vaporizer 104 is provided with a spray nozzle 10.
A two-system liquid fuel supply system is provided in which liquid fuel 5, 106 and liquid feed pumps 107, 108 are independently supplied through oil feed pipes 109 which are branched from each other.
Various partition plates 11 are placed on the top of the vaporized body 104.
A conical burner plate 112 equipped with a large number of flame opening grooves 111 is connected to the upper part of the 0 to form a first fuel mixing system, and a communication hole 113 provided at the lower part of the vaporizer 104 and the vaporizer 104 A burner plate 1 equipped with a large number of slit-like flame ports 114 on both sides of the upper part of the burner plate 1.
15 to form a second fuel mixing system.
Further, a pair of left and right secondary air chambers 116 are provided on the outside of the burner plate 115, and an injection plate 118 provided with a large number of side injection ports 117 for secondary air is provided at an angle at the upper part. . The combustion air is supplied to the ventilation duct 11 by a fan (not shown).
9 to the combustion section.
この燃焼装置の場合、送風ダクト119より供
給された燃焼用空気は、左右一対の二次空気室1
16と気化体104内の上部気化室102と下部
気化室103にそれぞれ二次空気および一次空気
として供給される。 In the case of this combustion device, the combustion air supplied from the ventilation duct 119 is supplied to the left and right secondary air chambers 1.
16 and the upper vaporization chamber 102 and lower vaporization chamber 103 in the vaporizer 104 as secondary air and primary air, respectively.
一方、液体燃料は送油パイプ109を通り、液
送ポンプ107,106により昇圧されて噴霧ノ
ズル105,106によりそれぞれ上、下部の気
化室102,103に各々供給される。第一燃料
混合系として上部気化室102内へ供給された液
体燃料は気化用ヒータ100によつて加熱され気
化し、仕切板110を通過する間に一次空気と混
合してバーナプレート112に達し、炎口溝11
1より流出して中央部火炎を形成する。また第二
燃料混合系として下部気化室103内へ供給され
た液体燃料も同様に、気化し連通孔113を通り
気化体104の下部より流出して気化体104と
二次空気室116の間の空隙を通過する間に一次
空気と混合してバーナプレート115に達し、炎
口114より流出して気化体104の両側に側方
火炎を形成する。一方二次空気は二次空気室11
6より側方噴射口117を通り、両側よりバーナ
プレート112,115上の火炎に供給される。 On the other hand, the liquid fuel passes through an oil feed pipe 109, is pressurized by liquid feed pumps 107 and 106, and is supplied to upper and lower vaporization chambers 102 and 103 by spray nozzles 105 and 106, respectively. The liquid fuel supplied into the upper vaporization chamber 102 as the first fuel mixing system is heated and vaporized by the vaporization heater 100, mixes with primary air while passing through the partition plate 110, and reaches the burner plate 112. Enguchi groove 11
1 and forms a central flame. Similarly, the liquid fuel supplied into the lower vaporization chamber 103 as the second fuel mixing system is vaporized and flows out from the lower part of the vaporization body 104 through the communication hole 113 and flows between the vaporization body 104 and the secondary air chamber 116. While passing through the gap, it mixes with the primary air, reaches the burner plate 115, flows out from the flame port 114, and forms side flames on both sides of the vaporized body 104. On the other hand, the secondary air is in the secondary air chamber 11
6 passes through the side injection ports 117 and is supplied to the flames on the burner plates 112, 115 from both sides.
このように火炎は互いに独立した燃料供給系に
よりバーナプレート112及び115にそれぞれ
独立した中央部火炎及び側方火炎を形成するの
で、安定燃焼を維持したままで火力調節のできる
いわゆるTDR(Turn Down Ratio)範囲は、液
送ポンプ107及び108のいずれか一方を止め
て中央部火炎か側方火炎のいずれか片方のみの火
炎にすることにより、さらに噴霧ノズル105及
び106の初期の流量設定比を変化させることに
よつて、液送ポンプ107,108の一方を休止
させることによつて本来可能なTDR範囲を大幅
に拡大することが可能となる。 In this way, the flame forms independent central flames and side flames on the burner plates 112 and 115 through independent fuel supply systems, so the so-called TDR (Turn Down Ratio) allows the flame to be adjusted while maintaining stable combustion. ) The range can be further changed by changing the initial flow rate setting ratio of the spray nozzles 105 and 106 by stopping either one of the liquid feed pumps 107 and 108 to create only one of the central flame and side flame. By doing so, by stopping one of the liquid feed pumps 107 and 108, it becomes possible to significantly expand the originally possible TDR range.
しかし最大燃焼量時にはバーナプレート112
上には中央部火炎が、又その両側のバーナプレー
ト115上には側方火炎がそれぞれ形成されるた
め火炎幅が広くなる。従つて両側に設けられた側
方噴射口117より供給される二次空気は、中央
部火炎まで届きにくく、従つて中央部火炎は下流
方向に長く伸び、又Yellowも現われ易い。従つ
て燃焼室は下流方向に長いものが要求される。こ
れをさらに詳しく示したものが第4図である。イ
エロー曲線は二次空気噴出速度V2を増せば量論
比〔=(供給された燃料)/(供給された一次空気量)
/
(単位燃料)/(単位燃料の理論空気量)〕の大きい側
に後退し、
安定した青火の領域が拡大することが発明者等の
実験により明らかとなつた。すなわち第4図中の
従来例のイエロー曲線aは、v2を増すと本発明の
曲線で示す位置まで後退し、安定したブルーフレ
ームの領域が拡大する。また二次空気の噴出速度
v2が同じであれば、二次空気噴出口から火炎中心
部までの距離が小さい。従来例のイエロー曲線b
は、距離が大きいイエロー曲線aよりも安定した
ブルーフレームの領域が拡大することも分つた。
従つて第7図A,Bの様な燃焼装置では中央部火
炎の中心部と、側方噴射口117までの距離が大
きいため、同じ二次空気噴出速度V2に対するイ
エロー曲線は第4図中の曲線aの様な特性を示
し、安定範囲は狭くかつ火炎は長くなる。一方、
バーナプレート112,115の幅を燃焼量一定
のまま狭くした場合には、炎口負荷が高くなり混
合気噴出速度Vnixが大きくなるため二次空気が火
炎中央部まで供給される位置はより下流側に移動
するため火炎はより長くなりより大きな燃焼室が
要求される。 However, at the maximum combustion amount, the burner plate 112
A central flame is formed above, and side flames are formed on the burner plates 115 on both sides, so that the flame width becomes wide. Therefore, the secondary air supplied from the side injection ports 117 provided on both sides has difficulty reaching the central flame, and therefore the central flame extends long in the downstream direction, and yellow tends to appear. Therefore, the combustion chamber is required to be long in the downstream direction. FIG. 4 shows this in more detail. The yellow curve shows that if you increase the secondary air injection velocity V2 , the stoichiometric ratio [= (supplied fuel) / (supplied primary air amount)]
/ (unit fuel) / (theoretical air amount of unit fuel)] retreats to the larger side, and the stable blue fire region expands, as revealed by experiments by the inventors. That is, when v 2 is increased, the yellow curve a of the conventional example in FIG. 4 retreats to the position shown by the curve of the present invention, and the stable blue frame region expands. Also, the ejection speed of secondary air
If v 2 is the same, the distance from the secondary air outlet to the flame center is small. Conventional yellow curve b
It was also found that the stable blue frame area is expanded compared to the yellow curve a, which has a large distance.
Therefore, in the combustion apparatus shown in FIGS. 7A and 7B, the distance between the center of the central flame and the side injection ports 117 is large, so the yellow curve for the same secondary air injection velocity V 2 is as shown in FIG. 4. It exhibits characteristics like curve a, with a narrow stable range and a long flame. on the other hand,
If the width of the burner plates 112, 115 is narrowed while keeping the combustion amount constant, the load at the flame port will increase and the mixture injection speed V nix will increase, so the position where secondary air is supplied to the center of the flame will be more downstream. As it moves to the side, the flame becomes longer and a larger combustion chamber is required.
ここで二次空気噴出速度V2を上げてこの課題
を解決することが考えられるが、それには以下に
示す二つの問題があつた。 It is conceivable to solve this problem by increasing the secondary air jet velocity V2 , but this has the following two problems.
まず第1にV2を増すためには、送風圧の大き
な大型のフアンが要求される。また小型のフアン
で回転数を上げると騒音の問題が発生する。 First of all, in order to increase V2 , a large fan with high blowing pressure is required. Also, increasing the rotation speed with a small fan can cause noise problems.
第2の問題としては火炎基部が大きなV2の影
響を受けて不安定となり、非定常火炎となつて火
炎帯が間欠的に破れCOなどの未燃成分が発生す
るいわゆる“生燃え”現象の発生である。これを
説明したのが第5図である。火炎は前述のイエロ
ー曲線と生燃え曲線の両限界線に囲まれた範囲内
で安定した安定した青火を形成する。ここで炎口
負荷が大きなバーナでは小さなV2でイエローが
消失するが同時に“生燃え”の発生するV2も小
さくなる。従つて単に炎口負荷を増しただけのバ
ーナに大きなV2で対応すれば“生燃え”が発生
してしまう。 The second problem is that the flame base becomes unstable due to the influence of large V 2 , resulting in an unsteady flame, which causes the so-called "green burning" phenomenon in which the flame zone breaks intermittently and unburned components such as CO are generated. It is an occurrence. FIG. 5 illustrates this. The flame forms a stable blue flame within the range surrounded by both the limit lines of the yellow curve and the green curve described above. Here, in a burner with a large flame load, the yellow color disappears with a small V 2 , but at the same time the V 2 at which "raw burning" occurs also becomes small. Therefore, if a large V2 is applied to a burner that simply increases the load on the burner, "raw burning" will occur.
以上二つの問題の他に、燃焼速度の大きな燃料
を使用する場合には火炎がバーナプレート11
2,115近くで燃焼が完了してしまう。従つて
特に中央部に位置するバーナプレート112は周
囲にある火炎により加熱され炎口温度が上昇し易
く、フラツシユバツクを起こし勝ちである。よつ
て燃焼速度の大きな燃料での使用には適さない。 In addition to the above two problems, when using fuel with a high combustion speed, the flame may not reach the burner plate 11.
Combustion is completed near 2,115. Therefore, the burner plate 112 located particularly in the center is heated by the surrounding flames and the temperature of the flame opening tends to rise, which tends to cause flashback. Therefore, it is not suitable for use with fuels that have a high burning rate.
さらに二系統の燃料供給系を備えているために
噴霧ノズル及び液送ポンプが各々二個必要とする
ために大きなコストアツプ要因となる。 Furthermore, since two fuel supply systems are provided, two spray nozzles and two liquid pumps are required, which becomes a major cost increase factor.
また他の従来例として第8図に示すような構成
を持つ燃焼装置がある。これは本体120内部
に、上方に連通孔121を備えた混合気室122
と絞り部123先端に二次空気噴出口124を備
えた二次空気室125とが仕切壁126によつて
仕切られ、かつ絞り部123の両側には下流方向
に傾斜した三角形状の炎口127が設けられた通
路体128が、本体120の溝129と炎口12
7の両側端によつて支持されている。 Another conventional example is a combustion apparatus having a configuration as shown in FIG. This has a mixture chamber 122 inside the main body 120, which has a communication hole 121 at the top.
and a secondary air chamber 125 equipped with a secondary air outlet 124 at the tip of the constriction part 123 are separated by a partition wall 126, and triangular flame ports 127 inclined downstream are provided on both sides of the constriction part 123. A passage body 128 provided with
It is supported by both ends of 7.
この燃焼装置の場合、混合気室122内より連
通孔121を流出した混合気は通路体128と本
体120の間隙を通つて炎口127より燃焼室内
に噴出され本体120の燃焼室壁に沿つて火炎を
形成する。一方二次空気は二次空気室125より
絞り部123で流速を増し二次空気噴出口124
より両側の火炎へ噴射供給される。 In this combustion device, the air-fuel mixture that has flowed out from the air-fuel mixture chamber 122 through the communication hole 121 passes through the gap between the passage body 128 and the main body 120, is ejected into the combustion chamber from the flame port 127, and is ejected along the combustion chamber wall of the main body 120. form a flame. On the other hand, the secondary air increases the flow velocity at the constriction part 123 from the secondary air chamber 125 and the secondary air outlet 124
The injection is supplied to the flames on both sides.
このように炎口を二分割し中央部より二次空気
を両側の火炎へ供給するものでは、二次空気噴出
口から火炎の二次空気を供給されるべき位置まで
の距離(この場合燃焼室壁に沿つた火炎までの距
離)が短く設定できる。従つて同じ二次空気噴出
速度V2に対するYellow曲線の特性は第4図中の
曲線bのようになり、安定燃焼域は前記従来例の
ものよりも幾分拡大される。また火炎長も前記従
来例よりも大幅に短くなるため燃焼室の小型化が
実現できる。 In this way, when the flame port is divided into two parts and secondary air is supplied from the center to the flames on both sides, the distance from the secondary air outlet to the position of the flame where secondary air is to be supplied (in this case, the combustion chamber The distance to the flame along the wall can be set short. Therefore, the characteristics of the yellow curve for the same secondary air ejection velocity V 2 are as shown by curve b in FIG. 4, and the stable combustion region is somewhat expanded compared to that of the conventional example. Furthermore, since the flame length is significantly shorter than that of the conventional example, the combustion chamber can be made smaller.
ここで炎口が燃焼室壁に近づくにしたがつて薄
くなつており混合気の通気抵抗が中央部よりも小
さくなるため、燃焼室側の混合気噴出速度は燃焼
室壁に近づくにしたがつて大きくなる。よつて形
成される火炎は燃焼室壁に沿つて火炎が伸びるこ
とになる。この場合燃焼量を絞つてをゆくと、燃
焼速度の遅い燃料の場合は燃焼室壁面で冷却を受
けいわゆる消炎を生じ不完全燃焼を発生する。一
方燃焼速度の大きな燃料では炎口近くで燃焼が完
了してしまうので炎口を加熱する。しかし燃焼室
壁側の炎口では熱容量も小さく、かつ燃焼量も多
いため炎口は異常加熱を受けやすくフラツシユバ
ツクを生じやすい。 Here, the flame port becomes thinner as it approaches the combustion chamber wall, and the ventilation resistance of the mixture becomes smaller than in the center, so the mixture injection speed on the combustion chamber side increases as it approaches the combustion chamber wall. growing. The flame thus formed will extend along the walls of the combustion chamber. In this case, if the amount of combustion is reduced, if the fuel has a slow combustion rate, it will be cooled on the wall of the combustion chamber, resulting in so-called flame extinction, resulting in incomplete combustion. On the other hand, if the fuel has a high combustion speed, combustion will be completed near the flame nozzle, so the flame nozzle will be heated. However, since the flame port on the wall side of the combustion chamber has a small heat capacity and a large amount of combustion, the flame port is susceptible to abnormal heating and is likely to cause flashback.
この場合にも、最大燃焼量時の炎口負荷を上げ
Vnixを大きくし同時に二次空気噴出速度V2も上
げて以上の課題を解決することが考えられるが、
この場合にも前記従来例で説明した様にフアンの
大型化と“生燃え”の発生の問題が生じる。 In this case as well, increase the flame outlet load at the maximum combustion amount.
It is possible to solve the above problems by increasing V nix and simultaneously increasing the secondary air jet velocity V 2 , but
In this case as well, as explained in the prior art example, the problem of increasing the size of the fan and occurrence of "green burning" occurs.
以上説明したように従来の燃焼装置においては
いずれも燃焼装置の小型化と、フアンも含めた燃
焼器全体の小型化、さらに燃料の種類に対する装
置のユニバーサル性とTDRの拡大また安定燃焼
域の拡大などを同時に満足するものではなかつ
た。 As explained above, conventional combustion devices are all about miniaturization of the combustion device, miniaturization of the entire combustor including the fan, universality of the device for different types of fuel, expansion of TDR, and expansion of the stable combustion range. It was not possible to satisfy both of these requirements at the same time.
本発明は従来相反して同時に全ての性能を満足
させることのできなかつたこれら燃焼装置の小型
化とフアンの小型化、TDRの拡大とユニバーサ
ル性を満たし、かつ燃焼制御の容易な安定燃焼域
の広い燃焼装置を実現することを目的とする。 The present invention satisfies the requirements of miniaturization of the combustion device and miniaturization of the fan, expansion of TDR, and universality, which conventionally conflicted with each other and could not satisfy all the performance requirements at the same time. The aim is to realize a wide combustion device.
この目的を達成するために本発明は、大空気室
と大空気室と連通し、炎口部に隣接した小空気室
より成る空気室を、直線状に並んだ多数の炎口よ
り成る炎口部の両側に備え、炎口部近傍には小空
気室と連通した多数の小噴出口を設け、炎口部よ
りも下流側には大空気室と連通し、かつ燃焼ガス
流れの下流方向に開いて傾斜した平面上に多数の
大噴出口を設けるとともに、大空気室と小空気室
は減圧手段をもつて連通させ、小噴出口からの空
気噴出速度を大噴出口からの空気噴出速度よりも
小さく構成したものである。 In order to achieve this object, the present invention provides an air chamber consisting of a large air chamber and a small air chamber communicating with the large air chamber and adjacent to a flame outlet, and a flame outlet consisting of a large number of flame outlets arranged in a straight line. A large number of small nozzles are provided on both sides of the flame nozzle and communicate with a small air chamber near the flame nozzle, and a large number of small jet nozzles are provided on the downstream side of the flame nozzle and communicate with a large air chamber and in the downstream direction of the combustion gas flow. A large number of large air outlets are provided on an open and inclined plane, and the large air chamber and the small air chamber are communicated with each other by a pressure reducing means, so that the air ejection speed from the small air outlet is lower than the air ejection speed from the large air outlet. It is also a small structure.
この構成によつて炎口部上に形成される火炎は
大空気室から減圧手段を介して炎口部に隣接した
小空気室に流入し炎口部近傍の小噴出口から供給
された低速の空気流により火炎基部に空気が供給
されるためおだやかな反応による定常な安定火炎
が形成される。また下流域では燃焼ガス流れの下
流方向に開いて傾斜した平面上に設けられた大空
気口から大空気室より減圧されない高速で噴出す
る傾斜した空気流により火炎中に両側から強制的
に空気が供給され燃焼反応を促進して火炎長が短
くなる。ここで高速の空気流によつて火炎基部も
乱れの影響を受けることになるが、前述の火炎基
部の安定化作用により定常火炎が形成されている
ため火炎帯が破れることもなく“生燃え”も発生
しない。即ち小噴出口による低速空気流により火
炎が安定化し“生燃え”を防止するとともに、大
噴出口による高速空気流によりイエローの発生を
防止し、それぞれの限界を規定する現象に対応し
た空気供給方法を実現することによつて安定燃焼
域を拡大するものである。さらに炎口部は両側の
大、小二種類の空気室内を流れる室気により間接
的に冷却を受けるので、燃焼量を絞つた燃焼速度
の大きな燃料の場合でも炎口が異常加熱してフラ
ツシユバツクを生じることがなく、燃焼速度の小
さな燃料の場合でも火炎が空気層で囲まれ燃焼室
壁などに触れて消炎を発生することもない。 With this configuration, the flame formed on the flame nozzle flows from the large air chamber through the pressure reducing means into the small air chamber adjacent to the flame nozzle, and the low-velocity flame that is supplied from the small nozzle near the flame nozzle flows into the small air chamber adjacent to the flame nozzle. Since air is supplied to the flame base by the air flow, a steady and stable flame is formed due to a gentle reaction. In addition, in the downstream region, air is forced into the flame from both sides by a large air vent that is open in the downstream direction of the combustion gas flow and jets out at high speed from the large air chamber at high speed without being depressurized. It is supplied to accelerate the combustion reaction and shorten the flame length. Here, the flame base is also affected by turbulence due to the high-speed airflow, but because a steady flame is formed due to the stabilizing effect of the flame base mentioned above, the flame zone does not break and "live combustion" occurs. does not occur either. In other words, the flame is stabilized by the low-velocity air flow from the small nozzle and prevents "raw burning", while the high-speed air flow from the large nozzle prevents the occurrence of yellow, and the air supply method corresponds to the phenomena that define the limits of each. By realizing this, the stable combustion range is expanded. In addition, the flame nozzle is indirectly cooled by the air flowing through the large and small air chambers on both sides, so even when using fuel with a high combustion rate that reduces the amount of combustion, the flame nozzle may become abnormally heated and cause flashback. Even in the case of fuel with a low combustion speed, the flame is surrounded by an air layer and does not come in contact with the walls of the combustion chamber and extinguish the flame.
以下本発明の一実施例を第1図〜第6図に基づ
いて給湯器に適応した場合について説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 6 in the case where it is applied to a water heater.
第1図〜第3図において1は燃焼用空気を供給
するフアンで吐出口には、その開口面積比によつ
て一次空気と数種の二次空気へ燃焼用空気を分割
するための分割板2を介してバーナ本体3に接続
されている。分割板2の上流側には電磁弁4を途
中に備えた燃料管5の先端にノズル6が設けられ
ている。バーナ本体3は左右対称の成形体7と中
央部の通路体8より成る。成形体7には多数のス
リツト状の炎口9より成る炎口部10と、炎口部
10近傍に多数の小噴出口11を備えた小空気室
12と、炎口部10より下流側には傾斜面13に
多数の大噴出口14を備えた大空気室15が設け
られ、かつ小空気室12と大空気室15は減圧手
段として小径で通路抵抗の大きな複数の連通口1
6により互いに連通している。一方通路体8は大
空気室17と、下流側に絞り部18が設けられて
おり、かつ絞り部両側には前記炎口部10の近傍
に多数の小噴出口19を備えた小空気室20が設
けられている。絞り部18先端には多数の大噴出
口21が、小空気室20と大空気室17の間には
複数個の連通口22が設けられている。また通路
体8と成形体7の間には、通路体8の上流側に混
合気通路23を、両側に間隙部24を構成する。
なお通路体8は小空気室20の外側に設けられた
段部25を介し両側から炎口部10により支持さ
れている。 In Figures 1 to 3, 1 is a fan that supplies combustion air, and at its discharge port there is a dividing plate that divides the combustion air into primary air and several types of secondary air according to the opening area ratio. It is connected to the burner body 3 via 2. On the upstream side of the dividing plate 2, a nozzle 6 is provided at the tip of a fuel pipe 5 having a solenoid valve 4 in the middle. The burner body 3 consists of a symmetrical molded body 7 and a passage body 8 in the center. The molded body 7 includes a flame port 10 consisting of a large number of slit-shaped flame ports 9, a small air chamber 12 equipped with a large number of small jet ports 11 near the flame port 10, and a small air chamber 12 provided with a large number of small jet ports 11 on the downstream side of the flame port 10. A large air chamber 15 having a large number of large jet ports 14 is provided on the inclined surface 13, and the small air chamber 12 and the large air chamber 15 are provided with a plurality of communication ports 1 having a small diameter and large passage resistance as pressure reducing means.
6 and communicate with each other. On the other hand, the passage body 8 is provided with a large air chamber 17 and a constriction section 18 on the downstream side, and a small air chamber 20 with a large number of small nozzles 19 near the flame opening section 10 on both sides of the constriction section. is provided. A large number of large jet ports 21 are provided at the tip of the throttle portion 18, and a plurality of communication ports 22 are provided between the small air chamber 20 and the large air chamber 17. Further, between the passage body 8 and the molded body 7, a mixture passage 23 is formed on the upstream side of the passage body 8, and gap portions 24 are formed on both sides.
Note that the passage body 8 is supported by the flame port 10 from both sides via a stepped portion 25 provided on the outside of the small air chamber 20.
バーナ本体3の下流側には燃焼室26と、燃焼
室内へ突出した多数のフイン27が設けられてお
り、さらに下流側には排気通路28と排気口29
が接続している。また燃焼室26の外周には、水
管30が設けられており熱交換を行い給湯に供さ
れる。 A combustion chamber 26 and a number of fins 27 protruding into the combustion chamber are provided on the downstream side of the burner body 3, and an exhaust passage 28 and an exhaust port 29 are provided further downstream.
is connected. Further, a water pipe 30 is provided around the outer periphery of the combustion chamber 26 to exchange heat and supply hot water.
次に上記の構成における作用を説明すると、フ
アン1により供給された燃焼用空気は、分割板2
によつて開口面積比に関連して炎口部10に供給
される一次空気と、通路体8と両側の成形体7へ
供給される3種類の二次空気に分割される。一方
燃料は電磁弁4を通り燃料管5を通つて供給さ
れ、先端のノズル6から噴射されて、分割板2よ
り分割供給された一次空気と共にバーナ本体3内
の混合気通路23へ供給される。燃料と一次空気
は混合気通路23内を通過する間に均一混合さ
れ、さらに間隙部24を通る間に均一分配されて
炎口9を通り燃焼室26内へ流出して炎口部10
上に火炎を形成する。一方両側に一対で設けられ
た成形体7内へ供給された二次空気は、大空気室
15に入り傾斜面13に設けられた大噴出口14
を通り前記炎口部10上に形成された火炎の下流
側に高速の二次空気を噴射供給する。また大空気
室15内の二次空気の一部は小径で通路抵抗の大
きな連通口16を通る間に減圧されかつ流量を制
限され、小空気室12内で流速が減速されながら
均一分配されて小噴出口11を通つて炎口部10
上に形成された火炎基部に低速の二次空気を供給
し、火炎基部でおだやかで安定した定常火炎を形
成する。同様に通路体8内に供給された二次空気
は、大空気室17から絞り部18を通過する間に
均一分配され、大噴出口21を通つて火炎の下流
側に高速の二次空気を噴射供給する。また同様に
一部は連通口22で流量を制限され、小空気室2
0内で減速されながら均一分配されて小噴出口1
9を通つて火炎基部に低速の二次空気を供給す
る。燃焼室26内で燃焼を完了した燃焼排気は、
フイン27で熱交換をした後排気通路28を通り
排気口29より外気に排出される。また燃焼室壁
とフイン27により燃焼排気から伝えられた熱
は、燃焼室26とフイン27の外周に設けれた水
管30へ伝えられ給湯へ供される。 Next, to explain the operation of the above configuration, the combustion air supplied by the fan 1 is transferred to the dividing plate 2.
The air is divided into primary air, which is supplied to the flame port 10, and three types of secondary air, which are supplied to the passage body 8 and the molded bodies 7 on both sides, depending on the opening area ratio. On the other hand, fuel is supplied through the electromagnetic valve 4 and through the fuel pipe 5, injected from the nozzle 6 at the tip, and supplied to the mixture passage 23 in the burner body 3 together with the primary air dividedly supplied from the dividing plate 2. . The fuel and primary air are uniformly mixed while passing through the mixture passage 23 , and further uniformly distributed while passing through the gap 24 , and flow out into the combustion chamber 26 through the flame port 9 to form the flame port 10 .
Form a flame on top. On the other hand, the secondary air supplied into the molded bodies 7 provided in pairs on both sides enters the large air chamber 15 and enters the large air outlet 14 provided on the inclined surface 13.
High-speed secondary air is injected and supplied to the downstream side of the flame formed on the flame port 10 through the flame opening. Further, a part of the secondary air in the large air chamber 15 is depressurized and its flow rate is restricted while passing through the communication port 16 which has a small diameter and large passage resistance, and is uniformly distributed within the small air chamber 12 while the flow velocity is reduced. The flame port 10 passes through the small spout 11
Low-velocity secondary air is supplied to the flame base formed above, forming a gentle and stable steady flame at the flame base. Similarly, the secondary air supplied into the passage body 8 is uniformly distributed while passing through the constriction part 18 from the large air chamber 17, and passes through the large jet port 21 to send high-speed secondary air to the downstream side of the flame. Supply injection. Similarly, a part of the flow rate is restricted by the communication port 22, and the small air chamber 2
Evenly distributed while being decelerated within 0, the small jet nozzle 1
9 to supply low velocity secondary air to the flame base. The combustion exhaust gas that has completed combustion within the combustion chamber 26 is
After exchanging heat with the fins 27, it passes through the exhaust passage 28 and is discharged to the outside air from the exhaust port 29. Furthermore, heat transferred from the combustion exhaust through the combustion chamber wall and the fins 27 is transferred to a water pipe 30 provided on the outer periphery of the combustion chamber 26 and the fins 27, and is supplied to hot water.
このように1つの炎口部10上に形成された火
炎は炎口部の両側より高速の二次空気が供給され
るため、従来に比べより低い二次空気流速V2で
火炎の中心部まで二次空気が供給されることにな
る。即ち火炎長も従来よりも著しく短くなつてい
る。従来は、この安定域を拡大し火炎長を短くす
るためにV2を大きくすることで対応しているが、
この場合送風圧が大きくなるのでフアンが大型化
していた。 In this way, the flame formed on one flame port 10 is supplied with high-speed secondary air from both sides of the flame port, so that the flame reaches the center of the flame at a lower secondary air flow velocity V 2 than before. Secondary air will be supplied. That is, the flame length is also significantly shorter than before. Conventionally, this was dealt with by increasing V 2 in order to expand this stability range and shorten the flame length.
In this case, the blowing pressure increases, so the size of the fan increases.
本発明ではこのように火炎長をを短くすること
による燃焼部の小型化とフアンも含めた燃焼装置
の小型化が実現できる。 In the present invention, by shortening the flame length in this manner, it is possible to realize miniaturization of the combustion section and the combustion device including the fan.
また一次空気比が大きい(量論比が小さい)火
炎では燃焼速度も大きくそれ自体比較的安定した
火炎で第3図中ロで示すような火炎形態となり、
一次空気比が小さい(量論比の大きい)火炎では
燃焼速度が小さく、周囲からの拡散によつて酸素
が供給されるため周囲の流れの状態により強く影
響を受ける不安定な火炎で、第3図中イで示すよ
うな火炎形態となる。 In addition, a flame with a large primary air ratio (small stoichiometric ratio) has a high combustion speed and is itself relatively stable, resulting in a flame shape as shown in Figure 3 (b).
A flame with a small primary air ratio (high stoichiometric ratio) has a low combustion speed, and oxygen is supplied by diffusion from the surroundings, making it an unstable flame that is strongly affected by the surrounding flow conditions. The flame form is as shown by A in the figure.
しかし一次空気比を増すと、いわゆる振動燃焼
の発生と、燃焼速度が大きく炎口部に火炎が密着
するため炎口温度が上がりフラツシユバツクを生
じ易くなる。従つて一次空気比は低目に設定され
るのが一般的である。このとき前述の如く火炎基
部は不安定となるが、本発明では炎口部の両側に
設けられた小噴出口により低速の二次空気が火炎
基部に供給されるので、火炎基部にはおだやかな
反応の定常安定火炎が形成されることになる。こ
れを従来の特性と比較したのが第5図である。こ
の火炎基部の安定化により混合気噴出速度VMIX
が小さい領域即ち、燃焼量が小さい場合でも大き
なV2に対しても安定火炎が形成され、火炎帯が
二次空気流により破れて発生する“生燃え”限界
がV2の大きい方に後退して安定燃焼域が拡大す
る。また一次空気比が変化しても火炎基部は安定
しているので、広い一次空気比の範囲で同様の結
果が得られる。 However, when the primary air ratio is increased, so-called oscillatory combustion occurs, and the combustion speed is high and the flame comes into close contact with the flame nozzle, which increases the flame nozzle temperature and makes flashback more likely to occur. Therefore, the primary air ratio is generally set low. At this time, the flame base becomes unstable as described above, but in the present invention, low-velocity secondary air is supplied to the flame base through the small jets provided on both sides of the flame mouth, so the flame base remains calm. A steady stable flame of reaction will be formed. FIG. 5 compares this with the conventional characteristics. Due to this stabilization of the flame base, the air-fuel mixture injection speed V MIX
In other words, even when the combustion amount is small, a stable flame is formed even for a large V 2 , and the limit of "live burning" that occurs when the flame zone is ruptured by the secondary air flow recedes toward the larger V 2 . The stable combustion range expands. Furthermore, since the flame base remains stable even if the primary air ratio changes, similar results can be obtained over a wide range of primary air ratios.
さらに炎口部はその両側に設けられている大、
小空気室内を流れる二次空気で間接的に冷却され
るため燃焼速度の大きな燃料の場合に生じ易い炎
口加熱によるフラツシユバツクも発生せず、火炎
が燃焼室壁などの低温部に触れることもないから
燃焼速度の小さな燃料の場合に生じ易い消炎も発
生しない。これらを説明する一例として示したの
が第6図A,Bである。燃焼性の評価の基準とし
て規格化されたCO/CO2の値をとつてその許容
範囲の広さを調べてみる。ある燃焼量における許
容空気供給範囲を調べると、一般に図中Aに示す
ような特性を示し、許容値を仮に0.005とすれば
図中に示すような上下限が表われる。これを広い
燃焼量域に渡つて調べた一例が図中Bのグラフで
ある。図中には第7図A,Bと第8図で示した従
来の燃焼装置の特性もそれぞれ図中aおよびbで
示してある。aではTDRは大きくとれるが火炎
が伸びるため高負荷の燃焼を行い燃焼室の小型化
が困難で、逆にbでは火炎が短いので高負荷の燃
焼を実現し燃焼室を小型にできるが、消炎やフラ
ツシユバツクのためTDRを大きくとることはで
きない。これらの従来例に比べ本発明では前述し
た如く燃焼速度の異なる燃料を使用した場合でも
フラツシユバツクや消炎を生じることがなく従つ
て燃焼装置のユニバーサル性が図られ、同時に
TDRを拡大することができる。なお実施例では
炎口部を二分割したものを示したが、単一の炎口
部でも同様であることは言うまでもない。 Furthermore, the flame opening part is large, which is provided on both sides.
Because it is indirectly cooled by the secondary air flowing in the small air chamber, there is no flashback caused by flame opening heating, which tends to occur with fuel with a high combustion rate, and the flame does not come into contact with low-temperature parts such as the combustion chamber walls. Therefore, quenching, which tends to occur with fuels with low combustion speeds, does not occur. FIGS. 6A and 6B are shown as an example for explaining these. Let's take the CO/CO 2 value, which has been standardized as a standard for evaluating flammability, and examine its permissible range. When examining the allowable air supply range for a certain combustion amount, it generally shows the characteristics shown in A in the figure, and if the allowable value is set to 0.005, upper and lower limits as shown in the figure appear. Graph B in the figure is an example of examining this over a wide range of combustion amounts. In the figure, the characteristics of the conventional combustion apparatus shown in FIGS. 7A and 7B and FIG. 8 are also indicated by a and b in the figure, respectively. In case a, a large TDR can be achieved, but the flame is elongated, resulting in high-load combustion, making it difficult to downsize the combustion chamber.On the other hand, in b, the flame is short, allowing for high-load combustion and a smaller combustion chamber, but it is difficult to extinguish the flame. It is not possible to increase the TDR due to flashbacks and flashbacks. Compared to these conventional examples, the present invention does not cause flashback or extinction even when fuels with different combustion speeds are used as described above, making the combustion device universal, and at the same time
TDR can be expanded. In the embodiment, the flame spout is divided into two parts, but it goes without saying that a single flame spout may be used in the same manner.
以上の説明から明らかなように本発明の燃焼装
置によれば以下の効果が得られる。 As is clear from the above description, the combustion apparatus of the present invention provides the following effects.
(1) 炎口部上に形成される火炎は燃焼ガス流れの
下流方向に開いて傾斜した大空気室の大噴出口
より二次空気を供給されるため、二次空気の噴
出速度が小さくても十分火炎中央部まで二次空
気が供給され、燃焼反応を促進して火炎長を短
くし燃焼室を小さくするとともに、小さい二次
空気噴出速度でよいからフアンの送風圧も小さ
くて済み、フアンを含めた燃焼装置全体の小型
化が図れる。(1) The flame formed on the flame port is supplied with secondary air from the large jet nozzle of the large air chamber that opens and slopes in the downstream direction of the combustion gas flow, so the ejection speed of the secondary air is low. The secondary air is sufficiently supplied to the center of the flame, promoting the combustion reaction, shortening the flame length, and making the combustion chamber smaller.In addition, the blowing pressure of the fan is also low because the secondary air injection speed is small, and the blowing pressure of the fan is also small. The entire combustion device including the combustion equipment can be downsized.
(2) 炎口部上に形成される火炎は、両側に設けら
れた小噴出口より減圧手段を介して小空気室に
入り均圧整流された後低速となつた二次空気が
供給されるため、火炎基部はおだやかな反応に
よる定常安定火炎が形成され、高速の二次空気
流の影響をを受けても“生燃え”が発生せず、
一次空気、二次空気の変動に対しても広い領域
で安定火炎が形成されるため燃焼制御を行う際
の許容風量のバラツキを大きくとれ、制御が容
易となる。(2) The flame formed on the flame port enters the small air chamber via the pressure reducing means from the small jet ports provided on both sides, and is pressure-equalized and rectified, and then low-velocity secondary air is supplied. As a result, a steady and stable flame is formed at the flame base due to a gentle reaction, and "raw combustion" does not occur even when affected by high-speed secondary air flow.
Since a stable flame is formed in a wide range even when the primary air and secondary air fluctuate, the variation in allowable air volume when performing combustion control can be increased, making control easier.
(3) 炎口部は両側の大、小空気室内を流れる二次
空気で間接的に冷却されるためめ、燃焼量を絞
つた場合の燃焼速度の大きな燃料における炎口
加熱やフラツシユバツクが防止でき、又火炎は
燃焼室壁などの低温部に触れることもないから
燃焼速度の小さな燃料における消炎も発生しな
いためTDRの拡大と燃料の種類の異いに対す
る装置のユニバーサル性も同時に実現できる。(3) Because the flame nozzle is indirectly cooled by the secondary air flowing in the large and small air chambers on both sides, it is possible to prevent flame nozzle heating and flashback caused by fuel with a high combustion speed when the combustion amount is reduced. Furthermore, since the flame does not touch low-temperature parts such as the walls of the combustion chamber, extinguishing of fuel with a low combustion rate does not occur, so it is possible to expand the TDR and make the device universal for different types of fuel at the same time.
第1図は本発明の一実施例の燃焼装置を示す全
体断面図、第2図、第3図は第1図の一部断面斜
視図、第4図は二次空気によるイエロー線の挙動
について従来例と対比した比較図、第5図は生燃
え限界について従来例と対比した比較図、第6図
Aは空気過剰率に対するCO/CO2特性の特性図、
第6図Bは燃焼室の小型化とTDR性能のフアン
風量に対して示した特性図、第7図Aは従来例の
全体断面図、第7図Bは同斜視図、第8図は他の
従来例の断面図である。
9……炎口、10……炎口部、12,20……
小空気室、15,17……大空気室、11,19
……小噴出口、14,21……大噴出口。
Fig. 1 is an overall sectional view showing a combustion device according to an embodiment of the present invention, Figs. 2 and 3 are partial sectional perspective views of Fig. 1, and Fig. 4 shows the behavior of the yellow line due to secondary air. Figure 5 is a comparison diagram comparing the raw combustion limit with the conventional example, Figure 6A is a characteristic diagram of CO/CO 2 characteristics with respect to excess air ratio,
Figure 6B is a characteristic diagram showing the reduction in size of the combustion chamber and TDR performance with respect to fan airflow, Figure 7A is an overall sectional view of the conventional example, Figure 7B is a perspective view of the same, and Figure 8 is another example. FIG. 2 is a sectional view of a conventional example. 9...flame mouth, 10...flame mouth part, 12,20...
Small air chamber, 15, 17... Large air chamber, 11, 19
...Small spout, 14,21...Large spout.
Claims (1)
接した小空気室より成る空気室を、直線状に並ん
だ多数の炎口より成る炎口部の両側に備え、前記
炎口部近傍には前記小空気室と連通した多数の小
噴出口を設け、前記炎口部よりも下流側には前記
大空気室と連通し、かつ燃焼ガス流れの下流方向
に開いて傾斜した平面上に設けられた多数の大噴
出口を設けるとともに、前記大空気室と前記小空
気室は減圧手段をもつて連通させ、前記小噴出口
からの空気噴出速度を前記大噴出口からの空気噴
出速度よりも小さく構成した燃焼装置。1. An air chamber consisting of a large air chamber and a small air chamber that communicates with the large air chamber and is adjacent to a burner port is provided on both sides of a burner port that is made up of a large number of linearly arranged burner ports, and A large number of small nozzles communicating with the small air chamber are provided in the vicinity, and on the downstream side of the flame nozzle part, a flat surface is provided which communicates with the large air chamber and opens in the downstream direction of the combustion gas flow. A large number of large air outlets are provided, and the large air chamber and the small air chamber are communicated with each other through a pressure reducing means, so that the speed of air ejection from the small air outlet is adjusted to the speed of air ejected from the large air outlet. A combustion device configured smaller than the .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6588382A JPS58182018A (en) | 1982-04-19 | 1982-04-19 | Burner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6588382A JPS58182018A (en) | 1982-04-19 | 1982-04-19 | Burner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58182018A JPS58182018A (en) | 1983-10-24 |
JPS6327606B2 true JPS6327606B2 (en) | 1988-06-03 |
Family
ID=13299817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6588382A Granted JPS58182018A (en) | 1982-04-19 | 1982-04-19 | Burner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58182018A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0424258Y2 (en) * | 1986-12-27 | 1992-06-08 | ||
JPS6354510A (en) * | 1986-08-22 | 1988-03-08 | Osaka Gas Co Ltd | Gas burner |
JPH0443698Y2 (en) * | 1986-12-27 | 1992-10-15 | ||
JPH01142305A (en) * | 1987-11-28 | 1989-06-05 | Dainichi Kogyo Kk | Oil burner |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5458229A (en) * | 1977-10-18 | 1979-05-10 | Toshiba Corp | Vaporizing combustion device |
JPS5849816A (en) * | 1981-09-18 | 1983-03-24 | Matsushita Electric Ind Co Ltd | Burner |
-
1982
- 1982-04-19 JP JP6588382A patent/JPS58182018A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5458229A (en) * | 1977-10-18 | 1979-05-10 | Toshiba Corp | Vaporizing combustion device |
JPS5849816A (en) * | 1981-09-18 | 1983-03-24 | Matsushita Electric Ind Co Ltd | Burner |
Also Published As
Publication number | Publication date |
---|---|
JPS58182018A (en) | 1983-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4311451A (en) | Burner | |
JPS6327606B2 (en) | ||
JP7308731B2 (en) | Cooking device | |
JPH02106607A (en) | Radiant gas burner | |
JPH0222869B2 (en) | ||
JPS6316005B2 (en) | ||
JP3196398B2 (en) | Combustion equipment | |
JPH02106608A (en) | Radiant gas burner | |
JPS5849816A (en) | Burner | |
JPS58120013A (en) | Burner | |
JPS6365844B2 (en) | ||
JPS58158410A (en) | Combustion device | |
JPS58120012A (en) | Burner | |
JPS587A (en) | Combustion device | |
JP2956215B2 (en) | Combustion equipment | |
JPS62401B2 (en) | ||
JPS6234096Y2 (en) | ||
JPS6344654Y2 (en) | ||
JPH04297711A (en) | Combustion apparatus | |
JPS631493B2 (en) | ||
JPS6343642B2 (en) | ||
JP2532489B2 (en) | Burner | |
JPS5883112A (en) | Burner | |
JPH0278814A (en) | Burner | |
JPH01107010A (en) | Burner |