JPS58120013A - Burner - Google Patents
BurnerInfo
- Publication number
- JPS58120013A JPS58120013A JP392682A JP392682A JPS58120013A JP S58120013 A JPS58120013 A JP S58120013A JP 392682 A JP392682 A JP 392682A JP 392682 A JP392682 A JP 392682A JP S58120013 A JPS58120013 A JP S58120013A
- Authority
- JP
- Japan
- Prior art keywords
- flame
- air
- combustion
- burner
- port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/02—Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D14/00—Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
- F23D14/30—Inverted burners, e.g. for illumination
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Gas Burners (AREA)
- Evaporation-Type Combustion Burners (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は給湯器や暖房器などの家゛庭用燃焼器具のうち
、ファンを用いて強制的に火炎に空気を供給して短炎化
を実現して燃焼室やファンおよび燃焼装置全体の小型化
を図るとともに、使い勝手のうえから燃焼量を太幅に変
化させても安定燃焼を維持することのできる燃焼装置に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention uses a fan to forcibly supply air to the flame of household combustion appliances such as water heaters and space heaters to shorten the flame. The present invention relates to a combustion device that can reduce the size of the fan and the entire combustion device, and maintain stable combustion even when the combustion amount is varied widely for ease of use.
従来左右対称形の熱伝導良導体による成形体で炎口部及
び燃焼室などを一体成形して小形化を図った燃焼装置と
しては第8図に示すものがある。A combustion device shown in FIG. 8 is a conventional combustion device in which a flame port, a combustion chamber, and the like are integrally molded using a bilaterally symmetrical molded body made of a good thermally conductive material to achieve miniaturization.
これは−欠字気量を理論空気量以上に設定した全−火燃
焼方式を用いて温風暖房器に適用されたもので、左右対
称形の一対の成形体1oOには炎ロ部1o1.燃焼室1
02.および内部フィン103と外部フィン104が一
体に成形されている。成形体1o○の両側面にはそれぞ
れ混合気供給口105および排気口106を設けた一対
の側板107が、また上面および下面にはそれぞれ混合
気通路108および排気通路109が前記混合気供給口
106および排気口106にそれぞれ連通するよう構成
されている。このような構成において、混合気供給口1
05より供給された混合気は混合気通路108を通過す
る間に均一混合され、炎口部101より均一噴出されて
炎口上に火炎を形成する。燃焼室102で生成した燃焼
ガスは内部フィン103で熱交換をおこない、外部フィ
ン104で放熱して温風を発生する。内部フィン103
で熱交換をおこなった燃焼ガスは排気通路109’i通
って排気口106より外部に排出される。This was applied to a hot-air heater using an all-fire combustion method in which the missing air volume was set to be higher than the theoretical air volume. Combustion chamber 1
02. Also, the internal fins 103 and external fins 104 are integrally molded. A pair of side plates 107 each having a mixture supply port 105 and an exhaust port 106 are provided on both sides of the molded body 1o○, and a mixture passage 108 and an exhaust passage 109 are provided on the top and bottom surfaces of the mixture supply port 106, respectively. and an exhaust port 106, respectively. In such a configuration, the mixture supply port 1
The mixture supplied from 05 is uniformly mixed while passing through the mixture passage 108, and uniformly jetted from the flame port 101 to form a flame on the flame port. Combustion gas generated in the combustion chamber 102 exchanges heat with the internal fins 103, and radiates heat with the external fins 104 to generate warm air. Internal fin 103
The combustion gas that has undergone heat exchange is discharged to the outside from the exhaust port 106 through the exhaust passage 109'i.
上記のような燃焼装置においては全−次燃焼をおこなう
ため燃焼速度が大きく火炎は短くなって燃焼室を小さく
構成することができ、二次空気も不要であるために装置
の簡素化と小型化が図られる。しかし反面異常音を伴う
振動燃焼が発生し易く、これを避けるためには振動燃焼
の発生しない混合領域および燃焼装置の形状や構成を調
べ、高精度の燃料と空気流量の制御と、装置の加工や組
立が要求される。また一般にLPガス、天然ガスおよび
各種の都市ガスや石油を気化した燃看などではそれぞれ
発熱量や燃焼速度および他の物性が異なるため、振動燃
焼を発生する混合領域や装置の構成および形状がまち捷
ちであり、燃料の種類ごとに各部の設定を変えねばなら
ずユニバーサル化を図るのが非常に困難である。さらに
特に給湯器などに適用した場合には、使い勝手を向上さ
せるために季節による水温や気温の変化に対応でき、さ
らに使用する給湯流量を大幅に変化でき、これに対応し
て燃焼量を変化させても安定燃焼を維持することが要求
される。すなわち良好な燃焼状態を維持できる最大燃焼
量と最小燃焼量の比、いわゆるT D R(Turn
Down Ratio )i大きくすることが要求され
る。しかし全−火燃焼方式では燃焼速度が速いため、火
炎は炎口に密着して燃焼し、炎口温度が上昇する。従っ
て燃焼量を絞ってゆくと、混合気の噴出速度は小さくな
り、火炎はさらに炎口に密着して炎口温度は増々上昇す
る。一方炎口金通過する混合気は増々加熱され混合気温
度上昇に比例して燃焼速度が増加し、ついには混合気噴
出速度より大きくなってフラッシュバックを生じる。ま
た家庭用燃焼装置では最も一般的である一次空気量を理
論空気量以下に設定したいわゆるブンゼン燃焼方式に比
べ、燃焼量を増加した場合ブローオフを起こし易い。こ
れは理論空気量の増加とともにブローオフを発生する領
域が、混合気噴出速度の小さな領域まで広がるためであ
る。つまり全−火燃焼方式ではブンゼン燃焼方式に比べ
、上限と下限をそれぞれブローオフとフランシュバック
で制約される安定燃焼範囲は狭くなジ、従ってTDRi
大きくすることは極めて困難である。In the above-mentioned combustion devices, secondary combustion is performed, so the combustion speed is high and the flame is short, making it possible to configure the combustion chamber to be small. Also, secondary air is not required, making the device simpler and more compact. is planned. However, on the other hand, oscillatory combustion accompanied by abnormal noise is likely to occur, and in order to avoid this, it is necessary to investigate the shape and configuration of the mixing region and combustion equipment where oscillatory combustion does not occur, control the flow rate of fuel and air with high precision, and modify the equipment. assembly is required. In addition, in general, LP gas, natural gas, various city gases, and combustion engines that vaporize oil have different calorific values, combustion speeds, and other physical properties, so the configuration and shape of the mixing area and equipment that generate oscillatory combustion may vary. It is very difficult to make it universal, as the settings of each part must be changed depending on the type of fuel. Furthermore, especially when applied to water heaters, it is possible to respond to seasonal changes in water temperature and air temperature in order to improve usability, and the flow rate of hot water used can be significantly changed, and the amount of combustion can be changed accordingly. It is required to maintain stable combustion even at low temperatures. In other words, the ratio between the maximum combustion amount and the minimum combustion amount that can maintain a good combustion state, so-called TDR (Turn
Down Ratio )i is required to be increased. However, in the all-fire combustion method, the combustion speed is fast, so the flame burns in close contact with the flame mouth, increasing the flame temperature. Therefore, as the amount of combustion is reduced, the injection velocity of the air-fuel mixture decreases, the flame adheres more closely to the flame nozzle, and the flame nozzle temperature increases more and more. On the other hand, the air-fuel mixture passing through the flame nozzle is heated more and more, and the combustion speed increases in proportion to the rise in air-fuel mixture temperature, and eventually exceeds the air-fuel mixture injection speed, causing flashback. In addition, compared to the so-called Bunsen combustion method, which is the most common type of household combustion device, in which the amount of primary air is set below the theoretical amount of air, blow-off is more likely to occur when the amount of combustion is increased. This is because as the theoretical air amount increases, the region where blow-off occurs expands to the region where the air-fuel mixture jetting velocity is small. In other words, in the all-fire combustion system, the stable combustion range whose upper and lower limits are constrained by blow-off and Franschbach, respectively, is narrower than in the Bunsen combustion system.
It is extremely difficult to make it larger.
また他の従来例として第9図に示すものがある。Another conventional example is shown in FIG.
これはブンゼン燃焼を用い、二次空気を火炎中に強制供
給し短炎化を実現して燃焼室を小さく構成し、燃焼装置
の小型化を図ったものである。その構成は左右対称の一
対の成形体110を接合して形成される空間に、混合気
通路111.絞ジ部先端に二次空気口112をもつ二次
空気室113゜および前記二次空気室113の両側に炎
口部114を一体成形したバーナ素子116を挿入して
前記バーナ素子116と成形体110で仕切られた2つ
の空間がそれぞれ混合気室116および燃焼室117を
構成するようにしてなる燃焼装置である。This uses Bunsen combustion to forcibly supply secondary air into the flame to shorten the flame, making the combustion chamber smaller and reducing the size of the combustion device. Its structure is such that a mixture passage 111. A secondary air chamber 113° having a secondary air port 112 at the tip of the constriction portion and a burner element 116 having flame port portions 114 integrally molded on both sides of the secondary air chamber 113 are inserted, and the burner element 116 and the molded body are inserted. This is a combustion device in which two spaces partitioned by 110 constitute an air-fuel mixture chamber 116 and a combustion chamber 117, respectively.
このような構成において、混合気は混合気通路111を
通って混合気室116に流出し、ノ(−す素子116と
成形体110の隙間を通り炎口部114に達する。炎口
部114を通過した混合気は、炎口部114上で図に示
すような火炎を形成する。一方二次空気は、二次空気室
113より絞り部を通り、先端部に設けられた二次空気
口112より噴出し、前記火炎に強制供給される。In such a configuration, the mixture flows out into the mixture chamber 116 through the mixture passage 111, passes through the gap between the nozzle element 116 and the molded body 110, and reaches the flame port 114. The air-fuel mixture that has passed forms a flame as shown in the figure on the flame port 114.On the other hand, the secondary air passes through the constriction part from the secondary air chamber 113 and enters the secondary air port 112 provided at the tip. The gas is ejected from the flame and is forcefully supplied to the flame.
上記のような燃焼装置においては、ブンゼン燃焼をおこ
なうため、既に述べたようにブローオフとフラッシュバ
ンクで上下限を制約される安定燃焼域は全−次燃焼の場
合より広く、TDRも拡大することができまた振動燃焼
領域も狭い。しかし一方ブンゼン燃焼では火炎が長く伸
びるため、燃焼室の小型化を図るためには二次空気を火
炎に強制供給して二次空気の強制混合を図9、燃焼反応
を促進して短炎化を実現しなければならない。従ってこ
の場合は二次空気の供給法が最大のポイントとなる。と
りわけ二次空気の噴出速度は重要なパラメータであり、
下限は火炎に二次空気を供給できる最低速度となシ、上
限は火炎が吹き飛ぶ時の噴出速度又はそれ以前に火炎が
過冷却され燃焼反応が凍結してCOなどが多量に発生す
る不完全燃焼を生じる速度となる。また二次空気の噴出
速度はその2乗に比例してファンの送風圧を高くする必
要があるため、ファンを含めた燃焼装置の小型化を図る
ためには可能な限り二次空気噴出速度を小さくして、短
炎化を実現しなければならない。In the above-mentioned combustion equipment, since Bunsen combustion is performed, the stable combustion range whose upper and lower limits are restricted by blow-off and flash bank is wider than in the case of full-primary combustion, and the TDR can also be expanded. Also, the vibration combustion area is narrow. However, in Bunsen combustion, the flame stretches for a long time, so in order to make the combustion chamber smaller, secondary air is forcibly supplied to the flame and mixed with the secondary air as shown in Figure 9, which promotes the combustion reaction and shortens the flame. must be realized. Therefore, in this case, the most important point is how to supply the secondary air. In particular, the ejection speed of secondary air is an important parameter.
The lower limit is the minimum speed at which secondary air can be supplied to the flame, and the upper limit is the ejection speed when the flame blows off, or the incomplete combustion where the flame is supercooled before that and the combustion reaction freezes, producing a large amount of CO etc. This is the speed at which . In addition, the blowing pressure of the fan must be increased in proportion to the square of the secondary air blowing speed, so in order to downsize the combustion equipment including the fan, the secondary air blowing speed should be reduced as much as possible. We must make it smaller and achieve a shorter flame.
第8図の燃焼装置では火炎が直接成形体110に触れる
ため火炎冷却を受は易すく、特に燃焼量を小さくした場
合には火炎の発生する熱量と成形体110へ奪われる熱
量のバランスが崩れ、燃焼速度の小い燃料では火炎が過
冷却して不完全燃焼を発生する。また燃焼速度の大きな
燃料では火炎が炎口部114に密着してこれを加熱する
。一方炎口部114の成形体110の近傍では炎口部1
14が簿くなジ熱容量が小さい。さらに成形体110と
の接触面積が小く低温の成形体11oへの伝熱量は少い
ためここの部分の炎口温度は上昇し易すく従ってフラッ
シュバンクを生じ易い。従ってTDRはそれ程大きくと
れない。聾た燃焼量が大きな場合、炎口部114から流
出する混合気流速は大きく、従って二次空気口112か
ら供給する二次空気流速も大きくしなければ、成形体1
10近傍の火炎まで空気を供給できない。さらにバーナ
素子115を成形体110で支持する所は、前述した如
く接触面積が小さく従って炎口部114が火炎よジ受け
る熱量は成形体へ伝えられず大部分が二次空気室113
を通る二次空気によって冷却される。従って二次空気は
加熱膨張し送風抵抗が増大する。すなわち、燃焼量がK
きい場合には二次空気噴出速度を大きくしなけtばなら
ないことと、送風抵抗が増大することによりファンの送
風圧は高いものが要求され、ファ/が大型化し、燃焼室
は小型化が図れてもファン?含めた燃焼2置全体として
は小型化が図れていないという結果になる。In the combustion device shown in FIG. 8, since the flame directly contacts the molded body 110, it is easily subjected to flame cooling, and especially when the combustion amount is made small, the balance between the amount of heat generated by the flame and the amount of heat taken away to the molded body 110 is lost. If the fuel has a low combustion speed, the flame will be supercooled and incomplete combustion will occur. Further, in the case of fuel having a high burning speed, the flame comes into close contact with the flame port 114 and heats it. On the other hand, in the vicinity of the molded body 110 of the flame mouth part 114, the flame mouth part 1
14 has an unreasonably small heat capacity. Further, since the contact area with the molded body 110 is small and the amount of heat transferred to the low temperature molded body 11o is small, the temperature of the flame opening in this area tends to rise, and therefore, flash banks are likely to occur. Therefore, TDR cannot be made that large. When the amount of burnt combustion is large, the flow rate of the mixture flowing out from the flame port 114 is high. Therefore, unless the flow rate of the secondary air supplied from the secondary air port 112 is also increased, the compact 1
Air cannot be supplied to flames close to 10. Furthermore, where the burner element 115 is supported by the molded body 110, the contact area is small as described above, so the amount of heat that the flame mouth part 114 receives from the flame is not transmitted to the molded body, and most of the heat is transferred to the secondary air chamber 113.
is cooled by secondary air passing through. Therefore, the secondary air is heated and expanded, increasing the blowing resistance. In other words, the amount of combustion is K
In the case of high pressure, the secondary air ejection speed must be increased and the blowing resistance increases, which requires a high blowing pressure from the fan, which increases the size of the fan and makes it difficult to downsize the combustion chamber. Are you a fan? As a result, the overall size of the two-combustion station including this cannot be reduced.
以上説明したように従来の燃焼装置においては、・燃焼
装置の小型化とファンも含め7j装装置体の小型化、さ
らに燃料の種類に対するユニバーサル性とTDRの拡大
および燃焼範囲の拡大化などを同時に満足するものでは
なかった。As explained above, in conventional combustion equipment, the following improvements have been made: - Miniaturization of the combustion equipment, miniaturization of the 7J equipment body including the fan, universality for fuel types, expansion of TDR, and expansion of the combustion range. It wasn't satisfying.
本発明はこのような従来の欠点を除去するもので、燃焼
室とファンの小型化を同時に満足させて燃焼装置全体の
小型化を図るとともに、燃焼速度など異った特性をもつ
各種の燃料でも安定燃焼するユニバーサル性をもち、か
つ使い勝手の向上のため燃焼量が大幅に変化しても安定
燃焼を維持する燃焼装置を実現することを目的とするも
のであるO
上記の目的を達成するために本発明は三次空気口を有す
る先端部を燃焼室の中央部に突出させた三次空気通路体
をはさんで両側に炎口部を設け、炎口部を構成する成形
体に二次空気室を設けるとともに二次空気口に連通した
二次空気口を炎口部近傍に設け、かつ炎口部の一部で三
次空気通路体を支持する構成としたものである。The present invention eliminates these conventional drawbacks, and simultaneously reduces the size of the combustion chamber and the fan, thereby reducing the overall size of the combustion device. The purpose is to realize a combustion device that has universal properties for stable combustion and maintains stable combustion even when the combustion amount changes significantly to improve usability. In the present invention, a flame port is provided on both sides of a tertiary air passage body whose tip portion having a tertiary air port projects into the center of the combustion chamber, and a secondary air chamber is provided in the molded body constituting the flame port. In addition, a secondary air port communicating with the secondary air port is provided near the burner port, and a portion of the burner port supports the tertiary air passage body.
この構成によって一次空気を供給された予混合気による
火炎は二分割され、両側の二次空気口より二次空気を供
給され部分燃焼し、さらに中央の三次空気供給口より供
給された三次空気によって完全燃焼することになる。こ
こで各燃焼用空気は形成される火炎のごく近傍、又はそ
の中心部より供給されるため、噴出速度が小さくても十
分火炎中心部の未燃成分まで供給することができる。即
ち低い噴出圧で短炎化が実現できるため燃焼室の小型化
とファンの小型化を同時に図ることができる。また炎口
部は二次空気と良熱伝導体による同一成形体で形成され
、かつ三次空気通路体と接しているため二次空気と三次
空気により両側から空冷されるため、燃焼速度の速い燃
料でも炎口全赤熱してバックを生じることがなく装置の
ユニノ<−ザル化が図れる。さらに三次空気通路体の先
端開口部が半円状になっているため、燃焼量が多い場合
には供給空気量も多く両側の掛目方向に広がった噴出分
布となり、広い領域で未燃成分と混合し燃焼反応を促進
する。一方燃焼量を絞った場合には、供給空気量が少く
なり、両側の掛目方向には広がらない。従って火炎温度
の低い両側の火炎を過冷却して燃焼反応を凍結させるこ
ともない。よってTDRを大きく設定することができる
ものである。炎孔部の火炎側と混合気側の断面積を変え
ることにより、−欠字気量が変動しても火炎側の炎口部
の混合気流速の遅い部分と三次空気口噴出部との空間で
火炎保持の役割を行いリフトしにくくシ、また上記保炎
での温度上昇に対し三次空気量を多くすることによりバ
ック防止する構成とし、−欠字気量変動に対しても安定
燃焼域を広げられるものである。With this configuration, the flame caused by the premixture supplied with primary air is split into two parts, which are supplied with secondary air from the secondary air ports on both sides for partial combustion, and then by the tertiary air supplied from the tertiary air supply port in the center. It will burn completely. Here, since each combustion air is supplied from the vicinity of the flame to be formed or from the center thereof, even if the jetting speed is small, it is possible to sufficiently supply the unburned components at the center of the flame. That is, since a short flame can be achieved with a low injection pressure, the combustion chamber and the fan can be made smaller at the same time. In addition, the flame opening is formed of the same molded body made of secondary air and a good heat conductor, and since it is in contact with the tertiary air passage, it is air-cooled from both sides by the secondary air and tertiary air, so the fuel burns quickly. However, the device can be made uniform without causing the entire flame to become red hot and causing a backlash. Furthermore, since the tip opening of the tertiary air passage body is semicircular, when the amount of combustion is large, the amount of air supplied is large and the ejection distribution spreads in the direction of the hooks on both sides, allowing it to mix with unburned components in a wide area. and promotes combustion reactions. On the other hand, when the combustion amount is reduced, the amount of supplied air is reduced and the air does not spread in the direction of the hooks on both sides. Therefore, the flames on both sides, where the flame temperature is low, are not supercooled and the combustion reaction is not frozen. Therefore, it is possible to set a large TDR. By changing the cross-sectional area of the flame side and mixture side of the flame hole, even if the air volume changes, the space between the part of the flame side where the mixture flow rate is slow and the tertiary air outlet jetting area can be reduced. It plays the role of flame retention, making it difficult to lift, and also prevents backlash by increasing the amount of tertiary air in response to the temperature rise during flame holding, and - maintains a stable combustion range even against fluctuations in air volume. It is something that can be expanded.
以下本発明の一実施例を第1図〜第7図に基づいて説明
する。An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.
第1図〜第6図においてファン1が熱伝導の良導体より
なる成形体2の一方に接続されており、−その近傍には
分割板3が設けられている。成形体2は内部に二次空気
室4が設けられており、かつ部材の一部は厚肉の凸状部
6を形成し、この凸状部5にはスリット状の炎口6が多
数並設され炎口部7を形成している。炎口部の近傍には
二次空気室4に連通した複数個の二次空気口8が設けら
れている。成形体2は左右対称形であり1一対を接合し
て混合気室9と燃焼室10の一部を構成する。In FIGS. 1 to 6, a fan 1 is connected to one side of a molded body 2 made of a heat conductive material, and a dividing plate 3 is provided in the vicinity thereof. The molded body 2 is provided with a secondary air chamber 4 inside, and a part of the member forms a thick convex part 6, and this convex part 5 has a large number of slit-shaped flame ports 6 arranged in a row. The flame opening 7 is formed by the flame opening 7. A plurality of secondary air ports 8 communicating with the secondary air chamber 4 are provided near the flame port. The molded bodies 2 are bilaterally symmetrical, and a pair of molded bodies 2 are joined to form part of an air-fuel mixture chamber 9 and a part of a combustion chamber 10.
混合気室9内には絞り部11先端にスリット状の三次空
気口12を多数持つ中空の三次空気通路体13が挿入さ
れ、成形体2との間に隙間14と、炎口部7との間に均
圧室16をそれぞれ構成する。A hollow tertiary air passage body 13 having a large number of slit-shaped tertiary air ports 12 at the tip of the throttle portion 11 is inserted into the mixture chamber 9, and a gap 14 is formed between the molded body 2 and the flame port 7. A pressure equalization chamber 16 is formed between them.
ここで絞v部11は一対の炎口部7により両側より支持
されており、三次空気口12は燃焼室10内に臨んでい
る。絞り部11を構成する外壁に段部20(第3図)を
設け、炎ロアの混合気側16と燃焼室側10での開口面
積を変え、火炎を構成する炎口断面積を混合気の通路断
面積より大きくしている。Here, the throttle v part 11 is supported from both sides by a pair of flame port parts 7, and the tertiary air port 12 faces into the combustion chamber 10. A stepped portion 20 (Fig. 3) is provided on the outer wall constituting the throttle portion 11, and the opening area on the mixture side 16 and combustion chamber side 10 of the flame lower is changed, and the cross-sectional area of the flame opening constituting the flame is changed to that of the mixture. It is larger than the cross-sectional area of the passage.
燃焼室壁16には水冷パイプ17が一体成形されておジ
、燃焼室10の下流側には熱交換器18および排気口1
9が設けられている。A water cooling pipe 17 is integrally formed on the combustion chamber wall 16, and a heat exchanger 18 and an exhaust port 1 are provided on the downstream side of the combustion chamber 10.
9 is provided.
上記の構成における作用を説明すると、ファン1により
供給された燃焼用空気は分割板3によって混合気室9内
に供給される一次空気と、一対の二次空気室4内に供給
される二次空気と、三次空気通路体13内へ供給される
三次空気にそれぞれ分割される。To explain the operation of the above configuration, the combustion air supplied by the fan 1 is divided into primary air supplied into the mixture chamber 9 by the dividing plate 3, and secondary air supplied into the pair of secondary air chambers 4. air and tertiary air supplied into the tertiary air passage body 13.
一方燃料は燃料バイブ23内全通り、制御弁21で流量
を調整された後先端のノズル22よジ混合気室9内に噴
射供給される。混合気室9内に供給さnた燃料と一次空
気はここを通過しながら均一混合され、三次空気通路体
13の両側の狭い隙間14を通る。隙間14の絞り効果
により混合気は均圧室16に均一供給され、炎口部7よ
り燃焼室1o内に均一噴射され炎口6上に火炎を形成す
る。On the other hand, the fuel passes through the entire fuel vibrator 23, its flow rate is adjusted by the control valve 21, and is then injected and supplied into the air-fuel mixture chamber 9 through the nozzle 22 at the tip. The fuel and primary air supplied into the mixture chamber 9 are uniformly mixed as they pass through this chamber, and pass through narrow gaps 14 on both sides of the tertiary air passage body 13. Due to the throttling effect of the gap 14, the air-fuel mixture is uniformly supplied to the pressure equalizing chamber 16, and uniformly injected into the combustion chamber 1o from the flame port 7 to form a flame on the flame port 6.
−万一対の二次空気室4に供給された二次空気は二次空
気口8を通って前記火炎に両側より強制噴出供給され部
分燃焼する。さらに三次空気通路体13に供給された三
次空気は絞り部11を通り、先端に設けられた多数のス
リット状の三次空気口12より扇状の噴出分布をもって
前記火炎に噴射供給される。従って絞り部11をはさん
だ一対の炎ロ部7上に形成される火炎は、広い領域で混
合され燃焼反応が促進され、短炎化が実現される。- The secondary air supplied to the pair of secondary air chambers 4 is forcibly ejected from both sides through the secondary air ports 8 and is partially combusted. Furthermore, the tertiary air supplied to the tertiary air passage body 13 passes through the constriction part 11, and is injected and supplied to the flame from a large number of slit-shaped tertiary air ports 12 provided at the tip with a fan-shaped ejection distribution. Therefore, the flames formed on the pair of flame corners 7 sandwiching the throttle part 11 are mixed in a wide area, the combustion reaction is promoted, and a short flame is realized.
火炎が短くなったため、燃焼室10内の燃焼ガスは局部
的に高温領域を形成するようになるが燃焼室壁16に一
体成形された水冷パイプ17により発生熱量の一部が熱
交換して冷却され、下流側に設けられた熱交換器18で
熱交換をおこなった後、排気口19よジ外部に排出され
る。Since the flame has become shorter, the combustion gas in the combustion chamber 10 will locally form a high temperature area, but a part of the generated heat will be cooled by heat exchange through the water cooling pipe 17 integrally formed on the combustion chamber wall 16. After exchanging heat with a heat exchanger 18 provided on the downstream side, it is discharged to the outside through an exhaust port 19.
ここで炎ロ部7上に形成される火炎は、二次空気口8よ
り両側面から二次空気が、又三次空気口12よジ中央部
から三次空気が噴射供給されることになる。従って供給
空気の噴出速度が小さくても火炎中央部の未燃成分捷で
十分空気が供給され短炎化が実現できる。よって前述し
た如く供給空気の噴出速度が小さくなれば送風圧も小さ
くてすみ、ファンの小型化と燃焼室の小型化を同時に図
ることができる。これを示したものが第4図であり、同
一燃焼室負荷に対するファンの送風圧は大幅に低減され
ている。Here, the flame formed on the flame throat part 7 is supplied with secondary air from both sides from the secondary air port 8, and tertiary air from the central part of the tertiary air port 12. Therefore, even if the ejection speed of the supplied air is small, sufficient air is supplied by the unburned components in the center of the flame, and a short flame can be realized. Therefore, as described above, if the blowing speed of the supplied air is reduced, the blowing pressure can also be reduced, and the size of the fan and the combustion chamber can be reduced at the same time. FIG. 4 shows this, and the blowing pressure of the fan for the same combustion chamber load is significantly reduced.
さらに火炎は直接燃焼室壁などの冷却物に接触していな
いため、燃焼速度の小さな燃料でも燃焼量を小さくした
場合過冷却されることなく安定燃焼をおこなう。燃焼速
度の大きな燃料で燃焼量を絞った場合にも、火炎は炎口
6に密着して炎口部7を加熱するが、炎口部7は熱伝導
の良導体で一体化されている成形体2を通して二次空気
室4内を流れる二次空気と、炎口部7に接している絞り
部11を流れる三次空気により両側から効果的かつすみ
やかに冷却されるため、フラッシュバックは発生しない
。従って特性の異なる種々の燃料を用いた場合でも安定
燃焼が実現できユニバーサル化を図ることができる。Furthermore, since the flame is not in direct contact with a cooling object such as the combustion chamber wall, even if the combustion rate is low, even if the combustion amount is reduced, stable combustion will occur without overcooling. Even when the amount of combustion is reduced using fuel with a high combustion speed, the flame adheres to the flame nozzle 6 and heats the flame nozzle 7, but the flame nozzle 7 is a molded body that is integrated with a good thermal conductor. Flashback does not occur because the secondary air flowing through the secondary air chamber 4 through the burner 2 and the tertiary air flowing through the constriction part 11 in contact with the flame outlet 7 effectively and quickly cools from both sides. Therefore, even when various fuels with different characteristics are used, stable combustion can be achieved and universality can be achieved.
さらに燃焼室中央部に設けられた三次空気口は断面が半
円状をしているため、第6図乙に示す如く燃焼量が多い
場合には供給空気量も多く、両側の炎口方向に広がった
噴出分布となり、未燃成分との混合及び燃焼反応は広い
領域で促進されるため短炎化が容易に実現される。一方
燃焼量を絞った場合には第5図すに示す如く、供給空気
量が少なくなるため両側の炎口方向には広がらない。従
がって二次空気で十分空気が供給され火炎温度が低くな
っている燃焼反応域にさらに空気を供給しに炎を過冷却
して反応を凍結することもない。上記の内容全具体例と
して示したものが第6図である。第6図でわかるように
TDRが拡大できるとともに、燃焼量に対し、安定燃焼
を維持できる許容ファン風量も広がり、燃焼量■が容易
に行なえるものである。Furthermore, since the tertiary air port provided in the center of the combustion chamber has a semicircular cross section, when the combustion amount is large as shown in Figure 6 B, the amount of air supplied is also large, and The ejection distribution is wide, and mixing with unburned components and combustion reaction are promoted over a wide area, so a short flame can be easily achieved. On the other hand, when the combustion amount is reduced, as shown in FIG. 5, the amount of supplied air decreases, so that the flame does not spread toward the flame openings on both sides. Therefore, there is no need to overcool the flame and freeze the reaction by supplying more air to the combustion reaction zone where the secondary air is sufficient and the flame temperature is low. FIG. 6 shows a concrete example of all the above contents. As can be seen in FIG. 6, the TDR can be increased, and the permissible fan air volume that can maintain stable combustion relative to the combustion amount is also increased, making it easy to achieve the combustion amount (2).
更に一次空気量が増大した混合気の場合、火炎が吹き飛
び易くなるが、第7図に示す如く、段部20により混合
気側の通路面積少なく火炎側の炎口面積広くなっている
ため、均圧室15から噴出した混合気の噴出速度分布は
一点鎖線aで示すようになり、段部20の下流側炎孔部
の噴出速度は極端に低くなる。Furthermore, in the case of a mixture with an increased amount of primary air, the flame tends to be blown away, but as shown in FIG. The ejection velocity distribution of the air-fuel mixture ejected from the pressure chamber 15 is as shown by the dashed-dotted line a, and the ejection velocity at the downstream flame hole portion of the stepped portion 20 is extremely low.
従って、−法学気量が多い混合気となった場合、短炎化
されると同時に吹き飛び易くなるが、混合気噴出流速の
低い領域で保炎の役割をするため、第7図の点線で示す
ように、段部20の下流側炎孔と、三次空気口12の端
部で囲む燃焼火炎を形成し、吹き飛びを防ぎ、第6図に
示すような安定の熱を三次空気に吸収し易くシ、バック
防止を行っている。Therefore, when the mixture becomes a mixture with a large amount of air, the flame becomes short and the flame is easily blown away, but in the region where the mixture jet flow velocity is low, it plays a flame-holding role, as shown by the dotted line in Figure 7. As shown in FIG. 6, a combustion flame is formed that is surrounded by the downstream flame hole of the stepped portion 20 and the end of the tertiary air port 12, thereby preventing blow-off and making it easier for the tertiary air to absorb stable heat as shown in FIG. , to prevent backlash.
以上の説明から明らかなように本発明の燃焼装置によれ
ば以下の効果が得られる。As is clear from the above description, the combustion apparatus of the present invention provides the following effects.
(1)炎口部全二分割してそれぞれの炎口部上に形成さ
れる火炎に対し、二次空気口と三次空気口により両側か
ら火炎に空気を供給することにより、小さな供給空気の
噴出速度で短炎化を図り、燃焼室の小型化とファンの小
型化とが同時に満足でき、ファンも含めた燃焼装量全体
の小型化が実現できる。(1) By dividing the flame nozzle into two parts and supplying air to the flame from both sides through the secondary air port and tertiary air port, a small jet of supplied air is emitted from the flame formed on each flame nozzle. By achieving a shorter flame at higher speeds, it is possible to achieve both a smaller combustion chamber and a smaller fan at the same time, making it possible to reduce the overall combustion load including the fan.
G2) 炎口部はその一方を一体成形された二次空気
室を流nる二次空気と、他の一方を炎口部に接した三次
空気通路体を流れる三次空気により冷却さ扛るため、燃
焼速度の大きな燃料でも炎口を加熱してフラッシュバン
クを生じることがない。又火炎は燃焼室の中央部に形成
され直接燃焼室などの冷却部に直接触れることもないか
ら燃焼速度の小さな燃料でも火炎冷却を受けて燃焼反応
凍結を起こすこともないので、特性の異る各種燃料に対
して燃焼装置のユニバーサル化が図れる。G2) The flame outlet is cooled by secondary air flowing through an integrally molded secondary air chamber on one side, and tertiary air flowing through a tertiary air passageway in contact with the flame outlet on the other side. Even when using fuel with a high burning rate, it does not heat up the flame nozzle and cause a flash bank. In addition, since the flame is formed in the center of the combustion chamber and does not come into direct contact with cooling parts such as the combustion chamber, even fuel with a low combustion speed will not be cooled by the flame and freeze the combustion reaction. Combustion equipment can be made universal for various fuels.
(3)三次空気口は断面半円形状であるため空気量が多
い大燃焼量の場合は両側の炎口方向に広がり火炎に有効
に空気を供給し、空気量が少い小燃焼量の場合には両側
の火炎温度が低くなった火炎方向には広がらないため火
炎を過冷却することがない。このように燃焼量に対応し
て三次空気供給方向が変化するため、TDRi拡犬でき
る。さらに安定燃焼を維持できる許容ファン風量が大き
くなるため燃焼量(財)も容易となる。(3) Since the tertiary air port has a semicircular cross section, when the air volume is large and the combustion volume is large, it spreads toward the flame openings on both sides and effectively supplies air to the flame, and when the air volume is small and the combustion volume is small. Since the flame temperature on both sides is low, the flame does not spread in the direction of the flame, so there is no overcooling of the flame. Since the tertiary air supply direction changes in accordance with the combustion amount in this way, TDRi can be expanded. Furthermore, since the permissible fan air volume that can maintain stable combustion is increased, the amount of combustion (goods) becomes easier.
(4)三次空気通路体15に段部20を設け、炎口6の
前後で通路断面積を変えることによジ、−次および二次
空気の変動に対し保炎領域ができるため、安定燃焼域を
広げる炎孔部構成となっている。(4) By providing the stepped portion 20 in the tertiary air passage body 15 and changing the passage cross-sectional area before and after the flame port 6, a flame holding area is created against fluctuations in primary, secondary and secondary air, resulting in stable combustion. It has a flame hole configuration that expands the area.
(6)三次空気通路体16に絞り部11を設け、三次空
気の流速を増大し易い構成とし、火炎からの熱の吸収を
し易くしバック防止をはかり燃焼域を、広げている。(6) The tertiary air passage body 16 is provided with a constriction portion 11 to facilitate increasing the flow velocity of the tertiary air, making it easier to absorb heat from the flame, preventing backlash, and widening the combustion range.
以上のように高負荷・短炎化およびTDR時の安定燃焼
域の拡大、−次・二次空気の変動に対しても燃焼域の広
い燃焼装置となり効果の大きいものである。As described above, the combustion device has a wide combustion range and is highly effective against high load/short flame and expansion of the stable combustion range during TDR, as well as fluctuations in primary and secondary air.
第1図は本発明の一実施例を示す燃焼装置の全体断面図
、第2図は第1図の部分断面図、第3図は第1図の部分
断面の斜視図、第4図は燃焼量に対し要求されるファン
送風圧を従来例と比べた比較図、第5図aは第1図の燃
焼装置で形成される火炎と供給空気の噴出分布を示した
説明図で燃焼量の多い場合の断面図、bは燃焼量の少い
場合の断面図、第6図は燃焼量に対して安定燃焼を維持
例の断面図である。
1・・・・・・ファン、2・・・・・・成形体、4・・
・・・・二次空気室、6・・・・・・凸状部、6・・・
・・・炎口、7・・・・・・炎口部、8・・・・・・二
次空気口、1o・・・・・・燃焼室、12・・団・三次
空気口、13・・・・・・三次空気通路体、2o・・・
・・・段部0
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
菓2図
第 3 因
第4図
婢:蜆皇喚肴メπ7 HC鳴。
1A8rI!J
W/A9図
//ρ
78−Fig. 1 is an overall cross-sectional view of a combustion device showing an embodiment of the present invention, Fig. 2 is a partial cross-sectional view of Fig. 1, Fig. 3 is a perspective view of a partial cross-section of Fig. 1, and Fig. 4 is a combustion Figure 5a is an explanatory diagram showing the flame formed in the combustion device of Figure 1 and the ejection distribution of the supplied air, with a large amount of combustion. FIG. 6 is a cross-sectional view of an example in which stable combustion is maintained with respect to the combustion amount. 1...Fan, 2...Molded body, 4...
...Secondary air chamber, 6...Convex portion, 6...
...flame port, 7...flame port, 8...secondary air port, 1o...combustion chamber, 12...group/tertiary air port, 13. ...Tertiary air passage body, 2o...
...Danbe 0 Name of agent Patent attorney Toshio Nakao and 1 other person 1st
Zuka 2nd diagram 3rd cause 4th figure: 蜆王致贴MEπ7 HC mei. 1A8rI! J W/A9 figure//ρ 78-
Claims (1)
気を供給して短炎化を図る手段を設け、多数の三次空気
口を有する断面が半円状の先端部を燃焼室の中央部に突
出させた三次空気通路体と、二次空気室を形成する良熱
伝導体の成形体の一部に凸状部を設け、前記凸状部に多
数の炎口金有する炎口部を形成するとともに、前記炎口
部の近傍に前記二次空気室と連通ずる多数の二次空気口
を設け、かつ前記三次空気通路体を前記炎口部で両側よ
り支持し、前記空気通路体に段部を設は炎口部でガイド
し、炎口部の火炎側の炎口断面積を、混合気の後日通路
断面積より大きくしかつ三次空気通路体に絞り部を設は
三次空気流速を大きくした燃焼装置。A means is provided to shorten the flame by forcibly supplying air to the flame premixed with primary air using a fan, and the tip, which has a semicircular cross section with numerous tertiary air ports, is placed in the center of the combustion chamber. A convex portion is provided on a part of the molded body of a good thermal conductor that forms a tertiary air passage body protruding from the side and a secondary air chamber, and a flame mouth portion having a large number of flame nozzles is formed in the convex portion. In addition, a large number of secondary air ports communicating with the secondary air chamber are provided in the vicinity of the flame port, and the tertiary air passage body is supported from both sides by the flame port, and the air passage body is provided with a stepped portion. The tertiary air flow velocity was increased by setting a constriction part in the tertiary air passage body and guiding the flame opening at the flame opening, making the flame opening cross-sectional area on the flame side of the flame opening larger than the later passage cross-sectional area of the air-fuel mixture. Combustion device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP392682A JPS58120013A (en) | 1982-01-12 | 1982-01-12 | Burner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP392682A JPS58120013A (en) | 1982-01-12 | 1982-01-12 | Burner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58120013A true JPS58120013A (en) | 1983-07-16 |
Family
ID=11570742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP392682A Pending JPS58120013A (en) | 1982-01-12 | 1982-01-12 | Burner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58120013A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7993130B2 (en) * | 2004-10-22 | 2011-08-09 | Sandvik Intellectual Property Ab | Method of combustion with the aid of burners in industrial furnaces, and a burner to this end |
-
1982
- 1982-01-12 JP JP392682A patent/JPS58120013A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7993130B2 (en) * | 2004-10-22 | 2011-08-09 | Sandvik Intellectual Property Ab | Method of combustion with the aid of burners in industrial furnaces, and a burner to this end |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4909728A (en) | Combustion apparatus | |
JPS58120013A (en) | Burner | |
JPS586A (en) | Combustion device | |
JPS58120012A (en) | Burner | |
JPS6327606B2 (en) | ||
JPS58120014A (en) | Combustion device | |
JPS5849816A (en) | Burner | |
JP2002295811A (en) | Multistage combustion device | |
JP2956242B2 (en) | Combustion equipment | |
JPS62401B2 (en) | ||
JPS5883112A (en) | Burner | |
JPS5843322A (en) | High-loaded combustor | |
JPS60243414A (en) | Combustion apparatus | |
JPH01107010A (en) | Burner | |
JPS631493B2 (en) | ||
JP2916958B2 (en) | Gas burner | |
JPS59202308A (en) | Combustion device | |
JPS60243413A (en) | Combustion apparatus | |
JPH01222105A (en) | Burner | |
JP2877486B2 (en) | Combustion equipment | |
JPS58221305A (en) | Burner | |
JPS62293009A (en) | Gas hot-water supplier of partial premixing type | |
JPH0221111A (en) | High load-burner | |
JPH02143003A (en) | Hot water supplier | |
JPS60164110A (en) | High load burner |