JPS58220469A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58220469A
JPS58220469A JP10454282A JP10454282A JPS58220469A JP S58220469 A JPS58220469 A JP S58220469A JP 10454282 A JP10454282 A JP 10454282A JP 10454282 A JP10454282 A JP 10454282A JP S58220469 A JPS58220469 A JP S58220469A
Authority
JP
Japan
Prior art keywords
layer
fet
substrate
semi
annealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10454282A
Other languages
Japanese (ja)
Inventor
Tatsuyuki Sanada
真田 達行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10454282A priority Critical patent/JPS58220469A/en
Publication of JPS58220469A publication Critical patent/JPS58220469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the integration of a semiconductor device and to maintain effective logic operation of an FET by forming a light emitting element on the front surface and the FET on the back surface of a semi-insulating substrate, and electrically connecting the FET via a diffused layer in the substrate to the front surface. CONSTITUTION:Zn is diffused from both sides of a semi-insulating GaAS substrate 1 to form a region 2, an N type epitaxial layer 3 is formed on the surface 1A, a P<+> type GaAs film 4, a P type GaAs film 5, an N type GaAs active layer 6, an N type GaAlAs film 7 and an N<+> type GaAs film 8 are superposed on the surface 1B, and an ohmic electrode 9 deposited with Ni on Au-Ge eutectic layer is formed. Similar electrodes 12, 13 for a source and a drain are attached to the surface 1A, and annealed in N2. The layers 8-5 are selectively etched with H2SO4+H2O2+H2O, an AuZn alloy layer 10 is attached onto the layer 4, and annealed in N2. Then, the layer 3 on the region 2 on the surface 1A is opened, an AuZn alloy layer 11 is formed, superposed on part of the electrode 12 and annealed. Eventually, an aluminum gate 14 is attached. Both surfaces are effectively utilized to improve the integration, the light of a light emitting element is absorbed by the substrate so as not to reach the gate of the FET on the surface A, thereby effectively performing the operation of the FET.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は、@光素子と電界効果トランジスタ(以下、F
l!!Tと称す)が同一の半絶縁性半導体基板に形成さ
れた半導体装置に関する。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to @optical devices and field effect transistors (hereinafter referred to as F
l! ! The present invention relates to a semiconductor device in which two semiconductor devices (referred to as T) are formed on the same semi-insulating semiconductor substrate.

(b)  従来技術と問題点 同一半導体基板上にFETロジック回路と光半導体素子
を形成する場合、従来は半絶縁性半導体基板の1つの面
上で形成していた。しかし、素子及びFBTt:lシッ
ク回路を同一面上に配置するために集積度は上がらず、
また発光素子から発する光がFHjTロジック回路のゲ
ートに当たる可能性があるため、正常なロジック動作が
確保しにくい等の問題がある。
(b) Prior Art and Problems When forming an FET logic circuit and an optical semiconductor element on the same semiconductor substrate, conventionally they were formed on one surface of a semi-insulating semiconductor substrate. However, since the elements and FBTt:l thick circuits are placed on the same plane, the degree of integration does not increase.
Furthermore, since the light emitted from the light emitting element may hit the gate of the FHjT logic circuit, there is a problem that it is difficult to ensure normal logic operation.

(0)  発明の目的 本発明は、上記従来の欠点を解決し、集積度の向上を図
り、かつFKTの確実な動作を確保することを目的とす
る。
(0) Object of the Invention The object of the present invention is to solve the above-mentioned conventional drawbacks, improve the degree of integration, and ensure reliable operation of the FKT.

(+1)  発明の構成 上記目的を達成するための本発明による半導体装置は、
半絶縁性半導体基板の一方の表面上に発光素子、他方の
表面上に電界効果トランジスタが夫々形成され、該電界
効果トランジスタは、該半絶縁性半導体基板中に形成さ
れた拡散領域を介して該一方の表面上と電気的に接続さ
れてなることを特徴とする。
(+1) Structure of the Invention A semiconductor device according to the present invention for achieving the above object has the following features:
A light emitting element is formed on one surface of the semi-insulating semiconductor substrate, and a field effect transistor is formed on the other surface of the semi-insulating semiconductor substrate. It is characterized by being electrically connected to one surface.

(θ)発明の実施例 以下、本発明の一実施例をその製造工程を説明しつつ説
明する。
(θ) Example of the Invention Hereinafter, an example of the present invention will be described while explaining its manufacturing process.

第1図に示すように、半絶縁性半導体基板として両表面
を鏡面仕上げした厚さ200μmのGaAs基板1を用
いた。図示はしないが両面にスパッタリングで810.
を〜aoooX被覆し、表裏一致した場所に通常のホト
リソグラフィとエツチングで直径40μmの窓明けをそ
れぞれ行ない1、両面からZn拡散して、半絶縁性基′
板1中に拡散領域2を設ける。拡散によって生じた表面
のダメージや拡散の横拡がり等の層はエツチングして除
去する。
As shown in FIG. 1, a GaAs substrate 1 having a thickness of 200 μm and having both surfaces mirror-finished was used as a semi-insulating semiconductor substrate. Although not shown, sputtering is performed on both sides at 810.
~aoooX coating, open a window with a diameter of 40 μm at the same location on both sides by normal photolithography and etching 1. Zn is diffused from both sides to form a semi-insulating base.
A diffusion region 2 is provided in the plate 1 . Surface damage caused by diffusion and layers with lateral spread of diffusion are removed by etching.

半絶縁性半導体基板1として両側の面を鏡面仕上げした
厚さ200μmのGaA3、次に一つの面IA上にF’
BTの動作層として働(n−GaAe(ドナー不純物濃
度n−lX101’cfIt−s、厚さt=α2μm)
を分子線エピタキシ(’HBB)成長法で成長させる。
As a semi-insulating semiconductor substrate 1, GaA 3 with a thickness of 200 μm with both sides mirror-finished, then F' on one surface IA.
Acts as the active layer of BT (n-GaAe (donor impurity concentration n-lX101'cfIt-s, thickness t = α2 μm)
is grown by molecular beam epitaxy ('HBB) growth method.

次に第2図に示すようにMHI!!成長法で他の面IB
上にバッファ層兼レーザのPコンタクト層としてのP 
 −GaAs厚さく n=3X10”ms、 t=−2
〜3μm)を成長させ、そめ上にキャリア閉じ込め層と
してのP−GaAtAs厚さく P−IXIO” tM
−” 。
Next, as shown in Figure 2, MHI! ! Other aspects of growth method IB
P as a buffer layer and a P contact layer of the laser on top.
-GaAs thickness n=3X10”ms, t=-2
3 μm) and a thick P-GaAtAs layer as a carrier confinement layer on top of the P-IXIO” tM.
−”.

t−1μm)、レーザダイオードの活性層としてのn−
GaAs層6(n#1xlO’丁帰−畠、 を−αl 
μm)、  キ ャリア閉じ込め層としてのn−GaA
tAe層フ(n=3X1011例−’、t−1μm)、
nコンタクト層としてのn −eaas層8(n jl
llo”cflI” 、 t−1μm)を連続的に成長
させる。次いで第3図に示すようにn側のオーミックコ
ンタクト9(AuとGoの共晶層とその上に形成された
Ni層を3000K 真空蒸着し。
t-1μm), n- as the active layer of the laser diode
GaAs layer 6 (n#1
μm), n-GaA as carrier confinement layer
tAe layer f(n=3×1011 examples-', t-1 μm),
n-eaas layer 8 (n jl
llo"cflI", t-1 μm) is grown continuously. Next, as shown in FIG. 3, an ohmic contact 9 on the n side (a eutectic layer of Au and Go and a Ni layer formed thereon) was vacuum-deposited at 3000K.

通常のホトリングラフィとエツチングで幅10μm。Width 10 μm using normal photolithography and etching.

長さ300μm のストライプとする。次に、基板基板
IA面に、FIiiTのソース(s)l  ドレイン(
D)のオーミックコンタクト層12. li1%  3
して上記と同様にAuGθ/N tをリフトオフ法で形
成し、420℃、1分間、N2雰囲気中で熱処理する。
The stripes are 300 μm long. Next, the source (s) l drain (
D) Ohmic contact layer 12. li1% 3
Then, AuGθ/Nt is formed by the lift-off method in the same manner as above, and heat treated at 420° C. for 1 minute in an N2 atmosphere.

次に基板13面側に、ホトレジストを塗布した後、ホト
リソグラフィでnコンタクトを覆うようにホトレジスト
膜を幅250μm、長さ310.lJmで残す。
Next, a photoresist is applied to the surface of the substrate 13, and then a photoresist film is formed by photolithography to a width of 250 μm and a length of 310 μm so as to cover the n-contact. Leave it at lJm.

次に、第4図に示すようにH!S 04/H!0@ /
HI 0重量比(1:8:l)のj−ッチング液でP”
−GaAe /ii4に達する迄エツチングする。
Next, as shown in FIG. 4, H! S 04/H! 0 @ /
P” with J-etching liquid of HI 0 weight ratio (1:8:l)
- Etch until GaAe /ii4 is reached.

次にAuZn合金層を真空蒸着し、通常のホトリソグラ
フィとエツチングでZnを拡散した上部のP”−GaA
gA上の一部にAuZn合金層1oをっけ。
Next, an AuZn alloy layer is vacuum-deposited, and the upper P''-GaA layer is diffused with Zn using conventional photolithography and etching.
Place an AuZn alloy layer 1o on a part of gA.

400℃、5分間* ”tJj囲気中で熱処理する。Heat treatment at 400°C for 5 minutes* in an atmosphere.

次に、LA面においてZnを拡散した部分のn−GaA
c1層3をエツチングで取り除いた後、Auzn合金層
11を真空蒸着し、通常のホトリソグラフィとエツチン
グでAuZnがZn拡散した部分とFIT動作層とFI
ItTのソース(S)、電極め1部を覆うようにした後
、400℃、5分間INFs囲気中で熱処理する。この
工程により、FIItTのソース(S)電極とレーザの
P電極が上記の半絶縁性半導体基板1中の拡散領域2に
より電気的に結線される。
Next, the n-GaA portion of the LA surface where Zn is diffused is
After removing the c1 layer 3 by etching, the AuZn alloy layer 11 is vacuum-deposited, and then the AuZn and Zn-diffused parts, the FIT operating layer, and the FI
After covering a portion of the ItT source (S) and electrode, heat treatment is performed at 400° C. for 5 minutes in an INFs atmosphere. Through this step, the source (S) electrode of the FIItT and the P electrode of the laser are electrically connected through the diffusion region 2 in the semi-insulating semiconductor substrate 1 described above.

次に、基板IA部面上FETのゲートメタルとしてAt
14をリフトオフ法で形成する。この様にして、第5図
に示すように半絶縁性Ga八へ基板1のIA面、  I
B面にそれぞれF型’r、レーザダイ、 オードが形成
される。
Next, At as the gate metal of the FET on the IA part of the substrate.
14 is formed by a lift-off method. In this way, as shown in FIG.
An F-type 'r, a laser die, and an ode are formed on the B side, respectively.

(f)  発明の効果 本発明によれば半絶縁性半導体基板の両面を有効に利用
することが出来るので、集積度が向上する。また、発光
素子から発した光は半絶縁性GaAs基板で吸収される
のでA面に位置するFBTのゲートには達しない。従っ
て、FIltTの動作が確実となる。
(f) Effects of the Invention According to the present invention, both sides of a semi-insulating semiconductor substrate can be effectively utilized, so that the degree of integration is improved. Furthermore, the light emitted from the light emitting element is absorbed by the semi-insulating GaAs substrate, so it does not reach the gate of the FBT located on the A-plane. Therefore, the operation of FIltT is ensured.

【図面の簡単な説明】 第1図乃至第5図は、本発明の一実施例を製造する際の
工程順断面図であり、特に第5図が本発明の一実施例を
示す図である。 図において、1はGa As基板、2は拡散領域。 4はp+−GaAs層、5はp−GaAtAs層、6は
n−Ga ks層、マはn−GaAtAl層、8はn+
−GaA0層、10.11はAuZn合金層、12.1
3はソース。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 to 5 are cross-sectional views in the order of steps in manufacturing an embodiment of the present invention, and in particular, FIG. 5 is a diagram showing an embodiment of the present invention. . In the figure, 1 is a GaAs substrate and 2 is a diffusion region. 4 is a p+-GaAs layer, 5 is a p-GaAtAs layer, 6 is an n-Gaks layer, M is an n-GaAtAl layer, 8 is an n+
-GaA0 layer, 10.11 is AuZn alloy layer, 12.1
3 is the sauce.

Claims (1)

【特許請求の範囲】 半絶縁性半導体基板の一方の表面上に発光素子。 表 他方の裏面上に電界効果トランジスタが夫々形成され、
該電界効果トランジスタは該半絶縁性半導体基板中に形
成された拡散領域を介して該一方の表面上と電気的に接
続されてなることを特徴とする半導体装置。
[Claims] A light emitting element on one surface of a semi-insulating semiconductor substrate. Field effect transistors are formed on the front and other back surfaces, respectively.
A semiconductor device characterized in that the field effect transistor is electrically connected to the one surface of the semi-insulating semiconductor substrate via a diffusion region formed in the semi-insulating semiconductor substrate.
JP10454282A 1982-06-17 1982-06-17 Semiconductor device Pending JPS58220469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10454282A JPS58220469A (en) 1982-06-17 1982-06-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10454282A JPS58220469A (en) 1982-06-17 1982-06-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58220469A true JPS58220469A (en) 1983-12-22

Family

ID=14383372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10454282A Pending JPS58220469A (en) 1982-06-17 1982-06-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58220469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588701A1 (en) * 1985-10-14 1987-04-17 Bouadma Noureddine METHOD FOR PRODUCING AN INTEGRATED LASER-PHOTODETECTOR STRUCTURE
US4691214A (en) * 1984-07-31 1987-09-01 Sharp Kabushiki Kaisha Optical semiconductor apparatus
JP2010045410A (en) * 2009-11-24 2010-02-25 Fujitsu Ltd Photoelectric integrated circuit
US7994524B1 (en) * 2007-09-12 2011-08-09 David Yaunien Chung Vertically structured LED array light source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4691214A (en) * 1984-07-31 1987-09-01 Sharp Kabushiki Kaisha Optical semiconductor apparatus
FR2588701A1 (en) * 1985-10-14 1987-04-17 Bouadma Noureddine METHOD FOR PRODUCING AN INTEGRATED LASER-PHOTODETECTOR STRUCTURE
US4692207A (en) * 1985-10-14 1987-09-08 Noureddine Bouadma Process for the production of an integrated laser-photodetector structure
US7994524B1 (en) * 2007-09-12 2011-08-09 David Yaunien Chung Vertically structured LED array light source
JP2010045410A (en) * 2009-11-24 2010-02-25 Fujitsu Ltd Photoelectric integrated circuit

Similar Documents

Publication Publication Date Title
JP4084620B2 (en) Light emitting device and method for manufacturing light emitting device
GB1053069A (en)
JPS58220469A (en) Semiconductor device
JPH08153892A (en) Semiconductor light emitting element and fabrication thereof
JPH0531317B2 (en)
US5264379A (en) Method of making a hetero-junction bipolar transistor
JPH05175247A (en) Manufacture of semiconductor device
JP2008140811A (en) Method of manufacturing semiconductor device
JP3152474B2 (en) Light emitting diode
JP2001085741A (en) Semiconductor device and light-emitting semiconductor device
EP0460429A2 (en) Method of making heterojunction bipolar transistor
JPS5842631B2 (en) Method for manufacturing junction gate field effect transistor
JPS6273675A (en) Semiconductor device
JPS6037149A (en) Semiconductor device
JPS5830170A (en) Compound semiconductor element and forming method of its electrode
JPS54162457A (en) Electrode forming method for semiconductor element
JPH06151354A (en) Electrode formation method of semiconductor element
JPS5976437A (en) Semiconductor device
GB1060025A (en) Improved method of forming tunnelling junctions in intermetallic semiconductor material
JPS6173381A (en) Manufacture of semiconductor integrated circuit device
JPH0513780A (en) Manufacture of semiconductor device
JPS58207683A (en) Semiconductor light emitting device
JPH0472632A (en) Manufacture of heterojunction bipolr transistor
JPS5914691A (en) Semiconductor laser
JPS6394639A (en) Manufacture of semiconductor device