JPS58219986A - Treatment of geothermal hot water - Google Patents

Treatment of geothermal hot water

Info

Publication number
JPS58219986A
JPS58219986A JP10158882A JP10158882A JPS58219986A JP S58219986 A JPS58219986 A JP S58219986A JP 10158882 A JP10158882 A JP 10158882A JP 10158882 A JP10158882 A JP 10158882A JP S58219986 A JPS58219986 A JP S58219986A
Authority
JP
Japan
Prior art keywords
silica
hot water
solution
liquid
dissolved silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10158882A
Other languages
Japanese (ja)
Inventor
Goro Sato
護郎 佐藤
Yusaku Arima
悠策 有馬
Michio Komatsu
通郎 小松
Hiroyasu Nishida
広泰 西田
Yoshitsune Tanaka
喜凡 田中
Michiyasu Hagio
萩尾 道泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
JGC Catalysts and Chemicals Ltd
Original Assignee
SHOKUBAI KASEI KOGYO KK
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK, Catalysts and Chemicals Industries Co Ltd filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP10158882A priority Critical patent/JPS58219986A/en
Priority to NZ20445583A priority patent/NZ204455A/en
Priority to IS2814A priority patent/IS1326B6/en
Priority to PH29046A priority patent/PH19651A/en
Priority to IT67653/83A priority patent/IT1162875B/en
Publication of JPS58219986A publication Critical patent/JPS58219986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To reduce the precipitation and the adhesion of dissolved silica to machineries, by a method wherein dissolved silica in geothermal hot water containing dissolved silica in an oversaturated state is grown to a particle with a specific particle size which is in turn separated from hot water by an ultrafiltration membrane. CONSTITUTION:In utilizing geothermal hot water, soluble oversaturated silica in hot water is subjected to colloid growth or coagulation to be grown to a particle with a particle size of 5mmu or more which is in turn separated by using an ultrafiltration membrane to reduce the precipitation of dissolved silica in the filtrate to machineries. In this case, a temp. in colloid growth conditions is pref. about 40-100 deg.C and, in forming and growing a secondary coagulation particle by adding a coagulant, as the coagulant, an Al type, an Fe type, a Ca type or an org. amines are effective.

Description

【発明の詳細な説明】 地熱エネルギーの利用の態様としては、地中の高温熱水
を水蒸気と共に噴出させ蒸気と熱水とを分離し蒸気は発
電用に供し熱水は、必要に応じフラッシュ蒸発にLD二
次蒸気を発生させかつ降圧させた後、その熱を暖房等に
利用し更には温泉として或は地中に還元すること等がよ
く知られ、又実際にも6処で行なわれている・この地熱
利用において、噴出する熱水はその地中における温度に
応じ岩石中のシリカを多責に溶解し数百ppm以上の可
溶性シリカを共存させており、従って蒸気分離後の熱水
の温度低下と共に過飽和となり、送湯管、熱交換器さら
には還元井等の機器に析出する。そしてこの析出スケー
ルは各機器の能力低下さらKは使用不能へと重大なトラ
ブルを導き、その軽済的損失は計り知れない。そしてこ
のトラブルL地域差に基(他の溶存成分の変化と関係な
(生起する。
Detailed Description of the Invention: Geothermal energy is utilized by ejecting high-temperature hot water from underground together with steam, separating the steam and hot water, using the steam for power generation, and flashing the hot water as needed. It is well known that after generating LD secondary steam and lowering the pressure, the heat is used for heating etc., and furthermore, it is used as a hot spring or returned to the ground, and it is actually practiced in 6 places.・In this geothermal utilization, the erupting hot water dissolves the silica in the rock depending on the temperature underground, and coexists with more than several hundred ppm of soluble silica. As the temperature decreases, it becomes supersaturated and deposits in equipment such as water pipes, heat exchangers, and even reinjection wells. This precipitated scale leads to serious troubles such as a decline in the performance of each device and even the inability to use it, and the economic loss is immeasurable. This trouble L occurs based on regional differences (related to changes in other dissolved components).

この問題の解決には過去にも多くの研究がなされている
が、満足すべき解決策は見出されてぃなh0本発明の最
大の目的は上記スケールトラブルを実質的に無くするよ
うなシリカ除去手段を提供するにある。
Many studies have been conducted in the past to solve this problem, but no satisfactory solution has been found. To provide a means of removal.

スケールトラブルを解消するための研究は過去において
、雑誌「セ5dツクスJ 第t 51!第2号〕810
03[〜104N[)r地熱発電と熱水の利用]、雑誌
「高滓評論第28巻第2号別刷ax O7Jl[〜12
oJ[(@1報J、 fiiQmlzx買〜1.2 買
置1第2報れあるい社日本化学雑−1[R91巻#!1
 x!)@s 9頁〜4 sX岬に報告されている。C
れらの報告で位、熱水中の過飽和シリカがコロイド化す
る過程とシリカの付着性は相互に関係があることケ解明
し、シリカコロイドの虫取速度の大きな条件下ではシリ
カの管壁への付着がいちじるしいと述べて騒る。コロイ
ド°生成を50tまで温度を下げること、かきまぜを行
なうこと、a過を行なうこと、河川水混入後濾過するこ
となどはいずれもコロイドの生成を抑える効果があるこ
と等全開らかにし。
In the past, research to solve scale problems was carried out in the magazine "Se5dtx J No. 51! No. 2] 810
03[~104N[)rGeothermal power generation and hot water utilization], Magazine “Takashi Hyoron Vol. 28 No. 2 Reprint ax O7Jl[~12
oJ [(@1 Report J, fiiQmlzx Buy ~ 1.2 Buy 1 2nd Report Reaisha Nihon Kagaku Miscellaneous - 1 [R91 Volume #! 1
x! )@s Pages 9-4 Reported in sX Misaki. C
These reports revealed that there is a mutual relationship between the colloidalization process of supersaturated silica in hot water and the adhesion of silica, and it was found that under conditions where the insect removal rate of silica colloid is high, silica does not adhere to the pipe wall. They say that the adhesion is quite noticeable. It has been made clear that lowering the temperature to 50 tons, stirring, a-filtration, and filtration after mixing with river water all have the effect of suppressing colloid formation.

更にシリカコロイド9粒子の大きさが光散乱法で測って
約03μとなり、コロイド抑制に効果のある条件下では
付着が少ないと述べている。
Furthermore, the size of the 9 silica colloid particles was measured using a light scattering method to be approximately 0.03 μm, and it is stated that under conditions that are effective in suppressing colloids, there is little adhesion.

しかし、シIツカの付着は上記のようにこれを抑える効
果はあるものの又軽減はされ友ものの付着の問題が解消
したわけではな(、なお依然として大きな問題として残
っている。
However, although there is an effect of suppressing the adhesion of dirt as mentioned above, it has been reduced and the problem of adhesion of dirt has not been solved (although it still remains a major problem).

本発明は本シリカ付着の問題を軽減し、さらに必要とあ
れはシリカを熱水中から回収することも考慮して、溶存
シリカを粒子成長させた後。
The present invention alleviates the problem of silica adhesion and, if necessary, also takes into account the recovery of silica from hot water after particle growth of dissolved silica.

限外膜でシリカを熱水から分けようとするものである。The idea is to separate silica from hot water using an ultramembrane.

熱水中の可溶性過飽和シリカはコロイド生成または凝集
させて5mμ以上の大きさまで粒子を成長させる。次い
で限外膜を通して5mμ以上に成長した粒子を分離する
。F液側のシリカの含有飢はシリカの粒子径、液のpH
+温度に応じた値?示し、F液側のシリカの性質や量に
応じてシリカスケールの析出量が変る。
Soluble supersaturated silica in hot water forms colloids or aggregates to grow particles to a size of 5 mμ or more. Next, particles that have grown to a size of 5 mμ or more are separated through an ultramembrane. The silica content on the F liquid side depends on the silica particle size and the pH of the liquid.
+Value depending on temperature? The amount of silica scale precipitated changes depending on the properties and amount of silica on the F liquid side.

模擬熱水を用いてシリカの粒子成長した液は限外膜を通
し得られたろ液中に鉄片を浸漬しシリカスケールの析出
を脚ぺた結果全く処理しない模擬熱水や、特に粒子成長
させない液で限外膜を通したp液に比ペシリカスケール
の析出量が少ないことが判った。なおシ1ツカのスケー
ル析出の測定条件は40℃で1週間行なった。溶存シリ
カを含む地熱熱水からシIJ力のコロイドを成長させた
り、tたは凝集させたりして5mμ以上へ粒子成長させ
るには次のようにして行なうことができる。
The solution in which silica particles are grown using simulated hot water is obtained by immersing an iron piece in the filtrate obtained through an ultramembrane to remove the precipitation of silica scale. It was found that the amount of pessilica scale precipitated in the p-liquid that passed through the ultramembrane was small. The measurement conditions for scale precipitation were 40° C. for one week. The following procedure can be used to grow colloids of IJ force from geothermal hot water containing dissolved silica, or to cause particles to grow to a size of 5 mμ or more by coagulation.

溶存シリカを含む地熱熱水へ既に生成し次シリカコロイ
ドの核を混合接触させて溶存シリカ   1を核の周囲
へ析出させてコロイドとして成長させることができる。
By mixing and contacting the already generated silica colloid core with geothermal hot water containing dissolved silica, dissolved silica 1 can be precipitated around the core and grown as a colloid.

実質的には既にコロイド成長している前駆体熱水をコロ
イド成長の核として用いることができる。コロイドの成
長条件は40℃〜100℃の温度が望ましく、温度が高
、 いほどコロイドの粒子径が大きくなり易い・また核
となるべき物質はシリカだけでなく核の周囲にシ11力
を析出する物質なら用いることができる。友だし、純シ
リカで回収するにはやはり前駆体熱水中のシリカコロイ
ド核を用いルノカ好ましい。
Precursor hot water that has essentially already undergone colloidal growth can be used as a nucleus for colloidal growth. The desirable conditions for colloid growth are temperatures between 40°C and 100°C; the higher the temperature, the larger the particle size of the colloid becomes.In addition, the material that should form the nucleus is not only silica, but also precipitates around the nucleus. Any substance that does this can be used. To collect pure silica, it is preferable to use silica colloid cores in hot water as a precursor.

また、凝集剤を加えてもシリカは二次凝集粒子を形成し
て成長する。シリカの凝集剤としてはA)系、 Fe系
、Ca系、有機下ぜン等が有効であり、マイナスチャー
ジをもっシリカはこれらノフラxay−ヤージ?持つ凝
集剤を加えることにより、可溶性シリカのf1′f:減
少することが出来る。数百ppmとシリカの濃度が薄い
場合には凝集と云っても沈降するほど大きいものまでは
成長せず、通常のp過器では分離困難であるが。
Moreover, even if a coagulant is added, silica forms secondary agglomerated particles and grows. Effective flocculants for silica include A) type, Fe type, Ca type, and organic sludge. By adding a flocculant, f1'f of soluble silica can be reduced. When the concentration of silica is as low as several hundred ppm, even if it is called agglomeration, it does not grow to a size large enough to settle, and it is difficult to separate it using a normal p filter.

限外膜で分離するには十分な大きさである。It is large enough to be separated by an ultramembrane.

ここで言う粒子径は、−次粒子径はコロイド適定法で測
定されIるものであり凝集粒子径は光散乱法で実測され
るのである。粒子径を5mμ以上とした後は限外膜で成
長し次シリカコロイドを分離するのであるが、限外膜は
ノリ巻状。
The particle size referred to here is that the secondary particle size is measured by the colloid measurement method, and the aggregate particle size is actually measured by the light scattering method. After the particle size is set to 5 mμ or more, the particles are grown in an ultramembrane and then the silica colloid is separated, and the ultramembrane is shaped like a glue roll.

中窒繊維状、プレート状等があるが、どの膜の形式でも
使用できる。また分画分子量の違いもあるが、実施使用
する限りではF液側にリークするシリカ′a度について
は大差がない。
There are fibrous and plate shapes, but any membrane type can be used. Although there is also a difference in the molecular weight cutoff, as far as practical use is concerned, there is no significant difference in the degree of silica 'a' leaking to the F liquid side.

F液側へ可溶性シ1ツカが存在するが可溶性シリカの鉄
片への付着は温度によっても大巾な違いがあるが40℃
で比較した・その結果は粒子成長して限外膜を通したも
のが少ない値を示した。
There is some soluble silica on the F liquid side, but the adhesion of soluble silica to the iron piece varies greatly depending on the temperature, but at 40℃
The results showed that the number of particles that grew and passed through the ultrafilter was smaller.

以下へ実施例と比較例を示して本発明の効果を明らかに
する。
Examples and comparative examples will be shown below to clarify the effects of the present invention.

熱水模擬液の調整法 24%シリカ濃度のケイ酸ナトリウム425yvt純水
100kgに溶解して、11.1wt4シリカll!I
Ifの希釈ケイ酸ナトリゆム100.4kgを作つた。
Preparation method for hot water simulator: Dissolve 425yvt sodium silicate with a 24% silica concentration in 100kg of pure water and add 11.1wt4 silica! I
100.4 kg of diluted sodium silicate of If was made.

予め再生し几陽イオン交換樹脂<8に−IB)5ノを充
填した直径lロー。長さ200t1nのカラム中にSv
5の速度で上記溶解液を通過させ。
1 diameter row filled with pre-regenerated cation exchange resin <8-IB). Sv in a column of length 200t1n
Pass the lysate through at a speed of 5.

0、 l pt係のケイ酸液100ノを調整した。100 ml of silicic acid liquid of 0.1 pt was prepared.

この0.10 pt俤のケイ酸液100ノに99.8係
   塩化カリウム     asP99.5係   
塩化ナトリウム   244p95.0係   塩化カ
ルシウム    2.3F99J’l    硫酸ナト
リウム   14.8F99.5係   ホウ酸   
     10.0ノを添加して模擬液@:調整した。
This 0.10 pt silicic acid solution has a concentration of 99.8 and potassium chloride asP of 99.5.
Sodium chloride 244p95.0 Calcium chloride 2.3F99J'l Sodium sulfate 14.8F99.5 Boric acid
10.0 was added to prepare a simulated solution @:.

以後A液と称する。Hereinafter, it will be referred to as liquid A.

実施例1 99.5憾塩化カリウム1.14jl+、99.5係塩
化ナトリウム7.335F、95.0%塩化カルシウム
0,07り、99.Iy係硫酸ナトリウム0.441!
、99.5憾ホウ酸0.30F、98係水酸化ナトリ非
゛ ラム2.73 jlを秤取し、Bノ容器に予め計量し次
2.9ノの純水の中へこれらを添加して1時間攪拌を行
なった。この溶液に粒子径11.0mμシリカ濃度30
優を有するコロイドシリカ10、0 jlを添加し、攪
拌しながら全量を3.0ノになるように純水を加え次。
Example 1 99.5% potassium chloride 1.14jl+, 99.5% sodium chloride 7.335F, 95.0% calcium chloride 0.07jl+, 99.5% potassium chloride 0.07jl+ Iy sodium sulfate 0.441!
Weigh out 2.73 liters of 99.5% boric acid, 0.30F of 98% sodium hydroxide, weigh them in advance into container B, and then add these to 2.9% of pure water. The mixture was stirred for 1 hour. This solution contains silica with a particle size of 11.0 mμ and a concentration of 30
Add 10.0 jl of colloidal silica having a high purity, and add pure water while stirring to bring the total volume to 3.0 jl.

その後10分間充分混合した。この溶液をシード溶液と
する。このシード溶液3ノを還流器、攪拌機のついた5
04反応容器に注ぎ込み80℃になるまで加温゛し几。
Thereafter, the mixture was thoroughly mixed for 10 minutes. This solution is used as a seed solution. Add 3 parts of this seed solution to a refluxing vessel,
04 Pour into a reaction container and heat until it reaches 80℃.

80℃に達した後そのm度t−30分間保持し几。その
後人液40ノを333.3罰/iの添加速度で上記シー
ド液に添加し友。A液407を添加し終った後この溶液
48Jlを還流器2攪拌機のついた150ノ反応容器に
注ぎ込み、さらに残りのA液60ノを333.3m/m
の添加速度で加えた。A液を全量添加し終った後、この
コロイド生成液103ノを限外膜を用いてろ液102ノ
を分離し几。この涙液を一定量採取した後鉄片を浸漬し
て、シリカスケールtt−測定し友6        
                (実施例2 シード溶液の温度及びA液添加時の温度を50℃とし次
以外は実施例1と全(同様にしてシリカスケールILt
−測定した。
After reaching 80°C, hold for 30 minutes. Thereafter, 40 g of human fluid was added to the seed liquid at a rate of 333.3 ml/i. After adding 407ml of liquid A, 48Jl of this solution was poured into a 150ml reaction vessel equipped with 2 refluxers and a stirrer, and the remaining 60ml of liquid A was added to 333.3m/m.
was added at an addition rate of . After adding the entire amount of solution A, separate the filtrate 102 from the colloid-generated solution 103 using an ultramembrane. After collecting a certain amount of this tear fluid, dip an iron piece into it and measure it using a silica scale.
(Example 2 The temperature of the seed solution and the temperature at the time of adding liquid A were 50°C, and everything was the same as in Example 1 except for the following (Silica scale ILt
- Measured.

実施例3 A液添加時の速度tl−666,6rrtl/mとした
以外は実施例1と全く同様にしてシリカスケール量を測
定した・ 実施例4 f) 9.59g塩化カリウム1.14り、99.5係
塩化す) lJr’7ム7.13p、  95.0%塩
化カルシウム0.075!、  99.5 %硫酸ナト
リウ、ム0.449゜99、51ホウel!0.30j
E、54.2 ’i6塩化了ル5ニウムo、zoり、9
8俤水酸化ナトリウム2.83りを秤増し、5ノ容器に
予め計量した2、9ノの純水の中へこれらを添加して1
時間攪拌を行なった。仁の溶液に粒子径11.0 mμ
、シリカ濃度30%1に有するコロイドシリカ10. 
Opt 添加し、攪拌しながら全量を3.0ノになるよ
うに純水を加えた。その後10分間充分混合し友。この
溶液をシード溶液とする。このシード溶液3ノを還流器
、攪拌機のついた50ノ反応容器に注ぎ込み80℃にな
るまで加温し友。
Example 3 The amount of silica scale was measured in the same manner as in Example 1 except that the rate of addition of liquid A was tl-666,6rrtl/m. Example 4 f) 9.59g potassium chloride 1.14g, 99.5% Calcium Chloride) lJr'7mu 7.13p, 95.0% Calcium Chloride 0.075! , 99.5% sodium sulfate, 0.449°99, 51 hours! 0.30j
E, 54.2 'i6 5 nium chloride o, zori, 9
Weighed 8 tons of sodium hydroxide and 2.83 liters of sodium hydroxide, and added these to 2.9 tons of pure water that had been weighed in advance in a 5-liter container.
Stirring was performed for hours. Particle size 11.0 mμ in the solution of keratin
, colloidal silica with a silica concentration of 30% 10.
Opt was added, and while stirring, pure water was added so that the total amount was 3.0N. Then mix thoroughly for 10 minutes. This solution is used as a seed solution. Three volumes of this seed solution were poured into a 50 volume reaction vessel equipped with a refluxer and a stirrer, and heated to 80°C.

80℃に達した後その温度Yr30分間保持した。その
後人液40ノf:333.3m#/−で添加し終った後
、Cの溶液43ノを還流器、攪拌機のつい次150ノ反
応容器に注ぎ込み、さらに残りのA液60!t−333
1罰/lII#Iの添加速度で加えた。AMを全量添加
し終つ几後、このコロイド生成液103ノを限外膜を用
いてろ液102ノ會分離した。このろ液を一定量採取し
た後鉄片を浸漬しでシリカスケール鍬を測定したO 比較例】 実施例1と同様な操作でA液100ノを限外膜を用いて
F液99ノを分離しk・このF液を一定量採取した後鉄
片を浸漬してシリカスケール量を測定した□ 比較例2 実施例1と同様な操作でA液100ノを80℃に加温し
た後その温度を2時間保つ丸。その後限外膜を用いてp
液991を分離し丸。このr液を一定量採取した後、鉄
片を浸漬してシリカスケール量を測定しだ・ 以上得られた実施例1〜4の限外膜P液及び比較例のP
液に対し、各々のP液中のシリカスケール量を求めた。
After reaching 80°C, the temperature was maintained for 30 minutes. Thereafter, after adding 40 nof of human liquid: 333.3 m#/-, 43 no of solution C was poured into a 150 no reaction vessel equipped with a refluxer and a stirrer, and the remaining 60 nof of solution A was added. t-333
Added at an addition rate of 1 penalty/lII#I. After the entire amount of AM had been added, 103 pieces of this colloid product liquid were separated into 102 pieces of filtrate using an ultramembrane. After collecting a certain amount of this filtrate, a piece of iron was immersed in it to measure the silica scale.Comparative Example: In the same manner as in Example 1, 100 parts of liquid A were separated from 99 parts of liquid F using an ultramembrane. k・After taking a certain amount of this F solution, an iron piece was immersed to measure the amount of silica scale □ Comparative Example 2 In the same manner as in Example 1, 100 pieces of A solution were heated to 80°C, and then the temperature was increased to 2 A circle that keeps time. Then p
Separate liquid 991 and form a circle. After collecting a certain amount of this R liquid, the iron piece was immersed and the amount of silica scale was measured.
The amount of silica scale in each P solution was determined.

その結果を処理条件と共に次表に示した。The results are shown in the following table along with the processing conditions.

(以下余白) なお、″jロイド生成液より分離したp液のシリカ濃度
は次の方法により求めた。
(The following is a blank space.) The silica concentration of the p liquid separated from the J-loid production liquid was determined by the following method.

シリカのせ析法(工業用水試験方法JI8KO101に
準する)予め、S量も として約o、 o s pにな
る様に試料を白金ざらに採取する。この試料に炭酸す)
 17ウム5Pt−旭え、沸騰水浴中に入れ加熱蒸発し
て約40MItKm縮する。
Silica deposition method (according to industrial water test method JI8KO101) A sample is taken in advance in a platinum colander so that the amount of S is approximately o, o sp. This sample is carbonated)
17um 5Pt--Asahi is placed in a boiling water bath and heated to evaporate to shrink to about 40 MItKm.

放冷後、蒸留水で50m1に希釈し、 ZN−Heノで
p)11.0に調整する。250−のメスフラスコに移
して約230auK希釈する。さらにモリブデン酸アン
モニウム溶液(10φ)の101ILlを加えて蒸留水
で250IILlとし混合する。20分放′置後420
mμの波長で吸光度を測る。
After cooling, dilute to 50 ml with distilled water and adjust to p) 11.0 with ZN-He. Transfer to a 250-volume flask and dilute to approximately 230 auK. Furthermore, 101 ILl of ammonium molybdate solution (10φ) is added and the mixture is made up to 250 ILl with distilled water and mixed. 420 after leaving for 20 minutes
Measure the absorbance at a wavelength of mμ.

試料の吸光度から予め作成した検量線を用いてシリカの
量を求めた。
The amount of silica was determined using a calibration curve prepared in advance from the absorbance of the sample.

又、シリカスケールのシリカ量は次の方法により求めた
。P液に18cdを有する鉄片を浸漬し、40℃で7日
間放置した後、鉄片11出 ”し、蒸留水で充分水洗し
た。この鉄片を白金ざらに入れ、蒸留水を約l5Ost
j添加した゛後、F液のシリカゼン1シ成と同一操作で
処理し1°行なった。
Moreover, the amount of silica in the silica scale was determined by the following method. An iron piece with 18 cd was immersed in the P solution and left at 40°C for 7 days, after which the iron piece 11 was taken out and thoroughly washed with distilled water.The iron piece was placed in a platinum colander and distilled water was added to about 15 oz.
After adding J, the same procedure as for the silicazene formation of solution F was carried out for 1 degree.

特許出願人触媒化成工業株式会社Patent applicant Catalysts Chemical Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1・過飽和の溶存シリカを含む地熱熱水をコロイド成長
又は凝集させて、粒子径を5m#以上へ成長させた後限
外膜を用いて分離し、F液中の溶存シリカの機器への析
出を低減せしめる地熱熱水処理法6
1. Geothermal hot water containing supersaturated dissolved silica is colloidally grown or coagulated to grow the particle size to 5 m# or more, and then separated using an ultraviolet membrane, and the dissolved silica in the F solution is deposited on the equipment. Geothermal hot water treatment method that reduces
JP10158882A 1982-06-14 1982-06-14 Treatment of geothermal hot water Pending JPS58219986A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10158882A JPS58219986A (en) 1982-06-14 1982-06-14 Treatment of geothermal hot water
NZ20445583A NZ204455A (en) 1982-06-14 1983-06-02 Process of decreasing the silica content of a supersaturated silica solution by forming silica colloid and separation thereof
IS2814A IS1326B6 (en) 1982-06-14 1983-06-09 A method of converting supersaturated silicic acid into silica sol and separating it.
PH29046A PH19651A (en) 1982-06-14 1983-06-14 Process of converting supersaturated silica into silica sol and separating same
IT67653/83A IT1162875B (en) 1982-06-14 1983-06-14 Sepn. of super saturated silica using ultrafiltration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10158882A JPS58219986A (en) 1982-06-14 1982-06-14 Treatment of geothermal hot water

Publications (1)

Publication Number Publication Date
JPS58219986A true JPS58219986A (en) 1983-12-21

Family

ID=14304542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10158882A Pending JPS58219986A (en) 1982-06-14 1982-06-14 Treatment of geothermal hot water

Country Status (2)

Country Link
JP (1) JPS58219986A (en)
IS (1) IS1326B6 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299654A (en) * 1986-06-19 1987-12-26 Catalysts & Chem Ind Co Ltd Method of heat recovery from geothermal water
JPS631495A (en) * 1986-06-19 1988-01-06 Catalysts & Chem Ind Co Ltd Treatment of geothermal water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299654A (en) * 1986-06-19 1987-12-26 Catalysts & Chem Ind Co Ltd Method of heat recovery from geothermal water
JPS631495A (en) * 1986-06-19 1988-01-06 Catalysts & Chem Ind Co Ltd Treatment of geothermal water

Also Published As

Publication number Publication date
IS2814A7 (en) 1983-12-15
IS1326B6 (en) 1988-08-03

Similar Documents

Publication Publication Date Title
US11161746B2 (en) Preparation of molecular sieve and treatment of silicon-containing wastewater therefrom
CN110217912A (en) The purification method of silicon-containing wastewater
US2438230A (en) Production of aqueous sols of hydrous oxides
JP3463328B2 (en) Method for producing acidic silica sol
US3630954A (en) Organic amine-strong base stabilized high surface area silica sols and method for preparing same
JPS6015413A (en) Novel scale-inhibiting copolymer and scale deposition inhibiting method
JPS61158810A (en) Production of high-purity silica sol
JPS61286213A (en) Gel-formable organophilic layer-like silicate,manufacture and use
JPS58219986A (en) Treatment of geothermal hot water
CN110316839A (en) A kind of graphene coated grafting scale inhibition core material and its preparation method and application
CN107162935B (en) The recovery method of phosphorus-containing compound in useless chemical polishing agent
JPS5916588A (en) Removal of silica in hot water
Weres et al. Chemistry of silica in Cerro Prieto brines
US4277457A (en) Alkali calcium silicates and process for preparation thereof
Tavare et al. Silica precipitation in a semi-batch crystallizer
US4294810A (en) Alkali calcium silicates and process for preparation thereof
JPH0724475A (en) Method for recovering silica in aqueous solution
JPS5912400A (en) Radioactive liquid waste treating process
CN209039068U (en) Silica solution production system
JPS58190816A (en) Method for recovering silica of poor arsenic content from geothermal hot water
KR20020011820A (en) The manufacturing method of silica sol
CN206666310U (en) A kind of processing system of N-(phosphonomethyl) iminodiacetic acid wastewater
CN1171791C (en) ZSM-s molecular sieve synthesizing process
Probst et al. Critical evaluation of zeolite N synthesis parameters which influence process design
CN114988542B (en) Preparation method of magnetic flocculant for high-speed sedimentation of chemical mixed sludge