JPS58216455A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS58216455A
JPS58216455A JP57098766A JP9876682A JPS58216455A JP S58216455 A JPS58216455 A JP S58216455A JP 57098766 A JP57098766 A JP 57098766A JP 9876682 A JP9876682 A JP 9876682A JP S58216455 A JPS58216455 A JP S58216455A
Authority
JP
Japan
Prior art keywords
region
type
conductivity type
semiconductor layer
buried region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57098766A
Other languages
Japanese (ja)
Inventor
Shuichi Kameyama
亀山 周一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57098766A priority Critical patent/JPS58216455A/en
Publication of JPS58216455A publication Critical patent/JPS58216455A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To perform the microminiaturization of a C-MOS element and the increase in the breakdown strength of a linear bipolar element by forming a p<+> type buried region and a p<+> type region under a well region forming part of an n type semiconductor layer on a p type semiconductor substrate and in the vicinity of a boundary between the substrate to afford an element isolating region forming part and the semiconductor layer in the same step to reduce the resistance of the p type well region, thereby preventing a latchup phenomenon enabling to form an element isolating region. CONSTITUTION:When a p<+> type buried region 109 of high density which makes contact with a region 115 is formed on the bottom of a p type well region 115, a latchup phenomenon can be prevented, and the well region 115 which has an impurity profile with multiplex ion implantation for deciding the performance of an n-channel MOS transistor can be formed from the surface side. When a p<+> type region 108 is formed simultaneously with the step of forming the region 109 and a p type region 113 is formed simultaneously with the step of forming the region 115, an ultrafine p type isolation region 114 which can be effectively electrically isolated from an n-p-n type bipolar transistor and a C-MOS can be formed.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、詳しくはバイポ
ーラ素子と0MO8素子とを同一チップに共存させた複
合構造の半導体装置の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device with a composite structure in which a bipolar element and an 0MO8 element are coexisted on the same chip.

〔発明の技術的背景〕[Technical background of the invention]

近年、集積回路技術の進歩は著しく、特に多機能化の観
点から、アナログ量とデジタル量とを同時に処理する複
合デバイスが重要となってきている。例えば、既にI”
L (IntegratedInjeation Lo
gic )  などにおいては、高耐圧のリニアトラン
ジスタと共存させることがなされており、高性能化が達
成されている。まだ、もう一つの可能性として、MO8
素子、特に0MO8素子とバイポーラ素子との共存技術
が注目されている。
BACKGROUND ART In recent years, integrated circuit technology has made remarkable progress, and composite devices that process analog and digital quantities simultaneously have become important, especially from the viewpoint of multifunctionality. For example, I”
L (Integrated Injection Lo
gic), etc., it has been made to coexist with a high-voltage linear transistor, and high performance has been achieved. There is still another possibility, MO8
The coexistence technology of devices, especially 0MO8 devices and bipolar devices, is attracting attention.

ところで、バイポーラ素子と0MO8素子とを共存させ
た複合デバイスとしては、従来、第1図に示す沖電気研
究開発第114号、Vo14B+No2.P39〜P4
4記載のものが知られている。即ち、図中の1はp型半
導体基板であり、この基板1上にはn型半導体層2が設
けられている。この半導体層2は前記基板1表面にまで
達するp型アイソレーション領域3によυ分離された島
領域4..42が形成されている。−方の島領域41下
の基板1と半導体層2の界面付近にはn十型埋込み領域
51が設けられ、他方の島領域420基板1と半導体層
2の界面付近にn十型埋込み領域52が選択的に設けら
れていると共に、該n十型埋込み領域53上の半導体層
2部分にはp−ウェル領域6が設けられている。
By the way, as a composite device in which a bipolar element and an 0MO8 element coexist, conventionally, Oki Electric Research & Development No. 114, Vo14B+No.2. shown in FIG. P39-P4
4 is known. That is, 1 in the figure is a p-type semiconductor substrate, and an n-type semiconductor layer 2 is provided on this substrate 1. This semiconductor layer 2 has island regions 4 separated by p-type isolation regions 3 that reach the surface of the substrate 1. .. 42 is formed. An n-type buried region 51 is provided near the interface between the substrate 1 and the semiconductor layer 2 under the - side island region 41, and an n-type buried region 52 is provided near the interface between the substrate 1 and the semiconductor layer 2 under the other island region 420. is selectively provided, and a p-well region 6 is provided in a portion of the semiconductor layer 2 above the n+ type buried region 53.

そして、一方の島領域41にはp型ベース領域7、該ペ
ース領域7内に位置するn+型エミッタ領域8及びn十
型コレクタ取出し領域9が夫々設けられ、これらによυ
npnバイポーラトランジスタが形成されている。また
、前記ウェル領域6以外の他方の島領域48表面には互
に電気的に分離されたp生型のソース、ドレイン領域1
0゜11が設けられ、かつ該ソース、ドレイン領域10
.11を囲むように環状のn生型チャンネルカ、ト領域
12が設けられている。p−ウェル領域6表面には、互
に電気的に分離されたn+型のソース、ドレイン領域1
3.14が設けられ、かつこれら領域13.14を囲む
ように環状のp+型チャンネルカット領域16が設けら
れている。また、前記半導体層2全面には酸化膜16が
被覆されている。但し、前記p生型のソース。
One of the island regions 41 is provided with a p-type base region 7, an n+-type emitter region 8 located within the space region 7, and an n+-type collector extraction region 9.
An npn bipolar transistor is formed. Further, on the surface of the other island region 48 other than the well region 6, there are p-type source and drain regions 1 electrically isolated from each other.
0° 11 is provided, and the source and drain regions 10
.. An annular n-type channel region 12 is provided so as to surround the region 11 . On the surface of the p-well region 6, there are n+ type source and drain regions 1 electrically isolated from each other.
3.14 are provided, and an annular p+ type channel cut region 16 is provided so as to surround these regions 13.14. Further, the entire surface of the semiconductor layer 2 is covered with an oxide film 16. However, the above-mentioned p raw type source.

ドレイン領域10.11間を含む領域上、及びn生型の
ソース、ドレイン領域13.14間を含む領域上は薄い
ダート酸化膜”’1*162が形成されている。更に、
npnパイイーラトランジスタが形成される島領域41
上の酸化膜16上にはコンタクトホールを介して前記ベ
ース領域7.エミッタ領域8及びコレクタ取出し領域9
と夫々接続するAI電極17〜19が設けられている。
A thin dirt oxide film "'1*162" is formed on the region including between the drain regions 10 and 11 and on the region including between the n-type source and drain regions 13 and 14.Furthermore,
Island region 41 where npn pie era transistor is formed
The base region 7. is formed on the upper oxide film 16 through a contact hole. Emitter region 8 and collector extraction region 9
AI electrodes 17 to 19 are provided which are respectively connected to.

また、前記ダート酸化膜16sr16!上にはAlr−
)電極20.21が設けられていると共に、酸化膜16
上にはコンタクトホールを介して前記p生型のソース、
ドレイン領域10゜11、n生型のソース、ドレイン領
域13.14と接続するkl電極22〜25が設けられ
ている。
Also, the dirt oxide film 16sr16! Above is Alr-
) are provided with electrodes 20, 21, and an oxide film 16.
The p-type source is provided above through a contact hole,
Kl electrodes 22 to 25 connected to the drain region 10° 11 and the n-type source and drain regions 13 and 14 are provided.

なお、第12図図示の複合デバイスの製造工程において
、p型アイソレーション領域3とp−ウェル領域6を同
一工程で形成されている。
In the manufacturing process of the composite device shown in FIG. 12, the p-type isolation region 3 and the p-well region 6 are formed in the same step.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、第1図図示の複合デバイスの製造方法に
あっては次のような欠点があった。
However, the method for manufacturing the composite device shown in FIG. 1 has the following drawbacks.

即ち、p−ウェル領域6の層抵抗がn十型埋込み領域5
1の上方拡散によって増大する傾向があるため、いわゆ
るラッチア、ゾ現象の原因となるpnpnサイリスタ構
造におけるp−ウェル領域6をベースとする寄生npn
 )ランジスタの電流増幅率を増大させる。
That is, the layer resistance of the p-well region 6 is the same as that of the n-type buried region 5.
The parasitic npn based on the p-well region 6 in the pnpn thyristor structure causes the so-called Latchia, Zo phenomenon because it tends to increase due to the upward diffusion of
) Increase the current amplification factor of the transistor.

また、p−ウェル領域6はp型アイソレージ璽ン領域3
と同一工程で形成されているため、半導体層2の厚みよ
りも深い拡散で形成する必要がある。その結果、例えば
0MO8の微細化を目的としてp−ウェル領域6の深さ
を現在の10μmから5μm〜3μmと浅くしていくと
、半導体層2の厚さも、それに伴なって薄くしなければ
ならず、同時に形成されるnpnバイポーラトランジス
タのコレクタ・ベース接合耐圧が減少し、かつエミッタ
・ペース耐圧等も減少し、高耐圧リニアトランジスタの
共存が困難となる。
Furthermore, the p-well region 6 is a p-type isolation region 3.
Since it is formed in the same process as that of the semiconductor layer 2, it is necessary to form it by diffusion deeper than the thickness of the semiconductor layer 2. As a result, for example, if the depth of the p-well region 6 is reduced from the current 10 μm to 5 μm to 3 μm for the purpose of miniaturizing 0MO8, the thickness of the semiconductor layer 2 must be reduced accordingly. First, the collector-base junction breakdown voltage of the npn bipolar transistor formed at the same time decreases, as well as the emitter-base junction breakdown voltage, etc., making it difficult to coexist with high-voltage linear transistors.

逆に、高耐圧リニアトランジスタの共存化の目的で、半
導体層2の厚さを十数μmと厚くしてゆくと、p−ウェ
ル領域6と同一工程で各島領域’l+41を分離するだ
めのp型アイソレージ1ン領域3を形成するととが困難
であった。
On the other hand, if the thickness of the semiconductor layer 2 is increased to more than 10 μm for the purpose of coexistence with a high breakdown voltage linear transistor, it becomes necessary to separate each island region 'l+41 in the same process as the p-well region 6. It was difficult to form the p-type isolation region 3.

〔発明の目的〕[Purpose of the invention]

本発明はラッチア、フ0の防止を図ると共に素子分離性
の向上もしくけパイI−ラ素子として縦型pnp )ラ
ンジスタの形成を可能にしたバイポーラ素子と0MO8
素子とが共存した複合構造の半導体装置の製造方法を提
供しようとするものである。
The present invention is a bipolar element and an 0MO8 transistor that prevents latch and zero, improves element isolation, and makes it possible to form a vertical pnp (pnp) transistor as a piezoelectric element.
The present invention aims to provide a method for manufacturing a semiconductor device having a composite structure in which elements coexist.

〔発明の概要〕[Summary of the invention]

本願第1の発明は例えばp型半導体基板上のn型半導体
層のウェル領域予定部下の部分と、素子分離領域予定部
となる基板と半導体層の界面付近とに同一工程でp十型
埋込み領域、p生型領域を形成することによって、p−
ウェル領域の低抵抗化を図ってう、チアツブ現象を防止
すると共に、半導体層の膜厚やp−ウェル領域の形成に
依存されることなく素子分離領域の形成を可能にして0
MO8素子の微細化とリニア・9イ−−ラ素子の高耐圧
化とを実現することを骨子とする。
The first invention of the present application is, for example, to form a p-type buried region under a planned well region of an n-type semiconductor layer on a p-type semiconductor substrate and near the interface between the substrate and the semiconductor layer, which will become a planned element isolation region, in the same process. , p- by forming a p-type region.
By reducing the resistance of the well region, it is possible to prevent the chipping phenomenon, and also to make it possible to form an element isolation region without depending on the thickness of the semiconductor layer or the formation of the p-well region.
The main points are to realize miniaturization of MO8 elements and higher voltage resistance of linear and 9-dimensional elements.

本願第2の発明は例えばp型半導体基板上のn型半導体
層のウェル領域予定部下の部分と、・々イI−ラ素子予
定部下のn生型埋込み領域上の半導体層部分とに同一工
程でp生型埋込み領域を夫々形成することKよって、p
−ウェル領域の低抵抗化を図ってラッチア、グ現象を防
止すると共に、前記p生型埋込み領域をコレクタ領域と
し、前記り生型埋込み領域により基板に対して浮遊した
スイッチング速度の高い縦形pnp−々イI−ラトラン
ジスタを形成することを骨子とする。
The second invention of the present application is, for example, a portion of the n-type semiconductor layer on the p-type semiconductor substrate under the planned well region, and a portion of the semiconductor layer on the n-type buried region under the planned I-ra element in the same process. By forming p-type buried regions respectively at K, p
- In addition to reducing the resistance of the well region to prevent latch and lag phenomena, the p-type buried region is used as a collector region, and the vertical pnp-type with high switching speed is floating with respect to the substrate due to the p-type buried region. The main point is to form an I-La transistor.

〔発明の実施例〕[Embodiments of the invention]

実施例1 本実施例1は第2 図(a)〜(g)の工程に示す如く
npnノ々イポーラトランジスタと0MO8とを共存゛
させた複合アノ4イスの製造に適用したものでおる。
Embodiment 1 Embodiment 1 is applied to the manufacture of a composite anisotropic device in which an npn non-polar transistor and OMO8 coexist as shown in the steps of FIGS. 2(a) to 2(g).

中まず、p型シリコン基板101表面にsb等の拡散係
数の小さいn型不純物を選択的にドーピングしてn生型
拡散層1021.102.を形成した。つづいて、基板
101表面に熱酸化膜103を成長させ、該熱酸化膜1
03上に写真蝕刻法によりp生型埋込み領域予定部及び
p生型領域予定部が開口されたレジストパターン104
を形成した後、該レジストパターン104をマスクとし
てp型不純物、例えばゾロンを加速電圧150に@V、
 )’−!量lX10’%偏” 〜4 X 10”/c
m’の条件でイオン注入して基板101及びn生型拡散
層xo2*VcNロンイオン注入層1051 .105
1+105、を選択的に形成した(第2図(!1)図示
)。
First, the surface of the p-type silicon substrate 101 is selectively doped with an n-type impurity having a small diffusion coefficient, such as sb, to form n-type diffusion layers 1021, 102. was formed. Subsequently, a thermal oxide film 103 is grown on the surface of the substrate 101, and the thermal oxide film 103 is grown on the surface of the substrate 101.
03, a resist pattern 104 in which a planned p-type buried region and a planned p-type region are opened by photolithography.
After forming, using the resist pattern 104 as a mask, a p-type impurity such as zolon is applied to an accelerating voltage of 150@V,
)'−! Amount l x 10'% deviation" ~ 4 x 10"/c
Ions are implanted under the conditions of m' to form the substrate 101 and the n-type diffusion layer xo2*VcN ion-implanted layer 1051. 105
1+105 was selectively formed (as shown in FIG. 2 (!1)).

ひきつづきレジストノやターン104及び熱酸化膜10
3を除去した後、例えば厚さ約6μmのn型7937層
106をエピタキシャル成長させた。この時、前記n十
型拡散層10.21 、 I O!。
Subsequently, the resist layer 104 and the thermal oxide film 10 are formed.
After removing 3, for example, an n-type 7937 layer 106 having a thickness of about 6 μm was epitaxially grown. At this time, the n-type diffusion layer 10.21, IO! .

\ がエピタキシャル成長中の熱によυ「型シリコン層10
6にオートド−ぜング現象を起こして滲み出し基板10
1とシリコン層106の界面付近にn型埋込み領域10
7..107.が選択的に形成された。同時に、?ロン
イオン注入層1051 .1051が同様にオートドー
ピングを起こして基板10ノとシリコン層106の界面
付近に一型領域J O8、108が形成されると共に、
n十型拡散層102s内のゾロンイオン注入層105鵞
は該拡散層102雪のsb  より拡散係数が大きいた
め、前記n+型埋込み領域107m上のシリコン層10
6部分にp生型埋込み領域109が形成された(第2図
(b)図示)。
\ due to heat during epitaxial growth υ" type silicon layer 10
The substrate 10 oozes out by causing an autodosing phenomenon in 6.
An n-type buried region 10 is formed near the interface between 1 and the silicon layer 106.
7. .. 107. was selectively formed. at the same time,? Ron ion implantation layer 1051. 1051 similarly causes autodoping, and type 1 regions JO8, 108 are formed near the interface between the substrate 10 and the silicon layer 106, and
Since the solon ion implantation layer 105 in the n+ type diffusion layer 102s has a larger diffusion coefficient than the sb of the diffusion layer 102, the silicon layer 10 on the n+ type buried region 107m
A p-type buried region 109 was formed in 6 portions (as shown in FIG. 2(b)).

(11)次いで、n−型シリコン層106表面に熱酸化
膜110を成長させ、該熱酸化膜110上に写真蝕刻法
により前記針型領域108.108に対応する部分及び
前記p生型埋込み領域109に対応する部分が開口され
たレジストパターン111を形成した後、このレジスト
ツクターン11ノをマスクとしてp型不純物、例えばが
ロンを加速電圧100に・■、ドーズ量2X10’滴2
〜6X10”%−の条件でイオン注入して「型シリコン
層106にゾロンイオン注入層1121.1121*1
12、を形成した(第2図(、)図示)。つづいて、レ
ジスト・やターン111を除去した後、熱処理を施した
。この時、?ロンイオン注入層112、.112.が活
性化、拡散されて前記p十型領域ios、ionとつな
がるp型領域113゜113が形成され、これらにより
n型7937層106を電気的に分離するp型アイソレ
ーション領域114.114が造られた。また、ゾロン
イオン注入層112鵞も活性化、拡散されて底部が前記
p生型埋込み領域109と接触するp−ウェル領域11
5が形成された。前記p型アイソレーション領域114
,114で分離され、下部にn生型埋込み領域1071
が存在する島領域1161はパイ4−ラ素子形成領域と
なり、n生型埋込み領域102鷺が下部に存在する島領
域116!はCMO8素子形成領域となる(第2図(d
)図示)。なお、p−ウェル領域115表面から深さ方
向に形成された該ウェル領域115゜p生型埋込み領域
109及びn生型埋込み領域1073の不純物プロファ
イルは第3図に示す如くなる。
(11) Next, a thermal oxide film 110 is grown on the surface of the n-type silicon layer 106, and a portion corresponding to the needle-shaped region 108, 108 and the p-type buried region are formed on the thermal oxide film 110 by photolithography. After forming a resist pattern 111 with openings corresponding to 109, using this resist pattern 11 as a mask, a p-type impurity, for example, Ron, is applied at an accelerating voltage of 100.
A zolon ion implantation layer 1121.
12 (as shown in FIG. 2(, )). Subsequently, after removing the resist layer 111, heat treatment was performed. At this time,? Ron ion implantation layer 112, . 112. is activated and diffused to form p-type regions 113 and 113 connected to the p-type regions ios and ion, thereby forming p-type isolation regions 114 and 114 that electrically isolate the n-type 7937 layer 106. It was done. In addition, the solon ion implantation layer 112 is also activated and diffused into the p-well region 11 whose bottom is in contact with the p-type buried region 109.
5 was formed. The p-type isolation region 114
, 114, and an n-type buried region 1071 at the bottom.
The island region 1161 where ! is present becomes the pi-4-ra element forming region, and the island region 116 where the n-type buried region 102 and the heron are present below! is the CMO8 element formation area (Fig. 2(d)
). The impurity profiles of the p-type buried region 109 and the n-type buried region 1073 in the well region 115, which are formed in the depth direction from the surface of the p-well region 115, are as shown in FIG.

(11)次いで、p型不純物、例えばゼロンを熱酸化膜
110を通して島領域1161.島領域116鵞及び該
領域116.内のp−ウェル領域116’VC選択的に
イオン注入し、拡散させて、島領域1161のシリコン
層106にp十型ペース領域117を、島領域116!
のシリコン層106に互に電気的に分離された1型のソ
ース、ドレイン領域118.119を更にp−ウェル領
域115にp生型チャンネルカット領域120を、夫々
同時に形成した(第2図(・)図示)。
(11) Next, a p-type impurity, for example, zero, is passed through the thermal oxide film 110 to the island region 1161. Island area 116 and the area 116. The p-well region 116'VC in the p-well region 116'VC is selectively implanted and diffused to form a p-type space region 117 in the silicon layer 106 of the island region 1161.
1-type source and drain regions 118 and 119 electrically isolated from each other in the silicon layer 106, and p-type channel cut regions 120 in the p-well region 115 were formed at the same time (see Fig. 2). ).

Q次いで、熱酸化膜110を除去し、再度厚い酸化膜1
21を全面に成長させた後、フ矛トエ、チング技術によ
りエミッタ領域形成予定部、コレクタ取出し領域形成予
定部、n生型チャンネルカット領域予定部及びn十型ソ
ース、ドレイン領域予定部の酸化膜121を選択的に工
、チング除去して開孔部122・・・を形成した。つづ
いて、酸化膜121をマスクとして例えば砒素を開孔部
122・・・を通してイオン注入し、拡散して、島領域
1161のベース領域117にn生型エミ、り領域12
3を、同島領域1161のシリコン層106にn十型コ
レクタ取出し領域124を、島領域1163のシリコン
層106に計型チャンネルカ、ト領域125を、p−ウ
ェル領域115にn生型のソース、ドレイン領域126
゜127を、夫々同時に形成した(第2図(f)図示)
QNext, the thermal oxide film 110 is removed and the thick oxide film 1 is formed again.
After growing 21 on the entire surface, an oxide film is formed in the planned emitter region formation area, the collector extraction area formation area, the n-type channel cut area area, and the n+ type source and drain area area using a chemical coating technique. 121 was selectively machined and removed by etching to form openings 122... Next, using the oxide film 121 as a mask, for example, arsenic ions are implanted through the openings 122 and diffused to form an n-type emitter in the base region 117 of the island region 1161.
3, an n-type collector extraction region 124 in the silicon layer 106 of the island region 1161, a meter-shaped channel cut region 125 in the silicon layer 106 of the island region 1163, an n-type source in the p-well region 115, drain region 126
゜127 were formed at the same time (as shown in Fig. 2(f)).
.

0次いで、酸化膜121を除去し、再度厚い酸化膜(層
間絶縁膜)128を形成した後、前記p生型のソース、
ドレイン領域11F1.119間を含む領域上、及びn
生型のソース、ドレイン領域126.127間を含む領
域上の酸化膜128を選択的に工、チング除去し、更に
熱酸化処理を施して薄いr−)酸化膜12 f t 1
298を形成した。つづいてフォトエツチング技術によ
り各領域上の酸化膜128部分にコンタクトホールを開
孔し、全面に例えばAJ膜を蒸着した後、”ターニング
してペース、エミ、り、コレクタのAI電極130〜1
32を形成すると共に、   □)Ajff−)電極I
 J 31  e 13 J鵞i、ソース+ )’レイ
ンの取出しkl電極134〜131を形成してnpnノ
々イポーラトランジスタとpチャンネルMO8)ランジ
スタ及びnチャンネルMO8)ランジスタからなるCu
O2とが共存した複合デバイスな製造した(第2図(g
)図示)。
0 Next, after removing the oxide film 121 and forming a thick oxide film (interlayer insulating film) 128 again, the p-type source,
On the region including between the drain regions 11F1 and 119, and n
The oxide film 128 on the region including between the raw source and drain regions 126 and 127 is selectively etched and removed, and then thermal oxidation treatment is performed to form a thin r-) oxide film 12 f t 1
298 was formed. Subsequently, a contact hole is formed in the oxide film 128 portion on each region using photoetching technology, and after depositing, for example, an AJ film on the entire surface, turning is performed to form a paste, emitter, and collector AI electrode 130 to 1.
32 and □)Ajff-)electrode I
J 31 e 13 J 鵞 i, source + )' Rain extraction kl electrodes 134 to 131 are formed to form npn non-polar transistors, p-channel MO8) transistors, and n-channel MO8) transistors.
A composite device in which O2 coexisted was manufactured (Fig. 2 (g)
).

しかして、本願第1の発明方法によれば第2図(g)に
示す如くp−ウェル領域115底部に該ウェル領域11
5と接触する高濃度のp生型埋込み領域109を形成す
ることKよって、p−ウェル領域115の層抵抗を低減
できるだめ、p−ウェル領域115をペース領域とする
寄生pnp )ランジスタの電流増幅率を低減でき、ひ
いてはう、チアッゾ現象を防止できる。しかも、p生型
埋込み領域109を形成することによって、p−ウェル
領域115の活性化、拡散のための熱処理時間を短縮で
きるので、既述した第3図に示す如く表面側からnチャ
ンネルMO8)ランジスタの性能を決める多重イオン注
入そのitの不純物プロファイルを有するウェル領域1
15を形成でき、CuO2の特性を大巾に改善できる。
According to the first method of the present invention, the well region 11 is placed at the bottom of the p-well region 115 as shown in FIG. 2(g).
By forming a heavily doped p-type buried region 109 in contact with the p-well region 115, the layer resistance of the p-well region 115 can be reduced. This can reduce the occurrence of crawling and the Chiazo phenomenon. Furthermore, by forming the p-type buried region 109, the heat treatment time for activating and diffusing the p-well region 115 can be shortened, so as shown in FIG. Well region 1 with multiple ion implantation whose impurity profile determines the transistor performance
15 can be formed, and the properties of CuO2 can be greatly improved.

また、p生型埋込み領域109の形成工程と同時にp型
シリコン基板101と「型シリコン層106の界面付近
にアイソレージ、ン領域の一部を構成するp十型領域1
01J、1011を形成し、更にp−ウェル領域115
の形成工程と同時に前記p十型領域1011.101J
とつながるp型領域113.113を形成することによ
って、短時間の熱処理でp〜ルウエル域115の深さ等
に依存することな(、tlpn/々イポーラトランジス
タ、 CuO2を確実に電気的に分離し得る微細なp型
アイソレーション領域114.114を形成できる。特
に、第4図に示す如くp型シリコン基板101上に厚い
n−型シリコン層106′を成長させてバイプーラ素子
として高耐圧のり五アパイデーラトランジスタを形成す
る場合、p生型埋込み領域109′の形成工程と同時に
基板101とシリコン層106′の界面付近Kp十散型
領域0B’、10B’を形成し、p−ウェル領域116
′の形成工程と同時にp型領域11 J’ 、 JJ、
9’を形成することによって、p−ウェル領域115′
の不純物プロファイルが設計値よりはずれることなく、
厚いシリコン層106′を確実に電気的に分離し得るア
イソレーション領域用’′、114’を形成できる。し
かも、p型アイソレーション領域114.114は下部
側が低抵抗のp十型領域108.108で構成されてい
るため、該アイソレージ、ン領域114.114上面の
p型頭域113.113を接地することによって、p型
シリコン基板101の電位を安定化できる。
Further, at the same time as the formation process of the p-type buried region 109, an isolation region 1 is formed near the interface between the p-type silicon substrate 101 and the "type silicon layer 106."
01J, 1011 and further p-well region 115.
At the same time as the formation process of the p-type region 1011.101J
By forming p-type regions 113 and 113 connected to the p-type regions 113 and 113, it is possible to reliably electrically isolate CuO2 by a short heat treatment without depending on the depth of the p-Lewell region 115 (, tlpn/polar transistor, CuO2). In particular, by growing a thick n-type silicon layer 106' on a p-type silicon substrate 101 as shown in FIG. When forming an apaidera transistor, at the same time as the step of forming the p-type buried region 109', Kp-decade type regions 0B' and 10B' are formed near the interface between the substrate 101 and the silicon layer 106', and the p-well region 116
At the same time as the formation process of ', p-type regions 11 J', JJ,
9' by forming p-well region 115'.
without the impurity profile deviating from the design value.
Isolation regions '', 114'' that can reliably electrically isolate the thick silicon layer 106' can be formed. Moreover, since the lower side of the p-type isolation region 114.114 is composed of a low-resistance p-type region 108.108, the p-type head region 113.113 on the upper surface of the isolation region 114.114 is grounded. By this, the potential of the p-type silicon substrate 101 can be stabilized.

しだがって、従来方法ではn型シリコン層の厚みと、0
MO8のウェル領域の深さとがラッチアップ防止と素子
分離との関係から非常に制限されていたが、本発明方法
によればn型シリコ7層106の厚み・と0MO8のウ
ェル領域115の深さを夫々独立して設定できるので、
製造マージンの増大、耐ラッチアンプ性の向上、更には
0MO8の微細化と高耐圧のリニアバイポーラトランジ
スタの形成を達成できると共に、基板101の電位の安
定化を図ることができる。
Therefore, in the conventional method, the thickness of the n-type silicon layer and 0
The depth of the MO8 well region has been extremely limited due to the relationship between latch-up prevention and element isolation, but according to the method of the present invention, the thickness of the n-type silicon 7 layer 106 and the depth of the MO8 well region 115 can be reduced. can be set independently, so
It is possible to increase the manufacturing margin, improve latch amplifier resistance, further miniaturize OMO8 and form a linear bipolar transistor with high breakdown voltage, and stabilize the potential of the substrate 101.

更に、CMOBが造られる島領域116.下の基板10
1とシリコン層106の界面付近にn+$ルMO9)ラ
ンジスタが形成されるn型シリコ7層106の層抵抗を
低減できる澤め、p十型ソース領域118(又はp生型
ドレイン領域119)をエミ、り、n’型シリコンHt
106tペース、p型シリコン基板101をコレクタと
する寄生pnp )ランジスタの電流増幅率を小さくで
き、よシ一層の耐ラッチアンプ性の向上を達成できる。
Furthermore, the island area 116. where the CMOB is built. Lower board 10
A p-type source region 118 (or a p-type drain region 119) is formed to reduce the layer resistance of the n-type silicon layer 106 in which an n+$$ MO9) transistor is formed near the interface between the silicon layer 106 and the silicon layer 106. Emi, Ri, n' type silicon Ht
The current amplification factor of the parasitic PNP (106T pace, p-type silicon substrate 101 as the collector) transistor can be reduced, and the latch amplifier resistance can be further improved.

まだ、n十型埋込み領域1o7!を0MO8下の基板1
0ノとシリコン層106の界面に設けることによって、
CMo5 を基板101に対して別の電位系等で動作さ
せることが可能となる。即ち、p−ウェル領域115の
周辺に共存する・々イポーラ・アナログ素子による基板
101の電流が大きい場合、基板101の電位が浮き上
がるが、前述の如く計型埋込み領域1o7!を形   
 j成することによってp−ウェル領域115の電位(
Vss )と基板ioiの電位(、GND )とを別の
配線系により夫々独立できる。又、二電源方式などで・
ぐックケ3−トバイアスをp−ウェル領域115に独立
して印加できる。一方、n4−型埋込み領域107意を
省略することによって、1cの入出力部で大きな電流が
流れる場合のnチャンネルMO8)ランジスタのp−ウ
ェル領域115の層抵抗を低減し、かつ、基板101電
位を充分に安定化させておけるような配線系がとれる場
合にはp型坤込み領域は基板に接地しておいた方が、う
、チア、ゾ防止のためには好ましい。
Still n-type buried area 1o7! Board 1 under 0MO8
By providing it at the interface between 0 and the silicon layer 106,
It becomes possible to operate CMo5 with respect to the substrate 101 using a different potential system. That is, when the current in the substrate 101 caused by the .polar analog elements coexisting around the p-well region 115 is large, the potential of the substrate 101 rises; the shape
The potential of p-well region 115 (
Vss) and the potential of the substrate Ioi (GND) can be made independent by separate wiring systems. Also, with dual power supply system etc.
A third bias can be applied independently to p-well region 115. On the other hand, by omitting the n4-type buried region 107, the layer resistance of the p-well region 115 of the n-channel MO8 transistor is reduced when a large current flows in the input/output section of 1c, and the substrate 101 potential If a wiring system can be established that can sufficiently stabilize the p-type embedded region, it is preferable to ground the p-type embedded region to the substrate in order to prevent z, thia, and zo.

実施例2 本実施例2は第5図(a)〜(、)の工程に示す如く縦
形pnpバイポーラトランジスタと0MO8とを共存さ
せた複合デバイスの製造に適用したものである。
Example 2 Example 2 is applied to the manufacture of a composite device in which a vertical pnp bipolar transistor and an OMO8 coexist as shown in the steps of FIGS. 5(a) to (,).

(1)まず、p型シリコン基板201表面にsb等の拡
散係数の小さいn型不純物を選択的にドーピングしてn
十型拡散層202152022を形成した。つづいて、
基板101表面に熱酸化膜203を成長させ、該熱酸化
膜2o3上に写真蝕刻法によりp+型埋込み領域予定部
及びp生型領域予定部が開口されたレジストツヤターン
204を形成した後、該レジストノターン204をマス
クとしてp型不純物、例えばゾロンを加速電圧150 
ksv、  ドーズ量1×1o14/6n2〜4X10
’%−の条件でイオン注入して基板201及び−型拡散
層2011 t202gにゾロンイオン注入層2051
 12051 +205!、2053を選択的に形成し
た(第2図(、)図示)。ひきつづきレジストツヤター
ン204及び熱酸化膜203を除去した後、例えば厚さ
約6μmのn−型シリコン層206をエピタキシャル成
長させた。この時、前記計型拡散層202..202.
がエピタキシャル成長中の熱によシ「型シリコン層20
6にオートドーピング現象を起こして滲み出し基板20
ノとシリコン層10gの界面付近に計型埋込み領域20
 y!、 207fiが選択的に形成された。同時に1
ゾロンイオン注入層20512051が同様にオートド
ーピングと拡散を起こして基板201とシリコン層20
.6の界面付近に一型領域201J、2011が形成さ
れると共に、♂型拡散層2θ21 .202.内のゾロ
ンイオン注入N2os、、2(753は該拡散R202
1゜202鵞のsbより拡散係数が大きいだめに前記針
型埋込み領域207.  、207.上のシリコン層2
06部分に縦形pnpバイポーラトランジスタのコレク
タ領域となるp半型埋込み領域209しp−ウェル領域
の層抵抗の低減化のためのp半型埋込み領域21θが夫
々形成された(第5図(b)図示)。
(1) First, the surface of the p-type silicon substrate 201 is selectively doped with an n-type impurity having a small diffusion coefficient such as sb.
A ten-shaped diffusion layer 202152022 was formed. Continuing,
A thermal oxide film 203 is grown on the surface of the substrate 101, and a resist glossy turn 204 is formed on the thermal oxide film 203 by photolithography in which the planned p+ type buried region and the planned p green region are opened. Using the resist noturn 204 as a mask, p-type impurities such as zolon are applied at an accelerating voltage of 150
ksv, dose amount 1×1o14/6n2~4X10
Zolone ion implantation layer 2051 is implanted into the substrate 201 and the - type diffusion layer 2011 t202g by ion implantation under the condition of '%-.
12051 +205! , 2053 were selectively formed (as shown in FIG. 2(,)). After removing the resist gloss turn 204 and the thermal oxide film 203, an n-type silicon layer 206 having a thickness of, for example, about 6 μm was epitaxially grown. At this time, the meter-shaped diffusion layer 202. .. 202.
The "type silicon layer 20" is damaged by heat during epitaxial growth.
Substrate 20 oozes out by causing an autodoping phenomenon in 6.
A meter-shaped embedded region 20 is formed near the interface between the silicon layer 10g and the silicon layer 10g.
Y! , 207fi were selectively formed. 1 at the same time
The zolon ion implantation layer 20512051 similarly undergoes autodoping and diffusion to form the substrate 201 and the silicon layer 20.
.. Type 1 regions 201J, 2011 are formed near the interfaces of 2θ21 . 202. Zolon ion implantation N2os, 2 (753 is the diffusion R202
The needle-shaped embedded region 207. has a larger diffusion coefficient than the sb of 1°202 goose. , 207. upper silicon layer 2
A p half-type buried region 209 which becomes the collector region of the vertical pnp bipolar transistor and a p half-type buried region 21θ for reducing the layer resistance of the p-well region are formed in the 06 portion (FIG. 5(b)). (Illustrated).

(11)次いで、n−型シリコン層206表面に熱酸化
膜110を成長させ、該熱酸化膜211上に写真蝕刻法
により前記p十型領域208.208、p型コレクタ予
定部及び前記p半型埋込み領域210に対応する部分が
開口されたレジストハターン(図示せず)を形成した後
、このレジスト・やターンをマスクとしてp型不純物、
例えばざロンを加速電圧100 keV、  ドーズ量
2X10’滴2〜6X10’滴2の条件でイオン注入し
、活性化、拡散させた。この工程において、前記−型領
域208.208とつながるp型領域212.212が
形成され、これらによりn型シリコン層206を縦形p
np /Jイポーラトランジスタ形成領域としての島領
域21311、CMO8形成領域としての島領域213
鵞とに電気的に分離するp型アイソレージ、ン領域21
4゜214が形成された。また、同時に、島領域213
tにp型コレクタ領域215が、島領域213鵞のp半
型埋込み領域209.上にp−ウェル領域216が、夫
々形成された。つづいて、n型不純物、例えば砒素を熱
酸化膜211を通して島領域2131に選択的にイオン
注入し、活性化、拡散を行なってペースとなるn−型シ
リコン層206に大電流時のトランジスタ出力電流のの
びを大きくするだめのn型領域217を形成した。ひき
つづき、p型不純物、例えばゾロンを熱酸化膜210を
通してアイソレーション領域214のp型領域212.
島領域2131    □のn型領域217内及びp型
コレクタ領域216.    l’島領域213m、同
領域213!丙のp−ウェル領域216に夫々選択的に
イオン注入し、拡散させて、p型領域212に基板接地
のためのp十型電極取出し領域218を、島領域213
宜のn型領域217にp生型エミッタ領域219を、p
型コレクタ領域215にp生型コレクタ取出し領域22
0を、島領域2132のn−型シリコン層206に互に
電気的に分離されたp生型のソース、ドレイン領域22
1,222を、及びp−ウェル領域216にp中型チャ
ンネルカット領域223を、夫々同時に形成した(第5
図(e)図示)。
(11) Next, a thermal oxide film 110 is grown on the surface of the n-type silicon layer 206, and photolithography is performed on the thermal oxide film 211 to form the p-type region 208, 208, the planned p-type collector portion, and the p-half region. After forming a resist pattern (not shown) in which a portion corresponding to the mold burying region 210 is opened, p-type impurity,
For example, Zarron was ion-implanted under conditions of an acceleration voltage of 100 keV and a dose of 2 x 10' drops to 2 x 6 x 10' drops, and was activated and diffused. In this step, p-type regions 212.212 connected to the −-type regions 208.208 are formed, and these make the n-type silicon layer 206 into a vertical p-type region.
Island region 21311 as np/J polar transistor formation region, island region 213 as CMO8 formation region
A p-type isolation region 21 that electrically isolates the
4°214 was formed. At the same time, the island area 213
The p-type collector region 215 is located at the island region 213, and the p-half type buried region 209. A p-well region 216 was formed thereon, respectively. Next, an n-type impurity such as arsenic is selectively ion-implanted into the island region 2131 through the thermal oxide film 211, activated and diffused, and the transistor output current at a large current is activated and diffused. An n-type region 217 was formed to increase the expansion. Subsequently, a p-type impurity such as zolon is applied to the p-type region 212 of the isolation region 214 through the thermal oxide film 210.
Island region 2131 □ n-type region 217 and p-type collector region 216 . l' island area 213m, same area 213! Ions are selectively implanted and diffused into each of the C p-well regions 216 to form a p-type electrode extraction region 218 for substrate grounding in the p-type region 212 and an island region 213.
A p-type emitter region 219 is placed in the n-type region 217 of the
A p-type collector extraction region 22 is provided in the mold collector region 215.
0 to the p-type source and drain regions 22 electrically isolated from each other by the n-type silicon layer 206 of the island region 2132.
1,222 and a p medium channel cut region 223 in the p-well region 216 were formed simultaneously (fifth
Figure (e) shown).

(11bθζいで、熱酸化膜211を除去し、再度厚い
酸化膜224を全面に成長させた後、フォトエツチング
技術によυベース取出し領域形成予定部、n生型チャン
ネルカット領域予定部及び?型ソース、ドレイン領域予
定部の酸化膜224を選択的にエツチング除去して開孔
部225・・・を形成した。つづいて、酸化膜224を
マスクとして例えば砒素を開孔部225・・・を通して
イオン注入し、拡散させて、島領域2131のペース領
域217にn十型ペース取出し領域226を、島領域2
13鵞のシリコン層206にn十型チャンネルカット領
域227を、p−ウェル領域215にn生型のソース、
ドレイン領域228゜229を、夫々同時に形成した(
第5図(d)図示)。
(In step 11bθζ, the thermal oxide film 211 is removed and a thick oxide film 224 is grown again on the entire surface, and then the υ base extraction region is to be formed, the n-type channel cut region is to be formed, and the ?-type source are Then, the oxide film 224 in the area where the drain region was to be formed was selectively removed by etching to form the openings 225. Next, using the oxide film 224 as a mask, ions of, for example, arsenic were implanted through the openings 225. Then, by diffusing, the n-type pace extraction region 226 is placed in the pace region 217 of the island region 2131, and the
13. An n-type channel cut region 227 is provided in the silicon layer 206, an n-type source is provided in the p-well region 215,
Drain regions 228° and 229 were formed simultaneously (
(Illustrated in FIG. 5(d)).

■次いで、酸化膜224を除去し、再度厚い酸化膜(フ
ィールド絶縁膜)230を形成した後、前記p生型のソ
ース、ドレイン領域221゜222間を含む領域上、及
び?型のソース、ドレイン領域221J、229間を含
む領域上の酸化膜230を選択的にエツチング除去し、
更に熱酸化処理を施して薄いf−)酸化膜2311*2
31!を形成した。つづいてフォトエツチング技術によ
り各領域上の酸化膜230部分にコンタクトホールを開
孔し、全面に例えばAI 膜を蒸着した後、ツヤターニ
ングして基板接地のためのkl電極232I、ペース、
エミッタ、コレクタのAIM、極233〜235を形成
すると共に、A4r−)電極2361  + 236 
@  * ソース+ )” L’ インの取出しAI電
極237〜240を形成して縦形pnpパイイーラトラ
ンジスオとpチャンネルMO8)ランジスタ及びnチャ
ンネルMO3)ランジスタからなる0MO8とが共存し
た複合デバイスを製造した(第5図(、)図示)。
(2) Next, the oxide film 224 is removed, and a thick oxide film (field insulating film) 230 is formed again on the region including between the p-type source and drain regions 221 and 222, and ? The oxide film 230 on the region including between the source and drain regions 221J and 229 of the mold is selectively etched away,
Further thermal oxidation treatment is performed to form a thin f-) oxide film 2311*2
31! was formed. Next, a contact hole is formed in the oxide film 230 on each region using photoetching technology, and after depositing, for example, an AI film on the entire surface, gloss turning is performed to form a kl electrode 232I for grounding the substrate, a paste,
Emitter, collector AIM, poles 233 to 235 are formed, and A4r-) electrodes 2361 + 236
@ * Source + )"L'-in extraction AI electrodes 237 to 240 were formed to manufacture a composite device in which vertical pnp pie era transistors and 0MO8 consisting of p-channel MO8) transistors and n-channel MO3) transistors coexisted. (Illustrated in Figure 5(, )).

しかして、本願第2の発明方法によれば第5図(、)に
示す如くp−ウェル領域216底部に該ウェル領域21
6と接触する高濃度であるp生型埋込み領域210を形
成すると同時に、縦形pnpバイポーラトランジスタ予
定部の島領域にp生型埋込みコレクタ領域209を形成
することによって、耐う、チア、グ性の優れた0MO8
と、高速化、高出力化が可能な縦形plpzJイポーラ
トランジスタとが共存された複合デバイスを簡単に製造
できる。また、p生型埋込み領域21o1p十型埋込み
コレクタ領域209の形成工程と同時にp型シリコン基
板201とn−型シリコン層206の界面付近にアイソ
レーション領域の一部を構成するp十型領域208.2
08を形成すれば、縦形pnpバイポーラトランジスタ
、cMosを確実に電気的に分離し得る微細なp型アイ
ソレーション領域214,214を形成できる。
According to the second invention method of the present application, as shown in FIG.
At the same time, a p-type buried collector region 209 is formed in the island region of the planned vertical pnp bipolar transistor by forming a high-concentration p-type buried region 210 in contact with the p-type p-type bipolar transistor. Excellent 0MO8
It is possible to easily manufacture a composite device in which a vertical plpzJ polar transistor, which can achieve high speed and high output, coexists. At the same time as the formation of the p-type buried region 21o1p-type buried collector region 209, a p-type region 208. 2
08, it is possible to form fine p-type isolation regions 214, 214 that can reliably electrically isolate vertical pnp bipolar transistors and cMOS.

なお、上記実施例ではp−ウェル領域底部に形成される
p生型埋込み領域を♂型埋込み領域上のn−型シリコン
層部分に形成したが、例えばウェル直下のn生型埋込み
領域を省略してp型シリコン基板とn−型シリコン層の
界面付近にr生型埋込み領域を形成し、p−ウェルを接
地してもよい。
In the above embodiment, the p-type buried region formed at the bottom of the p-well region was formed in the n-type silicon layer portion above the male-type buried region, but for example, the n-type buried region directly under the well could be omitted. An r-type buried region may be formed near the interface between the p-type silicon substrate and the n-type silicon layer, and the p-well may be grounded.

上記実施例では単一層のシリコン層を形成する方法を採
用したが、二重エピタキシャル成長法を用いて厚い〔型
シリコン層を形成し、ウェル領域予定部下のこれら2層
のn−型シリコン層の界面付近にp生型埋込み領域を形
成することにより2層のシリコン層部分にバイポーラト
ランジスタを上層のシリコン層に0MO8を、夫々形成
して高耐圧のリニアトランジスタと微細な0MO8とを
共存させた複合デノ々イスを製造するようにしてもよい
In the above embodiment, a method of forming a single silicon layer was adopted, but a double epitaxial growth method was used to form a thick silicon layer, and an interface between these two n-type silicon layers below the planned well region was used. By forming a p-type buried region nearby, a bipolar transistor is formed in the two silicon layer portions, an 0MO8 is formed in the upper silicon layer, and a composite device is created in which a high breakdown voltage linear transistor and a fine 0MO8 coexist. It is also possible to manufacture a nose chair.

上記実施例ではバイポーラ素子とC21l108素子と
をアイソレージ、ンにより分離したが、基板と「型シリ
コン層の界面付近に予め形成したp+製型領域上シリコ
ン層部分に選択酸化技術により酸化膜を形成し、誘電体
膜によって分離するようにしてもよい。
In the above embodiment, the bipolar element and the C21l108 element were separated by isolation, but an oxide film was formed by selective oxidation technology on the silicon layer portion above the p+ mold region previously formed near the interface between the substrate and the mold silicon layer. , they may be separated by a dielectric film.

上記実施例1ではパイヂーラ素子形成領域下のn生型埋
込み領域と0MO8素子形成領域下のn+型埋込み領域
とを同一工程で形成したが、ウェル領域底部のp生型埋
込み領域の層抵抗の増大を防止する観点から上記各n生
型埋込み領域を別々の工程で形成することが望ましい。
In Example 1 above, the n-type buried region under the piezilla element formation region and the n+-type buried region under the 0MO8 element formation region were formed in the same process, but the layer resistance of the p-type buried region at the bottom of the well region increased. From the viewpoint of preventing this, it is desirable to form each of the n-type buried regions in separate steps.

即ち、0MO8素子形成領域下の計型埋込み領域を、p
生型埋込み領域直下に形成する場合、この?型埋へみ領
域からの上方滲み出しによってp生型埋込み領域の層抵
抗が増大する。こうした層抵抗の増大を少なくするため
には、0MO8素子下のn生型埋込み領域をnpnバイ
ポーラトランジスタ下のn生型埋込み領域、つまりn半
型のサブコレクタ領域とは別の拡散で形成する方法を採
用する。この場合、0MO8素子下のn生型埋込み領域
の形成手段としては、拡散係数の小さい不純物(例えば
sb等)を用いる方法、或いは不純物の表面濃度を下げ
る方法等が考えられる。具体的には、p型シリコン基板
の0MO8素子の直下となる領域に表面濃度が小さくて
深いn生型拡散層を形成した後、該基板全面にn−型シ
リコン層をエピタキシャル成長させることにより上方拡
散の少ないn生型埋込み領域を形成することが望ましい
That is, the meter-shaped buried region under the 0MO8 element formation region is
When forming directly under the green mold embedding area, is this? The upward seepage from the mold buried region increases the layer resistance of the p-type buried region. In order to reduce this increase in layer resistance, there is a method of forming the n-type buried region under the 0MO8 element by a different diffusion from the n-type buried region under the npn bipolar transistor, that is, the n-half type subcollector region. Adopt. In this case, possible means for forming the n-type buried region under the 0MO8 element include a method of using an impurity with a small diffusion coefficient (for example, sb, etc.) or a method of lowering the surface concentration of the impurity. Specifically, after forming a deep n-type diffusion layer with a low surface concentration in the region directly under the 0MO8 element of a p-type silicon substrate, an n-type silicon layer is epitaxially grown on the entire surface of the substrate, thereby increasing the upward diffusion. It is desirable to form an n-type buried region with a small amount of n-type buried region.

上記実施例2ではコレクタ領域2 J 5.215によ
ってペース領域(n−型シリコン層2o6)を島状に形
成したが、このペース領域に予めp−ウェル領域と同時
にp型コレクタ領域を島状に形成し、該コレクタ領域内
にn型ペース領域を形成し、更にこのペース領域内にp
型エミッタ領域を形成するという三重拡散法を採用して
もよい。このような三重拡散法を採用すれば、コレクタ
領域をマスク合せてリング状に形成しなくてもよいため
、集積度を向上でき、しかもペース領域のペース幅が「
型シリコン層の厚みと、p生型埋込みコレクタ領域の上
方拡散によって影響されるのを回避でき、縦形pnpバ
イポーラトランジスタと0MO8とを共存させた複合デ
バイスを量産的に製造できる。
In the above Example 2, the space region (n-type silicon layer 2o6) was formed in the form of an island using the collector region 2 J 5.215. forming an n-type space region within the collector region, and further forming a p-type space region within the space region.
A triple diffusion method may be used to form a type emitter region. If such a triple diffusion method is adopted, the collector region does not need to be formed into a ring shape by matching the masks, so the degree of integration can be improved, and the pace width of the pace region can be reduced.
The influence of the thickness of the p-type silicon layer and the upward diffusion of the p-type buried collector region can be avoided, and a composite device in which a vertical pnp bipolar transistor and an OMO8 coexist can be mass-produced.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればラッチアップの防止
と素子分離性の向上が図られた高信頼性で微細な0MO
8と高耐圧化等が可能なnpnバイポーラトランジスタ
とを共存させた複合構造の半導体装置、並びに高信頼性
で微細な0MO8と高速性、高出力性の縦形pnpバイ
ポーラトランジスタとを共存させた複合構造の半導体装
置を量産的に製造し得る方法を提供できるものである。
As described in detail above, according to the present invention, a highly reliable and fine 0MO that prevents latch-up and improves element isolation is achieved.
A semiconductor device with a composite structure that coexists with a high-reliability, fine OMO8 and a high-speed, high-output vertical pnp bipolar transistor. Accordingly, it is possible to provide a method for manufacturing semiconductor devices in mass production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方法により製造されだnpnパイヂーラト
ランジスタと0MO8とが共存された複合デ・々イスの
断面図、第2図(、)〜(g)は本発明の実施例1にお
けるnpnノ?イポーラトランジスタと0MO8とが共
存された複合デバイスの製造工程を示す断面図、第3図
は実施例1の複合デバイスにおゆるp−ウェル領域、p
生型埋込み領域及び砂型埋込み領域の不純物プロファイ
ルを示す線図、第4図は実施例1の変形例を示す複合デ
バイスの断面図、第5図(九)〜(e)は本発明の実施
例2における縦形pop /者イポーラトランジスタと
0MO8とが共存された複合デノ々イスの製造1穐を示
す断面図である。 101 、!01・・・p型シリコン基板、7071+
107m  + 2071+ 2071・・・n生型埋
込み領域、101J、20B・・・p十型領域、109
.210・・・p生型埋込み領域、11j、212・・
・p型頭域、114.214・・・p型アイソレーショ
ン領域、115.216・・・p−ウェル領域、116
1 。 116嘗+ 2131  + !’ 13g・・・島領
域、117・・・p十型ベース領域、11111221
・・・p十槃ソース領域、119.222・・・p十型
ドレイン領域、120.223・・・p生型チャンネル
カット領域、123・・・?型エミッタ領域、125.
227・・・n十型チャンネルカット領域、126.1
!:1B・・・n十型ソース領域、127.229・・
・n十薬Pレイン領域、11!8.230・・・酸化膜
、1291*129雪52311−231寓・・・ダー
ト酸化膜、130〜 IJ2.134 〜1 3 7 
 、 23!〜235゜237〜240・・・AI電極
、1331 .133%  。 2361.236. ・l’−)電極、209− p生
型埋込み領域(p十薬コレクタ埋込み領域)、215・
・・p型コレクタ領域、217・・・n型ペース領域、
219・・・p生型エミッタ領域。
FIG. 1 is a sectional view of a composite device manufactured by a conventional method in which an npn piezilla transistor and an 0MO8 coexist, and FIGS. of? FIG. 3 is a cross-sectional view showing the manufacturing process of a composite device in which a polar transistor and 0MO8 coexist.
Diagram showing the impurity profile of the green mold embedding region and the sand mold embedding region, FIG. 4 is a sectional view of a composite device showing a modification of Example 1, and FIGS. 5(9) to (e) are examples of the present invention. FIG. 2 is a cross-sectional view showing the manufacture of a composite device in which a vertical POP/Ipolar transistor and an OMO8 are coexisted in FIG. 101,! 01...p-type silicon substrate, 7071+
107m + 2071+ 2071...n green type buried region, 101J, 20B...p ten type region, 109
.. 210... p-type embedded region, 11j, 212...
・P-type head area, 114.214...p-type isolation region, 115.216...p-well region, 116
1. 116 years + 2131 +! ' 13g...Island region, 117...p ten-shaped base region, 11111221
...p ten type source region, 119.222...p ten type drain region, 120.223...p raw type channel cut region, 123...? type emitter region, 125.
227...n ten-type channel cut area, 126.1
! :1B...n-type source region, 127.229...
・n tenyaku P rain region, 11!8.230...Oxide film, 1291*129 Snow 52311-231 False...Dart oxide film, 130~IJ2.134~1 3 7
, 23! ~235°237~240...AI electrode, 1331. 133%. 2361.236.・l'-) electrode, 209-p biotype buried region (p collector buried region), 215・
...p-type collector region, 217...n-type pace region,
219...p-type emitter region.

Claims (9)

【特許請求の範囲】[Claims] (1)  第1導電型の半導体基板上に第2導電型の半
導体層を設け、該半導体層ラミ気的に分離して形成され
た複数の島領域に少なくともバイポーラ素子と、第1導
電型のウェル領域を有するCMO8素子とを設けた構造
の半導体装置の製造において、パイ−−ラ素子形成予定
部下の前記半導体基板と半導体層の界面付近に高濃度の
第2導電型埋込み領域を選択的に形成する工程と、ウェ
ル領域予定部直下の少なくとも前記半導体層部分に高濃
度の第1導電型埋込み領域を選択的に形成すると同時に
、前記半導体基板と半導体層の界面付近に分離領域の一
部を構成する高濃度の第1導電型領域を選択的に形成す
る工程と、前記第1導電型埋込み領域上の前記半導体層
部分に該埋込み領域と接続する第1導電型のウェル領域
を選択的に形成する工程とを具備したことを特徴とする
半導体装置の製造方法。
(1) A semiconductor layer of a second conductivity type is provided on a semiconductor substrate of a first conductivity type, and at least a bipolar element and a semiconductor layer of a first conductivity type are provided in a plurality of island regions formed by gaseously separating the semiconductor layer. In manufacturing a semiconductor device having a structure including a CMO8 element having a well region, a high concentration buried region of the second conductivity type is selectively formed in the vicinity of the interface between the semiconductor substrate and the semiconductor layer under the planned formation of the pie-ra element. selectively forming a high concentration buried region of the first conductivity type in at least a portion of the semiconductor layer immediately below the planned well region, and at the same time forming a part of the isolation region near the interface between the semiconductor substrate and the semiconductor layer; selectively forming a high concentration first conductivity type region constituting the semiconductor layer; and selectively forming a first conductivity type well region connected to the first conductivity type buried region in the semiconductor layer portion on the first conductivity type buried region. 1. A method of manufacturing a semiconductor device, comprising a step of forming a semiconductor device.
(2)  ウェル領域予定部直下に選択的に形成される
高濃度の第1導電型埋込み領域が第2導電型の半導体層
から第1導電型の半導体基板に亘る部分に配置されてい
ることを特徴とする特許請求の範囲第1項記載の半導体
装置の製造方法。
(2) It is confirmed that the high concentration buried region of the first conductivity type, which is selectively formed directly under the planned well region, is arranged in a portion extending from the semiconductor layer of the second conductivity type to the semiconductor substrate of the first conductivity type. A method for manufacturing a semiconductor device according to claim 1.
(3)高濃度の第2導電型埋込み領域を、ノ々イ −−
−ラ素子形成予定部下のみならず、CMO8素子形成予
定部下の第1導電型の半導体基板と第2導電型の半導体
層との界面付近に選択的に形成すると共に、ウェル領域
予定部直下に位置する前記第2導電型埋込み領域上の半
導体層部分に高濃度の第1導電型埋込み領域を選択的に
形成することを特徴とする特許請求の範囲第1項記載の
半導体装置の製造方法。
(3) Highly concentrated buried region of the second conductivity type
- selectively formed near the interface between the semiconductor substrate of the first conductivity type and the semiconductor layer of the second conductivity type, not only under the planned formation of the CMO8 element but also under the planned formation of the well region; 2. The method of manufacturing a semiconductor device according to claim 1, wherein a high concentration buried region of the first conductivity type is selectively formed in a portion of the semiconductor layer above the buried region of the second conductivity type.
(4)高濃度の第2導電型埋込み領域を、バイポーラ素
子形成予定部下及びC’MO8素子形成予定部下の第1
導電型の半導体基板と第2導電型の半導体層との界面付
近に別々の工程で選択的に形成すると共に、 CMO8
素子形成予定部下のるか、もしくは拡散係数の小さい不
純物を用いて形成することを特徴とする特許請求の範囲
第3項記載の半導体装置の製造方法。
(4) Place the high concentration second conductivity type buried region in the first region under the bipolar element formation plan and under the C'MO8 element formation plan area.
CMO8 is selectively formed near the interface between the conductive type semiconductor substrate and the second conductive type semiconductor layer in separate steps.
4. The method of manufacturing a semiconductor device according to claim 3, wherein the semiconductor device is formed using an impurity that is below the planned element formation level or has a small diffusion coefficient.
(5)  第1導電型のウェル領域の形成と同時に、第
2導電型の半導体層表面部分に高濃度の第1導電型領域
とつながる第1導電型のアイソレーション領域を形成す
ることを特徴とする特許請求の範囲第1項記載の半導体
装置の製造方法。
(5) At the same time as forming the well region of the first conductivity type, an isolation region of the first conductivity type connected to the high concentration first conductivity type region is formed in the surface portion of the semiconductor layer of the second conductivity type. A method for manufacturing a semiconductor device according to claim 1.
(6)第1導電型がp型で、第2導電型がn型であり、
npnバイポーラトランジスタをバイポーラ素子として
n型半導体層の島領域に形成することを特徴とする特許
請求の範囲第1項乃至第5項いずれか記載の半導体装置
の製造方法。
(6) the first conductivity type is p type, the second conductivity type is n type,
6. A method of manufacturing a semiconductor device according to claim 1, wherein an npn bipolar transistor is formed as a bipolar element in an island region of an n-type semiconductor layer.
(7)第1導電型の半導体基板上に第2導電型の半導体
層を設け、該半導体層つ電気的に分離して形成された複
数の島領域に少なくともバイポーラ素子と、第1導電型
のウェル領域を有する0MO8素子とを設けた構造の半
導体装置の製造において、バイポーラ素子形成予定部下
の前記半導体基板と半導体層の界面付近に高濃度の第2
導電型埋込み領域を選択的に形成する工程と、第1導電
型のウェル領域予定部属下の少なくとも前記半導体層部
分にとのウェルと接続する高濃度の第1導電型埋込み領
域を選択的に形成すると同時に、バイポーラ素子形成予
定部下の前記第2導電埋込み領域上の半導体層部分に高
濃度の第1導電型埋込み領域を選択的に形成することを
特徴とする半導体装置の製造方法。
(7) A semiconductor layer of a second conductivity type is provided on a semiconductor substrate of a first conductivity type, and at least a bipolar element and a semiconductor layer of a first conductivity type are provided in a plurality of island regions formed electrically separated from the semiconductor layer. In manufacturing a semiconductor device having a structure in which a 0MO8 element having a well region is provided, a high concentration of a second
a step of selectively forming a buried region of a conductive type, and selectively forming a buried region of a first conductive type with a high concentration to connect with the well in at least a portion of the semiconductor layer under the planned well region of the first conductive type; At the same time, a high concentration buried region of the first conductivity type is selectively formed in a portion of the semiconductor layer above the second conductive buried region under which a bipolar element is planned to be formed.
(8)  ウェル領域予定部属下に選択的に形成される
高濃度の第1導電型埋込み領域が、第2導電型の半導体
層から第1導電型の半導体基板に亘る部分に配置されて
いることを特徴とする特許請求の範囲第7項記載の半導
体装置の製造方法。
(8) The high concentration buried region of the first conductivity type, which is selectively formed under the planned well region, is arranged in a portion extending from the semiconductor layer of the second conductivity type to the semiconductor substrate of the first conductivity type. A method for manufacturing a semiconductor device according to claim 7, characterized in that:
(9)  高濃度の第2導電型埋込み領域を、ノクイI
−ラ素子形成予定部下のみならず、CMO8素子形成予
定部下の第1導電型の半導体基板と第2導電型の半導体
層との界面付近に選択的に形成すると共に、ウェル領域
予定部属下に位置する前記第2導電型埋込み領域上の半
導体層部分に高濃度の第1導電型埋込み領域を選択的に
形成することを特徴とする特許請求の範囲第7項記載の
半導体装置の製造方法。 四 第1導電型がp型で、第2導電型がn型であシ、高
濃度の第2導電型埋込み領域上の高濃度の第1導電型埋
込み領域をp十型コレクタ領域とする縦型pnpノぐイ
ポーラトランジスタをノ々イボーラ素子としてn型半導
体層の島領域に形成することを特徴とする特許請求の範
囲第7項乃至第9項いずれか記載の半導体装置の製造方
法。
(9) The high concentration second conductivity type buried region is
- selectively formed near the interface between the semiconductor substrate of the first conductivity type and the semiconductor layer of the second conductivity type, not only under the planned formation of the CMO8 element, but also under the planned well region area; 8. The method of manufacturing a semiconductor device according to claim 7, wherein a high concentration buried region of the first conductivity type is selectively formed in a portion of the semiconductor layer above the buried region of the second conductivity type. (4) A vertical structure in which the first conductivity type is p type, the second conductivity type is n type, and the high concentration buried region of the first conductivity type on the high concentration buried region of the second conductivity type is the p type collector region. 10. The method of manufacturing a semiconductor device according to claim 7, wherein a pnp type polar transistor is formed as a non-Ibolar element in an island region of an n-type semiconductor layer.
JP57098766A 1982-06-09 1982-06-09 Manufacture of semiconductor device Pending JPS58216455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098766A JPS58216455A (en) 1982-06-09 1982-06-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098766A JPS58216455A (en) 1982-06-09 1982-06-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58216455A true JPS58216455A (en) 1983-12-16

Family

ID=14228514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098766A Pending JPS58216455A (en) 1982-06-09 1982-06-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58216455A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188553A (en) * 1984-09-28 1986-05-06 トムソン‐セエスエフ Ic structure of cmos transistor having high blocking voltageperformance and assembling thereof
JPS61281545A (en) * 1985-06-06 1986-12-11 Fuji Electric Co Ltd Bipolar-cmos semiconductor device
JPS63278265A (en) * 1986-11-04 1988-11-15 サムスン エレクトロニクス カンパニー リミテッド Manufacture of semiconductor bicmos device
JPS6437860A (en) * 1987-08-03 1989-02-08 Fujitsu Ltd Manufacture of bi-cmos semiconductor device
JPH0291967A (en) * 1988-09-29 1990-03-30 Rohm Co Ltd Bi-cmos semiconductor device
JPH0357266A (en) * 1989-07-26 1991-03-12 Mitsubishi Electric Corp Bi-mos semiconductor device and manufacture thereof
EP0428067A2 (en) * 1989-11-10 1991-05-22 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and method of manufacturing the same
JP2003017603A (en) * 2001-06-28 2003-01-17 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2010177318A (en) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd Semiconductor device and production method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188553A (en) * 1984-09-28 1986-05-06 トムソン‐セエスエフ Ic structure of cmos transistor having high blocking voltageperformance and assembling thereof
JPS61281545A (en) * 1985-06-06 1986-12-11 Fuji Electric Co Ltd Bipolar-cmos semiconductor device
JPH0369180B2 (en) * 1985-06-06 1991-10-31 Fuji Electric Co Ltd
JPS63278265A (en) * 1986-11-04 1988-11-15 サムスン エレクトロニクス カンパニー リミテッド Manufacture of semiconductor bicmos device
JPS6437860A (en) * 1987-08-03 1989-02-08 Fujitsu Ltd Manufacture of bi-cmos semiconductor device
JPH0291967A (en) * 1988-09-29 1990-03-30 Rohm Co Ltd Bi-cmos semiconductor device
JPH0357266A (en) * 1989-07-26 1991-03-12 Mitsubishi Electric Corp Bi-mos semiconductor device and manufacture thereof
EP0428067A2 (en) * 1989-11-10 1991-05-22 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and method of manufacturing the same
JP2003017603A (en) * 2001-06-28 2003-01-17 Mitsubishi Electric Corp Semiconductor device and its manufacturing method
JP2010177318A (en) * 2009-01-28 2010-08-12 Sanyo Electric Co Ltd Semiconductor device and production method thereof

Similar Documents

Publication Publication Date Title
US4826780A (en) Method of making bipolar transistors
US4512075A (en) Method of making an integrated injection logic cell having self-aligned collector and base reduced resistance utilizing selective diffusion from polycrystalline regions
US4051506A (en) Complementary semiconductor device
JPH0420265B2 (en)
JPS58216455A (en) Manufacture of semiconductor device
JP2736493B2 (en) Semiconductor device and manufacturing method thereof
JP3186043B2 (en) Method for manufacturing semiconductor device
JP3443069B2 (en) Method for manufacturing semiconductor device
US6150225A (en) Method for fabricating a semiconductor device having vertical and lateral type bipolar transistors
JP2864863B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP4534267B2 (en) Manufacturing method of semiconductor device
JP3135148B2 (en) Semiconductor device and manufacturing method thereof
JP2001257348A (en) Semiconductor device and its manufacturing method
JPS6146062A (en) Semiconductor device
JP2752655B2 (en) Bipolar integrated circuit device
KR970009032B1 (en) Power semiconductor and its manufacturing method
JP4412907B2 (en) Manufacturing method of semiconductor device
JP3158404B2 (en) Method for manufacturing semiconductor device
JPH04269835A (en) Semiconductor device with trench type electrode and its manufacture
JPH0115147B2 (en)
JPH065708B2 (en) Semiconductor integrated circuit device
JP3902412B2 (en) Manufacturing method of semiconductor device
JPH0566742B2 (en)
JPH0321055A (en) Semiconductor integrated circuit device and manufacture of the same
JPH06349850A (en) Semiconductor device and its manufacture