JPS58213447A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58213447A
JPS58213447A JP9720782A JP9720782A JPS58213447A JP S58213447 A JPS58213447 A JP S58213447A JP 9720782 A JP9720782 A JP 9720782A JP 9720782 A JP9720782 A JP 9720782A JP S58213447 A JPS58213447 A JP S58213447A
Authority
JP
Japan
Prior art keywords
region
buried
substrate
insulated
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9720782A
Other languages
Japanese (ja)
Other versions
JPH0423421B2 (en
Inventor
Mitsuhiro Hamada
濱田 満広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9720782A priority Critical patent/JPS58213447A/en
Publication of JPS58213447A publication Critical patent/JPS58213447A/en
Publication of JPH0423421B2 publication Critical patent/JPH0423421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To keep an insulated P<+> region at minimum potential sufficiently extending over the whole IC by forming the insulated region in a pattern separate from a buried P<+> region diffused into a semiconductor substrate in a double diffusion insulating system. CONSTITUTION:Buried N<+> regions 12 and buried P<+> regions 13 are formed onto the substrate 11. When an epitaxial layer 14 of an N type semiconductor is grown onto the substrate 11, the buried P<+> region 13 is not formed in a region 17, in which an element is not formed, as much as possible in order to reduce the effect of a P type impurity. The epitaxial layers 14 are grown onto the substrate 11. The high-concentration P type impurity is diffused from the upper sections of the epitaxial layers 14 to form the insulated P<+> regions 15. An element region is insulated and isolated completely through the diffusion. The P type impurity in the insulated P<+> regions 15 is widened sufficiently.

Description

【発明の詳細な説明】 本発明は半導体装置にかが〕、とくに半導体集積回路の
絶縁分離に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, and particularly to insulation and isolation of semiconductor integrated circuits.

半導体集積回路(以下ICと略記)において電気的に独
立した素子領域を形成するための一つの方法として二重
拡散法が第1図に示すように行なわれている。これはp
型半導体基板lに埋込n+領領域を形成し、それと同時
に基板と同じp型の不純物(以下埋込p+領領域と記す
)も前記埋込n+領領域ある間隔をおいて形成する。そ
の基板上にn型エピタキシャル層4tl−形成し、埋込
p+領領域を形成した面とはは同じ領域に前記エピタキ
シャル層の上からp型不純物(以下絶縁p+領領域と記
す)を埋込p+領領域に達するように拡散する。そして
、埋込n 領域上が素子の入るエピタキシャル層4とな
る。この絶縁分離法ではn型エピタキシャル層を形成す
、る前のp型基板の絶縁領域(素子のない領域)にはp
型の高濃度不純物が拡散されているので、仁の高濃度の
p型不純物がn型エビタキクヤル層形成時にエピタキシ
ャル層に再拡散されエピタキシャル層の不純物濃度を乱
す0埋込p+領域の部分がウェハー上に占める割合が多
くなればなる#1ど再拡散は多くエピタキシャル層の不
i物制御が困難となハひどい場合には反転してp型にな
ってしまう。従来はこの対策として、素子分離用の埋込
p 領域と絶縁p領域が極力小さくなるようにバタン設
計を行なっティた。すなわち素子の入らないエピタキシ
ャル領域7には埋込p+領領域絶縁p+領領域存在しな
い。
As one method for forming electrically independent element regions in a semiconductor integrated circuit (hereinafter abbreviated as IC), a double diffusion method is used as shown in FIG. This is p
A buried n+ region is formed in a semiconductor substrate l, and at the same time, p-type impurities (hereinafter referred to as buried p+ region) similar to those of the substrate are also formed at certain intervals in the buried n+ region. An n-type epitaxial layer 4tl- is formed on the substrate, and a p-type impurity (hereinafter referred to as an insulating p+ region) is buried from above the epitaxial layer in the same region as the surface on which the buried p+ region is formed. Spread to reach territory. The portion above the buried n-region becomes the epitaxial layer 4 in which the element is placed. In this insulation isolation method, before forming the n-type epitaxial layer, the insulating region (region without elements) of the p-type substrate is
Since the high-concentration type impurity is diffused, the high-concentration p-type impurity of the layer is re-diffused into the epitaxial layer during the formation of the n-type epitaxial layer and disturbs the impurity concentration of the epitaxial layer. If the proportion of #1 increases, the re-diffusion will increase, making it difficult to control the impurity in the epitaxial layer. In severe cases, it will reverse and become p-type. Conventionally, as a countermeasure to this problem, a batten design was performed so that the buried p-region for element isolation and the insulating p-region were made as small as possible. That is, in the epitaxial region 7 where no element is included, there is no buried p+ region or insulating p+ region.

通常、ICにおいて絶縁用のp型領域は最低電位におと
されるが、従来の方法では最低電位におとされた部分カ
ーらはなれた領域は最低電位電極との間の抵抗が高くな
ってしまい、十分に最低電位におさえることができなか
った。
Normally, the insulating p-type region of an IC is set to the lowest potential, but in conventional methods, the resistance between the lowest potential electrode and the lowest potential electrode is higher in the area separated from the lowest potential. Therefore, it was not possible to sufficiently suppress the potential to the lowest level.

本発明の目的は、p型基板上の高濃度p型不純物のエピ
タキシャル層への影響を除きつつ、かつ十分にIC全体
にわたって絶縁領域が最低電位に保たれたICを提供す
ることにある。
An object of the present invention is to provide an IC in which the influence of highly concentrated p-type impurities on a p-type substrate on an epitaxial layer is eliminated, and an insulating region is sufficiently maintained at the lowest potential over the entire IC.

本発明の特徴は、第1導電型の半導体基板上に形成され
た第2導電型の不純物を含む層が、この層の上部及び下
部に存在する第1導電型領域によ多素子領域に分離され
た構造をもつ半導体集積回路において、前記層の上部の
第1導電領域が占める平面的面積が層の下部の第1導電
型領域の平面的面積よシ広い半導体装置にある。
A feature of the present invention is that a layer containing impurities of a second conductivity type formed on a semiconductor substrate of a first conductivity type is separated into multiple element regions by regions of the first conductivity type existing above and below the layer. In a semiconductor integrated circuit having such a structure, the planar area occupied by the first conductive region in the upper part of the layer is larger than the planar area of the first conductive type region in the lower part of the layer.

本発明では、二重拡散絶縁方式において、工訃タキシャ
ル層の上から拡散する絶縁p+領領域半導体基板に拡散
する埋込p+領領域は別のパターンとする。即ち、埋込
p+領領域極力小面積にし、絶縁p 領域は素子領域以
外の#1とんどの領域とする。従って本発明によれば、
二重拡散方式を用いながらエピタキシャル層への不純物
再拡散は最少におさえることができ、かつ広い絶縁耐領
域によシICの絶縁領域を均一に最低電位に保つことが
できる。
In the present invention, in the double diffusion insulation method, the insulating p+ region diffused from above the engineered taxial layer and the buried p+ region diffused into the semiconductor substrate have a different pattern. That is, the area of the buried p+ region is made as small as possible, and the insulating p region is made into most of #1 regions other than the element region. According to the invention, therefore:
While using the double diffusion method, the re-diffusion of impurities into the epitaxial layer can be minimized, and the wide dielectric strength region can uniformly maintain the insulating region of the IC at the lowest potential.

以下図面を用いて実施例を示す。Examples will be described below using the drawings.

実施例を第2図に示す。基板11の上に埋込n+領領域
2と埋込p+領領域3を形成する。n型半導体であるエ
ピタキシャル層14を基板11の上に成長させる際にp
型不純物の影響を少なくするため、素子の入らない領域
17には、極カ埋込p+領域13を入れないのは従来と
同じである。この基板11の上にエピタキシャル層14
を成長させる。次に高濃度p型不純物をエピタキシャル
層14の上から拡散して絶縁p 領域15を形成する。
An example is shown in FIG. A buried n+ region 2 and a buried p+ region 3 are formed on the substrate 11. When growing the epitaxial layer 14, which is an n-type semiconductor, on the substrate 11, p
In order to reduce the influence of type impurities, the buried p+ region 13 is not placed in the region 17 where no element is placed, as in the conventional case. An epitaxial layer 14 is formed on this substrate 11.
grow. Next, a high concentration p-type impurity is diffused from above the epitaxial layer 14 to form an insulating p-type region 15.

この拡散により素子領域の絶縁分離が完成する。This diffusion completes the isolation of the element region.

この絶縁p 領域15のp型不純物は素子領域のエピタ
キシャル層14に悪影餐を及はさないので十分広くとる
The p-type impurity in the insulating p-region 15 is sufficiently wide so as not to have any adverse effect on the epitaxial layer 14 in the element region.

従来のように素子の入らない領域に絶縁p+領領域も形
成しないと、最低電位の電極16が接続されている付近
の絶縁分離のためのp型不純物拡散領域は十分に低い電
位におさえられているが、その点からはなれるにしたが
って、基板11のみを通して電位がおさえられているの
で、除々に絶縁分離のためのp型不純物拡散領域の電位
が上昇し、トランジスタ等の素子が寄生効果を起こし始
める。もちろん最低電位の電極をいたるところに配置す
れば、この問題は解決されるが、実際の半導体集積回路
では配線の関係上十分配置することが不可能なことも起
こる。そこで本発明のようにエピタキシャル層14の上
の絶縁p+領領域5を十分広く確保すれに、最低電位電
極16からはなれている絶縁分離のためのp型不純物拡
散領域は基板11と絶縁p 領域15とを合せた十分に
低いインピーダンスを通して電圧が印加されるため最低
電位よシ浮き上る電位も少なくてすむ。
Unless an insulating p+ region is also formed in a region where no element is included as in the conventional method, the p-type impurity diffusion region for insulation isolation in the vicinity where the lowest potential electrode 16 is connected will be kept at a sufficiently low potential. However, as you move away from that point, the potential is suppressed only through the substrate 11, so the potential of the p-type impurity diffusion region for insulation separation gradually increases, causing parasitic effects on elements such as transistors. start. Of course, this problem can be solved by arranging the lowest potential electrodes everywhere, but in actual semiconductor integrated circuits, it may be impossible to arrange them sufficiently due to wiring. Therefore, in order to ensure a sufficiently wide insulating p+ region 5 on the epitaxial layer 14 as in the present invention, the p-type impurity diffusion region for insulation separation, which is separated from the lowest potential electrode 16, is connected to the substrate 11 and the insulating p region 15. Since the voltage is applied through a sufficiently low impedance, the potential that rises above the lowest potential is also small.

以上説明したように、本発明によれば半導体基板上の高
濃度不純物のエピタキシャル層への影響を除きつつ、か
つ、 IC全体にわたって絶縁領域が十分に最低電位に保たれ
たICを得ることができる。
As explained above, according to the present invention, it is possible to obtain an IC in which the influence of high concentration impurities on the semiconductor substrate on the epitaxial layer is eliminated, and the insulating region is sufficiently maintained at the lowest potential throughout the IC. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は従来例の平面図、第1図(b)は従来例
(a)のx−x’による断面図である。第2図(aJは
本発明の実施例の平面図、第2図(bJは実施例(a)
のY−Yによる断面図である。 尚、図において、1,11・・・・・・半導体基板、2
゜12・・・・・・埋込n+領領域3,13・・・・・
・埋込耐領域、4.14・・・・・・エピタキシャル層
、5,15・山・・絶縁p+領領域6,16・・・・・
・最低電位電極、7,17・旧・・素子の形成されない
エピタキシャル層である。
FIG. 1(a) is a plan view of the conventional example, and FIG. 1(b) is a sectional view taken along line xx' of the conventional example (a). Figure 2 (aJ is a plan view of the embodiment of the present invention, Figure 2 (bJ is the embodiment (a)
It is a sectional view taken along YY of . In the figure, 1, 11...semiconductor substrate, 2
゜12...Embedded n+ area 3, 13...
・Buried resistance region, 4.14...Epitaxial layer, 5, 15・Mountain...Insulating p+ region 6, 16...
- Lowest potential electrode, 7, 17 - Old: This is an epitaxial layer on which no element is formed.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に形成された第2導電型の不
純物を含む層が、この層の上部及び下部に存在する第1
導電型領域によ多素子領域に分離された構造をもつ半導
体装置において、前記層の上部の第1導電領域が占める
平面的面積が層の下部の第1導電型領域の平面的面積よ
ル広いことを特徴とする半導体装置。
A layer containing impurities of a second conductivity type formed on a semiconductor substrate of a first conductivity type is formed on a semiconductor substrate of a first conductivity type.
In a semiconductor device having a structure in which a conductive type region is separated into multiple element regions, the planar area occupied by the first conductive region in the upper part of the layer is larger than the planar area of the first conductive type region in the lower part of the layer. A semiconductor device characterized by:
JP9720782A 1982-06-07 1982-06-07 Semiconductor device Granted JPS58213447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9720782A JPS58213447A (en) 1982-06-07 1982-06-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9720782A JPS58213447A (en) 1982-06-07 1982-06-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58213447A true JPS58213447A (en) 1983-12-12
JPH0423421B2 JPH0423421B2 (en) 1992-04-22

Family

ID=14186170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9720782A Granted JPS58213447A (en) 1982-06-07 1982-06-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58213447A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111285A (en) * 1977-03-08 1978-09-28 Nippon Telegr & Teleph Corp <Ntt> Low crosstalk monolithic pnpn switch matrix by pn junction isolation method
JPS5411682A (en) * 1977-06-28 1979-01-27 Nec Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111285A (en) * 1977-03-08 1978-09-28 Nippon Telegr & Teleph Corp <Ntt> Low crosstalk monolithic pnpn switch matrix by pn junction isolation method
JPS5411682A (en) * 1977-06-28 1979-01-27 Nec Corp Semiconductor device

Also Published As

Publication number Publication date
JPH0423421B2 (en) 1992-04-22

Similar Documents

Publication Publication Date Title
JP2968222B2 (en) Semiconductor device and method for preparing silicon wafer
US4644637A (en) Method of making an insulated-gate semiconductor device with improved shorting region
US4176368A (en) Junction field effect transistor for use in integrated circuits
US4051506A (en) Complementary semiconductor device
KR850006775A (en) Manufacturing Method of Semiconductor Device
US3789503A (en) Insulated gate type field effect device and method of making the same
CN100442537C (en) Termination structures for semiconductor devices and the manufacture thereof
US11114572B2 (en) Semiconductor device and method for manufacturing semiconductor device
EP0216435B1 (en) Bipolar integrated circuit having an improved isolation and substrate connection, and method of preparing the same
JPS63194367A (en) Semiconductor device
JPS58213447A (en) Semiconductor device
JPH0653510A (en) Terminal part of power stage of monolithic semiconductor device and related manufacturing process
JPS5834943A (en) Semiconductor device and manufacture thereof
JPS6174361A (en) Buried resistance semiconductor device
JP2518929B2 (en) Bipolar semiconductor integrated circuit
US5777376A (en) Pnp-type bipolar transistor
JPS601843A (en) Semiconductor integrated circuit
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
KR910008989B1 (en) Integrated circuit masterslice
JPS60218878A (en) Semiconductor integrated circuit
JPH0235470B2 (en)
JPS60218874A (en) Semiconductor device
JPS6196757A (en) Semiconductor device
JPS59127865A (en) Semiconductor device
JPS5916363A (en) Semiconductor device