JPS58213416A - Liquid phase epitaxially growing method - Google Patents

Liquid phase epitaxially growing method

Info

Publication number
JPS58213416A
JPS58213416A JP9640782A JP9640782A JPS58213416A JP S58213416 A JPS58213416 A JP S58213416A JP 9640782 A JP9640782 A JP 9640782A JP 9640782 A JP9640782 A JP 9640782A JP S58213416 A JPS58213416 A JP S58213416A
Authority
JP
Japan
Prior art keywords
solution
substrate
liquid phase
epitaxial growth
supporter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9640782A
Other languages
Japanese (ja)
Inventor
Seiji Onaka
清司 大仲
Mototsugu Ogura
基次 小倉
Yoichi Sasai
佐々井 洋一
Nobuyasu Hase
長谷 亘康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9640782A priority Critical patent/JPS58213416A/en
Publication of JPS58213416A publication Critical patent/JPS58213416A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To worsen the wetting between a solution and a supporter, and prevent the leakage of the soultion by melting indium on the surface of a substrate supporter and solidifying it and then growing it epitaxially after removing it mechanically. CONSTITUTION:A solution supporter 8 is placed on a substrate supporter 9, and indium 12 and 13 are respectively placed in solution reservoirs 10 and 11. Indiums are melted and then cooled to solidify them. The solution supporter 8 is removed, and the indiums 12 and 13 are mechanically removed. After the removal rough surfaces 14 are formed on the surface of the substrate supporter 9 where the indiums 12 and 13 are removed. When molten indiums are mounted on these rough surfaces 14, they becomes round by their own surface tension. The positional relation between the solution supporter 8 and the substrate supporter 9 is shifted and the above process is repeated.

Description

【発明の詳細な説明】 本発明は液相エピタキシャル成長方法に関する。[Detailed description of the invention] The present invention relates to a liquid phase epitaxial growth method.

液相エピタキシャル法は周知のように、InP(インジ
ウムリン)やGaAs (ガリウムヒ素)等の化合物半
・導体基板上に結晶性の良好なエピタキシャル成長層を
形成するための一つの有力な手段であり、この液相エピ
タキンヤル法を用いて半導体レーザ等の産業上非常に有
用な素子が作成されている。
As is well known, the liquid phase epitaxial method is one of the effective means for forming an epitaxial growth layer with good crystallinity on a compound semiconductor/conductor substrate such as InP (indium phosphide) or GaAs (gallium arsenide). Industrially very useful devices such as semiconductor lasers have been produced using this liquid phase epitaxy method.

ます液相エピタキシャル法について簡単に説明しておく
。第1図に一般的な液相エピタキシャル成長ボートの模
式図を示す。第1図において、1はグラファイト製の溶
液支持体であって、溶液を溜めるための穴4,5を有し
ている。2はグラファイト製の単結晶基板支持体であっ
て、基板単結晶であるたとえばInP基板3全保持して
いる。
Let me briefly explain the liquid phase epitaxial method. FIG. 1 shows a schematic diagram of a general liquid phase epitaxial growth boat. In FIG. 1, reference numeral 1 denotes a solution support made of graphite, which has holes 4 and 5 for storing the solution. Reference numeral 2 denotes a single-crystal substrate support made of graphite, which entirely holds a single-crystal substrate, for example, an InP substrate 3.

溶液支持体1と基板支持体2は互いにスライドするよう
に形成されていて、基板単結晶3が上記溶液溜め4ある
いは5の下にくるようにスライドできる構造になってい
る。ここで、たとえばInPの単結晶基板3上にInP
の液相エピタキシャル成長を行なう場合について説明す
る。溶液溜め4の中に2?のIn61入れ、溶液溜め5
の中にはIn2?とInPの多結晶30■との混合溶液
7金入れる。
The solution support 1 and the substrate support 2 are formed to slide relative to each other, and have a structure in which the substrate single crystal 3 can be slid so as to be located below the solution reservoir 4 or 5. Here, for example, InP is placed on the InP single crystal substrate 3.
A case will be described in which liquid phase epitaxial growth is performed. 2 in solution reservoir 4? Put In61, solution reservoir 5
Is there an In2 inside? A mixed solution of 7 gold and 30 cm of InP polycrystal was added.

次に、このボートをH2雰囲気中で670’Cに加熱す
る。この後、670’Cから徐々に温度を降下させる。
The boat is then heated to 670'C in an H2 atmosphere. Thereafter, the temperature is gradually lowered from 670'C.

温度を降下している状態で基板支持体2全スライドさせ
て、単結晶基板3が溶液溜め4の下にくるようにすると
単結晶基板3がIn溶液6に接触するので、単結晶基板
3の表面のInPがIn溶液6の中に溶は込み基板3の
表面が清浄化される。次に、基板支持体2を移動させて
、単結晶基板3が溶液溜め5の下になるようにすると単
結晶基板3が溶液子に接触する。ここで、溶液7は67
0 ℃に加熱された状態でInの中にInPが溶解して
飽和に達している。この後、溶液7が冷却されると溶液
7は過飽和の状態になる。このとき溶P2L7と基板3
とが接触するので基板3の上にInPのエピタキシャル
成長層が形成される。エピタキシャル成長が終わると基
板支持体2をさらに移動させて基板3を溶液7から離し
てエピタキシャル成長が完了する。
When the substrate support 2 is completely slid while the temperature is decreasing so that the single crystal substrate 3 is placed under the solution reservoir 4, the single crystal substrate 3 comes into contact with the In solution 6, so that the temperature of the single crystal substrate 3 is lowered. InP on the surface is melted into the In solution 6 and the surface of the substrate 3 is cleaned. Next, the substrate support 2 is moved so that the single-crystal substrate 3 is under the solution reservoir 5, and the single-crystal substrate 3 comes into contact with the solution. Here, solution 7 is 67
When heated to 0° C., InP dissolves in In and reaches saturation. Thereafter, when the solution 7 is cooled, the solution 7 becomes supersaturated. At this time, melt P2L7 and substrate 3
Since they are in contact with each other, an epitaxial growth layer of InP is formed on the substrate 3. When the epitaxial growth is completed, the substrate support 2 is further moved to separate the substrate 3 from the solution 7, and the epitaxial growth is completed.

上述の液相エピタキシャル成長において、基板支持体2
をスライドさせた時、溶液6あるいは溶液7が溶液支持
体1と基板′支持体2との間から漏れないようにするこ
とが必要である。
In the liquid phase epitaxial growth described above, the substrate support 2
It is necessary to prevent the solution 6 or 7 from leaking from between the solution support 1 and the substrate support 2 when the substrate is slid.

溶液6あるいは7の漏れは溶液6あるいは7と溶液支持
体1および基板支持体2との濡れに関連する・溶液6あ
るいは7と支持体1および2との濡れが悪くな兎と、溶
液6あるいは7は溶液の表面張力によって丸くなり、溶
液の漏れがなくなる。
The leakage of solution 6 or 7 is related to the wetting of solution 6 or 7 with solution support 1 and substrate support 2. 7 becomes round due to the surface tension of the solution, eliminating leakage of the solution.

本発明者らの実験によれば精密に研磨加工したグラファ
イトの表面とIn溶液との濡れは良く、溶液支持体1お
よび基板支持体2との間にすき間が生ずると溶液6ある
いは7が漏れたり、またエピタキシャル成長後の基板3
の表面にInが残ったりしていた。
According to experiments by the present inventors, the surface of precisely polished graphite is well wetted with the In solution, and if a gap is created between the solution support 1 and the substrate support 2, the solution 6 or 7 may leak. , and the substrate 3 after epitaxial growth.
There was some In remaining on the surface.

本発明は、このようなInPのエピタキシャル成長時の
溶液の漏れをなくするためになされたもので、溶液支持
体1シよび基板支持体2の溶液6および7と接触する部
分の表面を荒らすことによって、溶液6および7と支持
体1および2との濡れを悪<シ、溶液6および7の漏れ
をなくする液相エピタキシャル成長ボートの処理方法を
提供するものである。
The present invention was made to eliminate such solution leakage during epitaxial growth of InP by roughening the surfaces of the solution support 1 and the substrate support 2 in contact with the solutions 6 and 7. The present invention provides a method for treating a liquid phase epitaxial growth boat that improves wetting of the solutions 6 and 7 with the supports 1 and 2 and eliminates leakage of the solutions 6 and 7.

本発明者らはグラファイトの上にfni乗せ加熱溶融し
たのち冷却して凝固させ、”kグラファイトから機械的
に剥がして荒らしたグラファイトの表面は、In溶液に
対して濡れが悪くなることを思い出した。本発明をかか
る認識にもとづいてなされたものである。
The inventors put fni on top of graphite, heated and melted it, cooled it and solidified it, and recalled that the surface of graphite, which was roughened by mechanically peeling it off from k-graphite, had poor wettability with In solution. The present invention has been made based on this recognition.

以下本発明の実施例に従って説明する。Embodiments of the present invention will be explained below.

第2図に本発明の一実施例の方法を示す。第2図aに示
すようにグラファイト製の基板支持体9の上にグラファ
イト製の溶液支持体8を乗せ溶液溜め10および11に
In 12および13を入れたとえばH2あるいは不活
性気体の雰囲気中でたとえば720 ’CでIni溶融
させたのち冷却して、In全固形化する。
FIG. 2 shows a method according to an embodiment of the present invention. As shown in FIG. 2a, a graphite solution support 8 is placed on a graphite substrate support 9, and In 12 and 13 are placed in solution reservoirs 10 and 11 in an atmosphere of, for example, H2 or an inert gas. After melting Ini at 720'C, it is cooled to completely solidify In.

次に溶液支持体8を取り除くと第2図すのように固形化
されたIn12および13が基板支持体9の上に接着し
た状態になる。ここでIn 12および13をたとえば
ピンセットで機械的に取り除くと第2図Cに点線で示す
ようにIn 12および13を取り除いた部分の基板支
持体90表面に荒A14が生じIn融液に対する濡れが
悪くなってこの部分に成長用のIn融液が乗るとIn融
液自身の表面張力によってIn融液が丸くなる。次に溶
液支持体8と基板支持体9の位置関係を第2図aに示し
た場合よりもずらせて上記のプロセスを繰り返すことに
より、第2図(d)に点線で示すように、エピタキシャ
ル成長においてIn溶液と、接触する部分の基板支持体
90表面をすべて荒らすことができる。
Next, when the solution support 8 is removed, the solidified In 12 and 13 are adhered to the substrate support 9 as shown in FIG. If In 12 and 13 are mechanically removed using, for example, tweezers, rough A14 will be formed on the surface of the substrate support 90 in the area where In 12 and 13 have been removed, as shown by the dotted line in FIG. If the situation deteriorates and the In melt for growth gets on this part, the In melt will become rounded due to the surface tension of the In melt itself. Next, by repeating the above process with the positional relationship between the solution support 8 and the substrate support 9 shifted from that shown in FIG. All parts of the surface of the substrate support 90 that come into contact with the In solution can be roughened.

上記本発明の一実施例に示したような基板支持体9の表
面処理を行なうことによシ、液相エピタキシャル成長時
にIn溶液がIn溶液自身の表面張力によって丸くなる
のでIn溶液の漏れがなくなり、InPエピタキシャル
成長後の基板表面へInが残ることもなくなった。
By performing the surface treatment of the substrate support 9 as shown in the embodiment of the present invention, the In solution becomes rounded by the surface tension of the In solution itself during liquid phase epitaxial growth, so that leakage of the In solution is eliminated. No more In remains on the substrate surface after InP epitaxial growth.

第3図に本発明の他の実施例を示す。第3図aに示すよ
うに、液相エピタキシャル成長時にグラファイト製の基
板支持体9とIn溶液とが接触する部分全体にIn15
が乗るような溶液溜め16を有する溶液支持体17を用
意し、たとえばH2あるいは不活性気体の雰囲気中でた
とえば720℃でIn15i溶融させたのち冷却してI
n15を固形化する。次に溶液支持体17を取り除くと
第3図すに示すようになる。ここでIn 15を機械的
に取り除くと第3図Cの点線に示すように基板支持体1
5の表面を荒らすことができる。
FIG. 3 shows another embodiment of the invention. As shown in FIG. 3a, during liquid phase epitaxial growth, In15 is applied to the entire area where the graphite substrate support 9 and the In solution come into contact.
A solution support 17 having a solution reservoir 16 on which In15i is placed is prepared, and In15i is melted at 720° C. in an atmosphere of H2 or an inert gas, for example, and then cooled and In15i is melted.
Solidify n15. Next, when the solution support 17 is removed, the result is as shown in FIG. When In 15 is mechanically removed, the substrate support 1 is removed as shown by the dotted line in FIG. 3C.
The surface of 5 can be roughened.

上述の本発明の他の実施例の特徴とするところは、液相
エピタキシャル成長時に基板支持体とIn溶液とが接触
する部分全体にInが乗るような溶液溜めを有する溶液
支持体を用いることにより、基板支持体の表面の処理を
1度のInの溶融でできることである。
The other embodiments of the present invention described above are characterized by using a solution support having a solution reservoir such that In is deposited on the entire portion where the substrate support and the In solution come into contact during liquid phase epitaxial growth. The surface of the substrate support can be treated by melting In once.

以上説明したように、本発明の表面処理を施すことによ
り、液相エピタキシャル成長時におけるIn溶液の漏れ
やエピタキシャル成長後の基板表面へのInの残りがな
くなり、液相エピタキシャル成長に大きく寄与するもの
である。
As explained above, by applying the surface treatment of the present invention, leakage of In solution during liquid phase epitaxial growth and In remaining on the substrate surface after epitaxial growth are eliminated, which greatly contributes to liquid phase epitaxial growth.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液相エピタキシャル成長ボートの模式断面図、
第2図a−dは本発明の一実施例の液相エピタキシャル
成長ボートの表面処理方法の概略断面図、第3図a ’
%−Cは本発明の他の実施例の同表面処理方法の概略断
面図である。 8.17・・・・・・溶液支持体、9・・・・・・基板
支持体、10.1’1.16・・・・・・溶液溜め、1
2,13゜15・・・・・・In0
Figure 1 is a schematic cross-sectional view of a liquid phase epitaxial growth boat.
Figures 2a-d are schematic cross-sectional views of a surface treatment method for a liquid phase epitaxial growth boat according to an embodiment of the present invention, and Figure 3a'
%-C is a schematic cross-sectional view of the same surface treatment method according to another embodiment of the present invention. 8.17...Solution support, 9...Substrate support, 10.1'1.16...Solution reservoir, 1
2,13゜15...In0

Claims (2)

【特許請求の範囲】[Claims] (1)  液相エピタキシャル成長ボートの基板支持体
の表面にインジウムを溶融する工程、前記インジウムを
固形化する工程、前記インジウムを機械的に除去する工
程、しかるのち前記基板支持体上の基板上にエピタキシ
ャル成長を行う工程全有すること全特徴とする液相エピ
タキシャル成長方法。
(1) Melting indium on the surface of a substrate support of a liquid phase epitaxial growth boat, solidifying the indium, mechanically removing the indium, and then epitaxially growing the substrate on the substrate support. A liquid phase epitaxial growth method characterized by having all the steps of performing.
(2)液相エピタキシャル成長時に溶液と接触する部分
の基板支持体表面全体にインジウムが乗るような溶液支
持体を用いてインジウムを溶融することを特徴とする特
許請求の範囲第1項に記載の液相エピタキシャル成長方
法。
(2) The solution according to claim 1, characterized in that indium is melted using a solution support such that indium is deposited on the entire surface of the substrate support in the portion that comes into contact with the solution during liquid phase epitaxial growth. Phase epitaxial growth method.
JP9640782A 1982-06-04 1982-06-04 Liquid phase epitaxially growing method Pending JPS58213416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9640782A JPS58213416A (en) 1982-06-04 1982-06-04 Liquid phase epitaxially growing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9640782A JPS58213416A (en) 1982-06-04 1982-06-04 Liquid phase epitaxially growing method

Publications (1)

Publication Number Publication Date
JPS58213416A true JPS58213416A (en) 1983-12-12

Family

ID=14164107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9640782A Pending JPS58213416A (en) 1982-06-04 1982-06-04 Liquid phase epitaxially growing method

Country Status (1)

Country Link
JP (1) JPS58213416A (en)

Similar Documents

Publication Publication Date Title
JPS58213416A (en) Liquid phase epitaxially growing method
JPH0570288A (en) Method and appartatus for producing compound semiconductor single crystal
EP0002080A1 (en) Method for the epitaxial deposition of several layers and devices, in particular a semiconductor laser device made by this method
JPS5827238B2 (en) Single crystal manufacturing method
JPS5853826A (en) Liquid epitaxial growing method
JPS5983993A (en) Growth of semiconductor layer of single crystal
JP3851416B2 (en) Production method of crystalline silicon film
JPH0438517Y2 (en)
JPS60145608A (en) Liquid phase epitaxial growth method
JPS6021897A (en) Process for liquid phase epitaxial crystal growth
JP3257150B2 (en) Crystal growth method
EP0525617B1 (en) Liquid-phase growth process of compound semiconductor
JPS61202411A (en) Liquid-phase epitaxial growth method
JPH05221797A (en) Epitaxial growth method
JPH0330288B2 (en)
JPH02107590A (en) Growing equipment for semiconductor crystal
JPS5895815A (en) Preparation of semiconductor device having laminate structure
JPS6020509A (en) Liquid phase epitaxial growth method
JP2000124142A (en) Manufacture of semiconductor layer
JPH0338831Y2 (en)
JPS62241893A (en) Method for liquid-phase epitaxial growth
JPH04285092A (en) Lilquid phase epitaxial crystal growth method
JPH02160469A (en) Manufacture of semiconductor wafer of iii-v group compound
JPS57103314A (en) Method for liquid phase epitaxial growth
JPH05886A (en) Growing method for liquid phase epitaxy