JPH05886A - Growing method for liquid phase epitaxy - Google Patents

Growing method for liquid phase epitaxy

Info

Publication number
JPH05886A
JPH05886A JP17309491A JP17309491A JPH05886A JP H05886 A JPH05886 A JP H05886A JP 17309491 A JP17309491 A JP 17309491A JP 17309491 A JP17309491 A JP 17309491A JP H05886 A JPH05886 A JP H05886A
Authority
JP
Japan
Prior art keywords
substrate
holder
growth
raw material
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17309491A
Other languages
Japanese (ja)
Inventor
Kazuhisa Matsumoto
和久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17309491A priority Critical patent/JPH05886A/en
Publication of JPH05886A publication Critical patent/JPH05886A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the uniformity of a thickness by growing a raw material soln. on a substrate by sliding in one direction, then executing the next growth by sliding in an inverse direction, thereby laminating the respective grown layers. CONSTITUTION:A slide boat obtd. by disposing a substrate 2, a soln. holder 3 and the raw material soln. 4 on a substrate holder 1 is heated up in a reaction tube kept in a high-purity H2 atmosphere to obtain the purified soln. 4 (Stage 1). After the soln. 4 is heated up to a desired temp., the holder 3 is slide toward the left by an operating rod 5 until the holder exists on the substrate 2 and, thereafter, the temp. is lowered to allow the epitaxial layer to grow (stage 2). The holder 3 is then further slid to the left side to separate the substrate 2 and the soln. 4 (stage 3) (1st growth). The holder 3 is slid to the right side to bring the substrate 2 and the soln. 4 into contact with each other (stage 4) to grow the epitaxial layer in superposition on the above-mentioned epitaxial layer. The holder 3 is slid to the left side to separate the substrate 2 and the soln. 4 (stage 5) to end the growth (2nd growth).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GaAs、AlGaA
s、InP等の化合物薄膜の液相エピタキシャル成長方
法に関するものである。
The present invention relates to GaAs, AlGaA
The present invention relates to a liquid phase epitaxial growth method for a compound thin film such as s or InP.

【0002】[0002]

【従来の技術】化合物半導体のエピタキシー技術の一つ
としてスライドボート法と呼ばれる方法が知られてい
る。この一般的な例としては、図3に示すような基板2
2をセットした基板ホルダー21及びこのホルダー上を
スライドでき、原料溶液24を貯える溶液ホルダー23
からなる装置を用い、原料溶液24が基板22に接しな
い状態で(工程1)装置全体の温度を上げた後、所定の
速度で降温しながら一定温度になったとき操作棒25を
介して溶液ホルダー23をスライドし、原料溶液24を
基板上に位置させて(工程2)エピタキシャル層を成長
させ、その後基板22と原料溶液23を分離して(工程
3)冷却するというものである。
2. Description of the Related Art A method called a slide boat method is known as one of epitaxy technologies for compound semiconductors. As a general example of this, a substrate 2 as shown in FIG.
The substrate holder 21 in which 2 is set and a solution holder 23 that can slide on the holder and stores the raw material solution 24
When the raw material solution 24 is not in contact with the substrate 22 (step 1), the temperature of the entire apparatus is raised, and then the temperature is lowered at a predetermined rate to reach a constant temperature. The holder 23 is slid, the raw material solution 24 is placed on the substrate (step 2) to grow an epitaxial layer, and then the substrate 22 and the raw material solution 23 are separated (step 3) and cooled.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記従来例で
は形成されたエピタキシャル層の厚さが、原料溶液のス
ライド方向に不均一になり易い。これは、主にエピタキ
シャル層の成長開始に伴い原料溶液中の溶質濃度に不均
一な分布が起こるためで、原料溶液がスライドしてきて
先ず基板に接触する側(図3の基板右側)の方が厚く、
原料溶液を基板から分離する際最後まで原料溶液に接触
している側(図3の基板左側)が薄くなり易い。このた
め形成されたエピタキシャル層は図4に示すような傾斜
分布する不均一な厚みのものとなってしまう。又、この
特徴は原料溶液の過飽和度が高いほど顕著に起こる。
However, in the above-mentioned conventional example, the thickness of the epitaxial layer formed tends to be nonuniform in the sliding direction of the raw material solution. This is because the solute concentration in the raw material solution is non-uniformly distributed with the start of growth of the epitaxial layer. Therefore, the side where the raw material solution slides and comes into contact with the substrate first (on the right side of the substrate in FIG. 3) is better. Thick,
When the raw material solution is separated from the substrate, the side in contact with the raw material solution until the end (left side of the substrate in FIG. 3) is likely to be thin. Therefore, the formed epitaxial layer has a non-uniform thickness with a gradient distribution as shown in FIG. In addition, this characteristic is more remarkable as the supersaturation degree of the raw material solution is higher.

【0004】[0004]

【課題を解決するための手段】本発明は上記の事情に鑑
みてなされたもので、スライドボート法による液相エピ
タキシャル成長方法において、溶液ホルダーを一方向に
スライドし、原料溶液を基板上に位置させてエピタキシ
ャル層を成長させた後、同方向に溶液ホルダーをスライ
ドさせて原料溶液と基板を一旦分離し、その後溶液ホル
ダーを他方向にスライドさせ再び原料溶液を基板上に位
置させてエピタキシャル層を成長させることを特徴とす
るものである。
The present invention has been made in view of the above circumstances, and in the liquid phase epitaxial growth method by the slide boat method, the solution holder is slid in one direction to position the raw material solution on the substrate. After growing the epitaxial layer, slide the solution holder in the same direction to temporarily separate the raw material solution and the substrate, then slide the solution holder in the other direction and position the raw material solution on the substrate again to grow the epitaxial layer. It is characterized by that.

【0005】図1を用いて本発明をより具体的に説明す
る。同図は本発明方法に用いるスライドボートを示すも
ので、1は上面に基板2をセットできる基板ホルダーで
ある。その上部には、操作棒5を介して水平方向にスラ
イドしうる溶液ホルダー3が設けられ、原料溶液4が貯
えられている。このようなスライドボートは、基板2と
原料溶液4が接触しない状態(工程1)で反応管(図示
していない)の中に挿入され、高純度の水素を流しなが
ら所定の温度まで昇温される。このような状態を数時間
維持して原料溶液4の純化を行った後、一定の速度で降
温し、所定の温度になった時点で操作棒5を介して基板
上に原料溶液4が位置するように溶液ホルダー3を図1
の左側へスライドさせ、降温することでエピタキシャル
層を成長させる(工程2)。上記の成長が終わった後、
溶液ホルダー3をさらに左側へスライドさせ、一旦基板
2と原料溶液4の分離(工程3)を行う(第一成長)。
The present invention will be described more specifically with reference to FIG. The figure shows a slide boat used in the method of the present invention. Reference numeral 1 denotes a substrate holder on which a substrate 2 can be set. A solution holder 3 which can slide horizontally via an operating rod 5 is provided on the upper part thereof, and a raw material solution 4 is stored therein. Such a slide boat is inserted into a reaction tube (not shown) in a state where the substrate 2 and the raw material solution 4 are not in contact with each other (step 1), and is heated to a predetermined temperature while flowing high-purity hydrogen. It After maintaining such a state for several hours to purify the raw material solution 4, the raw material solution 4 is cooled at a constant rate, and when the temperature reaches a predetermined temperature, the raw material solution 4 is positioned on the substrate via the operating rod 5. So that the solution holder 3 is
To the left, and the temperature is lowered to grow an epitaxial layer (step 2). After the above growth,
The solution holder 3 is further slid to the left, and the substrate 2 and the raw material solution 4 are once separated (step 3) (first growth).

【0006】次に、今度は溶液ホルダー3を右側へスラ
イドさせ、再び基板2と原料溶液4が接触する状態に保
ち(工程4)、先程成長させたエピタキシャル層の上に
重ねてエピタキシャル層を成長させる。そして最後に、
さらに右側へ溶液ホルダー3をスライドさせ、基板2と
原料溶液4の分離を行い(工程5)、成長を終了する
(第二成長)。
Next, this time, the solution holder 3 is slid to the right, and the substrate 2 and the raw material solution 4 are again kept in contact with each other (step 4), and an epitaxial layer is grown on the epitaxial layer grown previously. Let And finally,
Further, the solution holder 3 is slid to the right, the substrate 2 and the raw material solution 4 are separated (step 5), and the growth is completed (second growth).

【0007】[0007]

【作用】前記のように一方向のスライドにより第一成長
を行った後、逆方向のスライドにより第二成長を行い、
各成長層を積層させることで、第一成長におけるエピタ
キシャル層の厚みの傾斜分布を第二成長におけるエピタ
キシャル層でほぼ相殺し、全体として均一な厚みのエピ
タキシャル層を得ることができる。図2に第一成長後、
第二成長後の各エピタキシャル層の状態を成長前の状態
と比較して示す。
[Function] As described above, after the first growth is performed by the one-direction slide, the second growth is performed by the opposite-direction slide,
By stacking each growth layer, the gradient distribution of the thickness of the epitaxial layer in the first growth is almost canceled by the epitaxial layer in the second growth, and an epitaxial layer having a uniform thickness as a whole can be obtained. After the first growth in Figure 2,
The state of each epitaxial layer after the second growth is shown in comparison with the state before the growth.

【0008】以上説明した例では、基板ホルダーを固定
し、溶液ホルダーをスライドするタイプの装置に関して
述べたが、逆に基板ホルダーをスライドさせ、溶液ホル
ダーを固定するタイプの装置においても本発明方法を用
いることができることはいうまでもなく、要は、相対的
にみて基板上を原料溶液が往復し、第一成長及び第二成
長を行うことができればよい。
In the examples described above, the apparatus of the type in which the substrate holder is fixed and the solution holder is slid is described, but conversely, the method of the present invention is applied to the apparatus of the type in which the substrate holder is slid and the solution holder is fixed. Needless to say, it can be used as long as the raw material solution reciprocates on the substrate in relative terms and the first growth and the second growth can be performed.

【0009】[0009]

【実施例】図1に示した装置を用いて本発明方法により
実際にエピタキシャル成長を行ってみた。
EXAMPLE An epitaxial growth was actually conducted by the method of the present invention using the apparatus shown in FIG.

【0010】GaAsの基板を用い、溶液ホルダーに
はGa100g、GaAs原料結晶8.7gを投入し
て、スライドボート全体を反応管中に入れ、水素気流中
900℃で6時間保持して原料溶液の純化を行った。
Using a GaAs substrate, 100 g of Ga and 8.7 g of GaAs raw material crystal were put into the solution holder, the entire slide boat was put into the reaction tube, and the raw material solution was kept at 900 ° C. for 6 hours in a hydrogen stream. Purified.

【0011】その後、860℃まで徐冷してから0.
1℃/分の速度で降温し、850℃になった時点で溶液
ホルダーを一方向にスライドして基板に原料溶液を接触
させた。この状態を10秒保持してエピタキシャル成長
を行い(第一成長)、その後基板と原料溶液を分離し
た。
Then, after gradually cooling to 860 ° C.
The temperature was lowered at a rate of 1 ° C./min, and when the temperature reached 850 ° C., the solution holder was slid in one direction to bring the raw material solution into contact with the substrate. This state was maintained for 10 seconds for epitaxial growth (first growth), and then the substrate and the raw material solution were separated.

【0012】さらに2分後、今度は溶液ホルダーを他
方向にスライドし、再び原料溶液を基板に接触させて成
長を開始し(第二成長)、10秒後に原料溶液と基板を
分離して成長を終了した。
After another 2 minutes, this time, the solution holder was slid in the other direction, and the raw material solution was brought into contact with the substrate again to start growth (second growth). After 10 seconds, the raw material solution and the substrate were separated and grown. Finished.

【0013】比較例として図3に示す従来方法で本実
施例の成長層と同様の厚みのエピタキシャル層を成長さ
せ、厚み分布を比較した。
As a comparative example, an epitaxial layer having the same thickness as the growth layer of this example was grown by the conventional method shown in FIG. 3 and the thickness distributions were compared.

【0014】その結果、従来例による成長層の厚み分布
が1±0.31μmであったのに対し、本発明方法によ
る成長層の厚み分布は1±0.12μmであり、均一性
の高いエピタキシャル層が形成できることが確認され
た。
As a result, the thickness distribution of the growth layer according to the conventional example was 1 ± 0.31 μm, whereas the thickness distribution of the growth layer according to the method of the present invention was 1 ± 0.12 μm, and the epitaxial layer with high uniformity was obtained. It was confirmed that a layer could be formed.

【0015】ところで、既に述べたように成長開始にと
もない溶質濃度の分布に不均一が起こるが、成長させる
膜厚が厚い場合、図1工程2の状態での成長時間をより
長くするため、この間に溶質が溶液中に拡散して溶質濃
度が均一になって行く。従って、エピタキシャル層の厚
み分布の不均一も改善される方向に成長することにな
る。
By the way, as already described, the solute concentration distribution becomes non-uniform with the start of growth, but when the film thickness to be grown is large, the growth time in the state of step 2 in FIG. The solute diffuses into the solution and the solute concentration becomes uniform. Therefore, the unevenness of the thickness distribution of the epitaxial layer will be improved.

【0016】一方、成長させる膜厚が薄い場合、前記の
溶質濃度を均一化させるほど成長時間が長くないので、
膜厚の厚み分布の不均一性はより大きい。従って、本発
明方法により膜成長を行えば、成長させる膜厚が薄いほ
ど厚みを均一化する効果が顕著であると言える。
On the other hand, when the grown film thickness is thin, the growth time is not so long as to make the solute concentration uniform,
The non-uniformity of the thickness distribution of the film thickness is larger. Therefore, it can be said that, when the film is grown by the method of the present invention, the effect of making the thickness uniform becomes more remarkable as the film thickness to be grown becomes thinner.

【0017】[0017]

【発明の効果】以上説明したように本発明方法によれ
ば、第一成長と第二成長の各成長層の厚み分布が互いに
相殺されることとなるため、均一性の高い厚みのエピタ
キシャル層を形成することができる。特に、この厚みの
均一化の効果はエピタキシャル層が薄いほど顕著であ
る。
As described above, according to the method of the present invention, the thickness distributions of the growth layers of the first growth and the second growth cancel each other out, so that an epitaxial layer having a highly uniform thickness can be formed. Can be formed. In particular, the effect of making the thickness uniform becomes more remarkable as the epitaxial layer becomes thinner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の説明図である。FIG. 1 is an explanatory diagram of a method of the present invention.

【図2】本発明方法によるエピタキシャル層の成長状態
を示す説明図である。
FIG. 2 is an explanatory view showing a growth state of an epitaxial layer by the method of the present invention.

【図3】従来法を示す説明図である。FIG. 3 is an explanatory diagram showing a conventional method.

【図4】従来法によるエピタキシャル層の断面図であ
る。
FIG. 4 is a sectional view of an epitaxial layer formed by a conventional method.

【符号の説明】[Explanation of symbols]

1、21 基板ホルダー 2、12、22、32 基板 3、23 溶液ホルダー 4、24 原料溶液 5、25 操作棒 6、16エピタキシャル層 1, 21 Substrate holder 2, 12, 22, 32 Substrate 3, 23 Solution holder 4, 24 Raw material solution 5, 25 Operation rod 6, 16 Epitaxial layer

Claims (1)

【特許請求の範囲】 【請求項1】 スライドボート法による液相エピタキシ
ャル成長方法において、溶液ホルダーを一方向にスライ
ドし、原料溶液を基板上に位置させてエピタキシャル層
を成長させた後、同方向に溶液ホルダーをスライドさせ
て原料溶液と基板を一旦分離し、その後溶液ホルダーを
他方向にスライドさせ再び原料溶液を基板上に位置させ
てエピタキシャル層を成長させることを特徴とする液相
エピタキシャル成長方法。
Claim: What is claimed is: 1. In a liquid phase epitaxial growth method using a slide boat method, a solution holder is slid in one direction to position a raw material solution on a substrate to grow an epitaxial layer, and then in the same direction. A liquid phase epitaxial growth method comprising: sliding a solution holder to temporarily separate a raw material solution and a substrate, and then sliding the solution holder in the other direction to position the raw material solution again on the substrate to grow an epitaxial layer.
JP17309491A 1991-06-17 1991-06-17 Growing method for liquid phase epitaxy Pending JPH05886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17309491A JPH05886A (en) 1991-06-17 1991-06-17 Growing method for liquid phase epitaxy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17309491A JPH05886A (en) 1991-06-17 1991-06-17 Growing method for liquid phase epitaxy

Publications (1)

Publication Number Publication Date
JPH05886A true JPH05886A (en) 1993-01-08

Family

ID=15954084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17309491A Pending JPH05886A (en) 1991-06-17 1991-06-17 Growing method for liquid phase epitaxy

Country Status (1)

Country Link
JP (1) JPH05886A (en)

Similar Documents

Publication Publication Date Title
JPS63239918A (en) Method for growing iii-v compound semiconductor crystal
JPH05886A (en) Growing method for liquid phase epitaxy
JPH0431396A (en) Growth of semiconductor crystal
JPH02221196A (en) Formation of thin film of iii-v compound semiconductor
JPH01290221A (en) Semiconductor vapor growth method
JPS6143413A (en) Formation of compound semiconductor single crystal thin film
JPS62219614A (en) Method for growth of compound semiconductor
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH0547668A (en) Crystal growth method for compound semiconductor
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP3101753B2 (en) Vapor growth method
JP3448695B2 (en) Vapor growth method
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH02296791A (en) Liquid phase epitaxial growth method
JPH03290925A (en) Compound semiconductor device and its manufacture
JPS63159296A (en) Vapor phase epitaxy
JPS62128522A (en) Liquid growth method
JP3645952B2 (en) Liquid phase growth method
JPH02141497A (en) Epitaxial growth of iii-v compound semiconductor
SU1705425A1 (en) Method of producing epitaxial layers of gallium nitride
JPH0687459B2 (en) Vapor phase growth equipment
JPS62176985A (en) Liquid phase epitaxy
JPH0194662A (en) Manufacture of mis type semiconductor using gallium arsenide
JPS59101823A (en) Liquid-phase epitaxial growth device
JPH0737819A (en) Semiconductor wafer and manufacture thereof