JPH02221196A - Formation of thin film of iii-v compound semiconductor - Google Patents
Formation of thin film of iii-v compound semiconductorInfo
- Publication number
- JPH02221196A JPH02221196A JP4213089A JP4213089A JPH02221196A JP H02221196 A JPH02221196 A JP H02221196A JP 4213089 A JP4213089 A JP 4213089A JP 4213089 A JP4213089 A JP 4213089A JP H02221196 A JPH02221196 A JP H02221196A
- Authority
- JP
- Japan
- Prior art keywords
- group
- iii
- layer
- thin film
- compound semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 52
- 239000004065 semiconductor Substances 0.000 title claims abstract description 48
- 150000001875 compounds Chemical class 0.000 title claims description 52
- 230000015572 biosynthetic process Effects 0.000 title claims description 6
- 239000013078 crystal Substances 0.000 claims abstract description 81
- 229910021478 group 5 element Inorganic materials 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims description 52
- 239000000758 substrate Substances 0.000 claims description 49
- 239000002994 raw material Substances 0.000 claims description 28
- 239000003039 volatile agent Substances 0.000 claims description 14
- 239000000470 constituent Substances 0.000 claims description 6
- 229910052736 halogen Inorganic materials 0.000 claims description 3
- 150000002367 halogens Chemical class 0.000 claims description 3
- 150000002902 organometallic compounds Chemical class 0.000 claims description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 22
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 13
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract description 12
- 229910021480 group 4 element Inorganic materials 0.000 abstract 2
- 239000007858 starting material Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 73
- 239000010408 film Substances 0.000 description 26
- KAXRWMOLNJZCEW-UHFFFAOYSA-N 2-amino-4-(2-aminophenyl)-4-oxobutanoic acid;sulfuric acid Chemical compound OS(O)(=O)=O.OC(=O)C(N)CC(=O)C1=CC=CC=C1N KAXRWMOLNJZCEW-UHFFFAOYSA-N 0.000 description 9
- 239000007789 gas Substances 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 238000000137 annealing Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- YNLAOSYQHBDIKW-UHFFFAOYSA-M diethylaluminium chloride Chemical compound CC[Al](Cl)CC YNLAOSYQHBDIKW-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- -1 ILV group compound Chemical class 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- TUTOKIOKAWTABR-UHFFFAOYSA-N dimethylalumane Chemical compound C[AlH]C TUTOKIOKAWTABR-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910005267 GaCl3 Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- XOYLJNJLGBYDTH-UHFFFAOYSA-M chlorogallium Chemical compound [Ga]Cl XOYLJNJLGBYDTH-UHFFFAOYSA-M 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000002052 molecular layer Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 238000002154 thermal energy analyser detection Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は■族生導体結晶上へ高品質かつ表面平坦性に優
れたIII−V族半導体エピタキシャル膜を形成するI
II−V族化合物半導体薄膜の形成技術に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is directed to the formation of a III-V semiconductor epitaxial film of high quality and excellent surface flatness on a group III raw conductor crystal.
The present invention relates to a technique for forming a II-V compound semiconductor thin film.
(従来の技術)
現在、Siに代表される■族生導体単結晶基板上にGa
Asに代表される■旧V族化合物半導体単結晶薄膜を形
成する試みが活発に行われている。これは、このような
薄膜構造が形成できると、III−V族化合物半導体高
機能素子を安価なSi基板上に作製でき、またSiの高
い熱伝導率によって光素子等の性能向上が期待できるた
めである。さらにSi基板上に選択的にIII + V
族化合物半導体単結晶薄膜を形成できれば、Si超高集
積回路とIII−V族化合物半導体超高速素子や光素子
を同一基板上に形成できるため、新しい高機能素子の開
発が予想されるからである。(Prior art) Currently, Ga
Attempts are actively being made to form single-crystal thin films of former Group V compound semiconductors represented by As. This is because if such a thin film structure can be formed, high-performance III-V compound semiconductor devices can be fabricated on inexpensive Si substrates, and the high thermal conductivity of Si can be expected to improve the performance of optical devices. It is. Furthermore, selectively III + V on the Si substrate
This is because if a group compound semiconductor single crystal thin film can be formed, it will be possible to form a Si ultra-high integrated circuit and a III-V group compound semiconductor ultra-high-speed device or optical device on the same substrate, which is expected to lead to the development of new high-performance devices. .
しかしながら、III−V族化合物半導体結晶はIII
族と■族の2種類の元素から成る有極性結晶であるのに
対し、■族生導体単結晶基板は単一元素から成る無極性
結晶である。従って、通常用いられる(100)面方位
を有する■族生導体単結晶基板上にIII−V族化合物
半導体単結晶薄膜をエピタキシャル成長させようとする
場合、III族と■族の配列の1ケ相がずれ、極性が反
転した領域、いわゆるアンチ、フェイズ・ドメインがで
きやすく、前基板面内でIII族とV族の配列の位相が
そろったいわゆるシングル・ドメイン単結晶薄膜を確実
に得ることはごく最近までは困難であった。However, III-V compound semiconductor crystals are
It is a polar crystal made of two types of elements, Group 1 and Group 2, whereas the Group 2 bioconductor single crystal substrate is a nonpolar crystal made of a single element. Therefore, when trying to epitaxially grow a III-V compound semiconductor single crystal thin film on a group III bioconductor single crystal substrate with a commonly used (100) plane orientation, one phase of group III and group It is only recently that it is possible to reliably obtain a so-called single-domain single-crystalline thin film in which the phase of group III and group V arrays are aligned in the front substrate plane. It was difficult until then.
この問題を解決するために考えられたのが雑誌[ジャパ
ニーズ、ジャーナル・オブ・アプライド・フィジックス
(Jpn、 J、 Appl、 Phys、) J
第24巻第6号(1985年)の第L391−393頁
に説明されている「二段階成長法」と呼ばれる方法であ
る。すなわちSi単結晶基板の温度を450℃以下の低
温として、まず200人程変り微細な多結晶もしくは非
晶質状のGaAsバッファ層を堆積した後、Si単結晶
基板の温度を通常の成長温度、上記文献の場合は600
℃としてGaAs単結晶薄膜を成長させる方法である。A magazine was devised to solve this problem [Japanese Journal of Applied Physics (Jpn, J, Appl, Phys, ) J
This is a method called the "two-stage growth method" described in Vol. 24, No. 6 (1985), pages L391-393. That is, the temperature of the Si single crystal substrate was set to a low temperature of 450°C or less, and after depositing a fine polycrystalline or amorphous GaAs buffer layer by about 200 people, the temperature of the Si single crystal substrate was set to the normal growth temperature. 600 for the above document
This is a method of growing a GaAs single crystal thin film at .
この方法によってシングル・ドメイン単結晶薄膜を確実
に得ることができるようになった。微細な多結晶もしく
は非晶質状のGaAs薄膜は温度600℃に昇温する間
にアニールされて単結晶化する。上記文献の結果はMO
CVD(Metal Organic Chemi
cal VaporDeposition)法による
ものであったが、以後MBE(Molecular旦e
em ′Epitaxy)法でも同様に二段階成長法が
有効であることが確認された。This method has made it possible to reliably obtain single-domain single-crystal thin films. The fine polycrystalline or amorphous GaAs thin film is annealed while being heated to 600° C. to become a single crystal. The results of the above literature are MO
CVD (Metal Organic Chemistry)
cal vapor deposition) method, but has since been replaced by the MBE (Molecular Vapor Deposition) method.
It was confirmed that the two-step growth method is similarly effective in the em'Epitaxy method.
さて二段階成長法ではまず低温でGaAsバッファ層を
成長するが、このバッファ層は島状の成長をしているこ
とがその後の研究の結果わかってきた。シングル・ドメ
インの単結晶を得るためには、最初それぞれの島の結晶
方位は一致していなくても良いが、島が十分小さく周囲
の島とそれぞれ接していることが必要である。そしてそ
の後のアニールによって優勢なほうの方位への並び替え
が起こってシングル・ドメイン化すると考えられている
。また並び替えが起こらなくても、GaAs成長中に1
憂勢方位のみが残ってシングル・ドメイン化するとも考
えられるが、この場合でも高温でのアニルは必要となる
。これは低温で成長したバッファ層が多くの欠陥を含む
ため、200人程変り薄いうちにアニールして結晶性を
回復させる必要があるためである。Now, in the two-step growth method, a GaAs buffer layer is first grown at a low temperature, but subsequent research has revealed that this buffer layer grows in an island shape. In order to obtain a single domain single crystal, the crystal orientations of each island do not need to initially match, but it is necessary that the islands are sufficiently small and in contact with the surrounding islands. It is thought that subsequent annealing causes rearrangement to the dominant orientation, resulting in a single domain. Also, even if no reordering occurs, 1 during GaAs growth.
It is also possible that only the negative direction remains and becomes a single domain, but even in this case, annealing at high temperature is necessary. This is because the buffer layer grown at a low temperature contains many defects, so it is necessary to anneal it to restore crystallinity while it is still thin, about 200 layers.
一方、III族原掛原料族原料とを交互に供給する方法
によって低温で直接単結晶膜を成長する試みが最近なさ
れるようになった。たとえば雑誌[アプライド・フィジ
ックス・レター(Appl、 Phys、 Lett、
) J第53巻第24号(1988年)の第2435−
2437頁に説明されているように、高真空中でIII
族原子とVjl原子を交互に供給するMEE(Migr
ation Enhanced 9itaxy)法によ
って低温で約400人の単結晶膜を直接成長後、同じ温
度でMBE成長することで厚いシングル・ドメイン単結
晶膜を得ている。この場合、成長中に優勢方位のみが残
ってシングル・ドメイン化すると考えられる。On the other hand, attempts have recently been made to directly grow a single crystal film at low temperatures by alternately supplying a group III raw material and a group raw material. For example, magazines [Applied Physics Letters (Appl, Phys, Lett,
) J Vol. 53 No. 24 (1988) No. 2435-
III in high vacuum as described on page 2437.
MEE (Migr
A thick single-domain single-crystalline film was obtained by directly growing a single-crystalline film of approximately 400 layers at a low temperature using the cation Enhanced 9itaxy method, and then by MBE growth at the same temperature. In this case, it is thought that only the dominant orientation remains during growth, forming a single domain.
(発明が解決しようとする問題点)
III −V族化合物半導体薄膜のエピタキシャル成長
法において、上記の従来技術の問題点を考えてみる。(Problems to be Solved by the Invention) Let us consider the above-mentioned problems of the prior art in the epitaxial growth method of III-V group compound semiconductor thin films.
半導体薄膜の素子応用の観点からはシングル・ドメイン
化とともに結晶品質の向上とさらに表面の平坦性が重要
である。平坦な表面を得るには島状成長では島が小さく
高密度であるほどよい。さらには層状成長であることが
最も望ましい。また通常5i(100)基板上の成長層
には、基板と成長層との格子不整合から予習、されるよ
りはるかに多くの転位や積層欠陥等が含まれる。そして
これら多くは島と島の間から発生すると考えられるため
、結晶品質の向上のためには層状成長であることが望ま
しい。From the viewpoint of device applications of semiconductor thin films, it is important to improve crystal quality and surface flatness in addition to single domain formation. In order to obtain a flat surface, the smaller and denser the islands are, the better in island growth. Furthermore, layered growth is most desirable. Furthermore, a grown layer on a 5i (100) substrate usually contains far more dislocations, stacking faults, etc. than expected from the lattice mismatch between the substrate and the grown layer. Since most of these are thought to be generated between the islands, layered growth is desirable in order to improve crystal quality.
二段階成長法の場合、バッファ層の成長温度としては低
温はど島の大きさが小さく密度は高くなる傾向にある。In the case of the two-step growth method, when the growth temperature of the buffer layer is low, the size of the islands tends to be small and the density becomes high.
しかしながらあまり低温になると双晶や積層欠陥などを
多数含む結晶品質の極めて悪い膜となり、さらには非晶
質状となるため層状成長の実現は極めて難しい。しかも
実際には膜厚が十分源いうちに結晶性回復のためアニー
ルをする必要がある。ところがせっかく低温で平坦なバ
ッファ層を成長したにもかかわらず、このアニールをし
すぎると固相成長によって表面に大きな凹凸が生じてし
まい、逆にアニールが不十分であると結晶品質が十分向
上しないという問題点があった。However, if the temperature is too low, the film will have extremely poor crystal quality, including many twins and stacking faults, and will even become amorphous, making it extremely difficult to achieve layered growth. Moreover, in reality, it is necessary to perform annealing to recover crystallinity before the film thickness is sufficient. However, even though we have grown a flat buffer layer at low temperatures, if we anneal too much, large irregularities will occur on the surface due to solid-phase growth, and if we do not anneal insufficiently, the crystal quality will not improve sufficiently. There was a problem.
一方、H1族原料とV族原料とを交互に供給する方法で
は、成長初期から比較的結晶性が良いため、少なくとも
二段階成長法のように膜厚が薄いうちにアニールする必
要はない。そのためまず低温で十分厚い単結晶膜を成長
しておくことができ、その後必要があれば結晶性改善の
ためのアニールを行えば良く、表面に大きな凹凸が生じ
る心配はなくなる。しかしながら、この方法でも成長初
期は依然として島状成長であり、層状成長の実現には至
らず根本的な結晶性および平坦性の向上は望めないとい
う問題点があった。On the other hand, in the method of alternately supplying the H1 group raw material and the V group raw material, since the crystallinity is relatively good from the initial stage of growth, there is no need to anneal the film while the film is thin, unlike the two-step growth method. Therefore, a sufficiently thick single-crystal film can be grown at a low temperature first, and then annealing can be performed to improve crystallinity if necessary, and there is no need to worry about large irregularities occurring on the surface. However, even with this method, the initial stage of growth is still island-like growth, and there is a problem in that layered growth cannot be realized and fundamental improvements in crystallinity and flatness cannot be expected.
さらに通常、結晶成長の容易な5i(100)面を基板
として用いるが、この場合基板と成長層との界面で発生
した転位が容易に上層まで伸びて貫通転位となりやすい
ため、十分高品質の結晶を得るためには数μm以上の厚
い膜を成長する必要があるという共通の問題点があった
。Furthermore, a 5i (100) plane, which facilitates crystal growth, is usually used as a substrate, but in this case, dislocations generated at the interface between the substrate and the growth layer easily extend to the upper layer and become threading dislocations. A common problem was that in order to obtain this, it was necessary to grow a thick film of several μm or more.
本発明の目的はこのような従来技術の欠点を克服し、■
族生導体結晶上に表面平坦性に優れた高品質なIII−
V族半導体エピタキシャル膜を形成するIII + V
族化合物半導体薄膜形成技術を提供することにある。The purpose of the present invention is to overcome the drawbacks of the prior art, and
High quality III- conductor crystal with excellent surface flatness
III + V forming a group V semiconductor epitaxial film
The purpose of the present invention is to provide a technology for forming thin films of group compound semiconductors.
(問題点を解決するための手段)
本発明はIII−V族化合単結導体薄膜■族結晶上に形
成する方法において、前記■族結晶上に薄いAl層を形
成する工程と、前記Al層上にv族原料を供給し、前記
Al層をIII族構成元素をAlとするIII−V族化
合物単結晶に変換する工程と、前記III −V族化合
物単結晶層上にIII e V族化合物半導体薄膜を形
成するものである。また別の方法では前記■族結晶上に
Alを含む有機揮発性化合物を供給し薄いAl層を形成
する工程と、このAl層上にV族元素またはV族元素の
揮発性化合物を供給し、前記Al層をIII族構成元素
がAlである1ILV族化合物単結晶層に変換する工程
とを経た後、所望のIII−V族化合物半導体単結晶薄
膜を形成することを特徴とする。(Means for Solving the Problems) The present invention provides a method for forming a thin film of a III-V compound single-conductor conductor on a group (III) crystal, including a step of forming a thin Al layer on the group (III) crystal, and a step of forming a thin Al layer on the group (III) crystal. a step of supplying a V group raw material on top and converting the Al layer into a III-V group compound single crystal having Al as a group III constituent element; It forms a semiconductor thin film. In another method, a step of supplying an organic volatile compound containing Al on the Group III crystal to form a thin Al layer, and supplying a Group V element or a volatile compound of a Group V element on the Al layer, After the step of converting the Al layer into an ILV group compound single crystal layer in which the group III constituent element is Al, a desired III-V group compound semiconductor single crystal thin film is formed.
さらに■族結晶の面方位として(111)面を用いると
、より効果的である。Furthermore, it is more effective to use the (111) plane as the plane orientation of the group II crystal.
また、Al層の形成を4006C以下で行うと良い。Further, it is preferable to form the Al layer at 4006C or less.
Al原料としては、Alとハロゲン元素の結合した有機
金属化合物を用いると選択性の点がら好ましい。As the Al raw material, it is preferable to use an organometallic compound in which Al and a halogen element are combined from the viewpoint of selectivity.
また、■旧V族化合物半導体薄膜の成長初期においては
、III族原掛原料族原料を交互に供給すると、成長温
度の低温化の観点から好ましい。Furthermore, in the early stage of growth of the former group V compound semiconductor thin film, it is preferable to alternately supply the group III raw material group raw materials from the viewpoint of lowering the growth temperature.
(作用)
Si単結晶基板上へのGaAsの成長で島状成長するの
は、ひとつにはSi結晶とGaAs結晶との間の大きな
格子定数差、(100)面への成長では4%という大き
な差が原因となっていると考えられる。ところがたとえ
ば雑誌「応用物理」第57巻第11号(1988)の第
1754頁−1759頁に説明されているように、ME
E法を用いて150℃でGaとAsを交互に供給しても
、GaAs1分子層以下のごく初期から島状成長となる
。しかも最初の1原子層は全面に二次元的に付くにもか
かわらず、2原子層目を付けたとたんに島状に変化し表
面被覆率が減少する。さらに格子定数差が0.37%と
十分に小さいはずのSi単結晶基板上へのGaPの成長
でも島状成長となる(雑誌[ジャーナル・オブ・アプラ
イド・フィジックス(J、 Appl、 Phys、)
J第64巻第9号(1988年)の第4526−45
30頁)。(Function) One reason for the island-like growth of GaAs on a Si single crystal substrate is the large difference in lattice constant between Si crystal and GaAs crystal, and the large difference of 4% in growth on the (100) plane. This is thought to be due to the difference. However, as explained in the magazine "Applied Physics" Vol. 57, No. 11 (1988), pp. 1754-1759, ME
Even if Ga and As are alternately supplied at 150° C. using the E method, island-like growth occurs from the very early stage of one molecular layer of GaAs or less. Moreover, although the first one atomic layer is two-dimensionally attached to the entire surface, as soon as the second atomic layer is attached, it changes to an island shape and the surface coverage decreases. Furthermore, even when GaP is grown on a Si single crystal substrate, which should have a sufficiently small lattice constant difference of 0.37%, island-like growth occurs (Journal of Applied Physics (J, Appl, Phys, )).
J Vol. 64 No. 9 (1988) No. 4526-45
page 30).
従って■原車結晶基板上へのIII−V族化合物半導体
結晶の成長で一般に島状成長する原因は、単に格子定数
差によるストレスのみによるのではなく、むしろその成
長初期における表面■族原子とIII族またはV族原子
との間の化学結合状態、さらにはIII族とV族原子と
の間の化学結合状態が深くかかわっていると考えられる
。Therefore, the reason for island-like growth in the growth of III-V compound semiconductor crystals on the parent crystal substrate is not simply due to the stress caused by the difference in lattice constants, but rather the surface group III atoms and III It is thought that the chemical bonding state between group or V group atoms, and furthermore the chemical bonding state between group III and V atoms, is deeply involved.
この様な考察に基づいて得られたのが本発明のまずAl
を含む原料を供給し数原子から数十原子層分のAl層を
形成し、このAl層をIII族構成元素がAlであるI
II−V族化合物単結晶層に変換したのち、所望のII
I−V族化合物半導体薄膜を形成する方法である。Based on these considerations, the first Al
A raw material containing Al is supplied to form an Al layer of several atoms to several tens of atoms, and this Al layer is formed by forming an Al layer containing Al in which the group III constituent element is Al.
After converting into a II-V group compound single crystal layer, the desired II
This is a method of forming an IV group compound semiconductor thin film.
5i−Alの結合は、5i−Ga、また5i−Asなど
の結合に比べて極めて強く、切れにくいと考えられるた
め、Si単結晶基板上へ形成したAl層はその成長の初
期から平坦な連続膜となる。ただし、SiとAlの合金
化反応を抑えるため、このAl層の形成は400℃以下
の低温で行うのが望ましい。この点でAl原料として有
機揮発性化合物を用いると低温成長が行える。つづいて
V族元素またはV族元素の揮発性化合物、たとえばAs
の揮発性化合物を供給すると、分解で生じたAsは薄い
Al層中を拡散してSi基板との界面に到達し界面から
順にAlAs結晶がエピタキシャル成長する。その結果
、Al層は数十人の薄い平坦なAlAs単結晶連続膜に
変換される。さらにこのAlAs膜をバッファ層として
次に所望のIII−V原車結晶薄膜を成長するのである
が、この時は結晶品質を上げるために成長温度は高めに
設定する必要がある。しかしAl、−Asの結合は他の
III−V bx化合物のGa−Asなどの結合に比べ
て強いため、固相成長によってAlAs層の表面に大き
な凹凸が生じることはない。さらに少なくとも十分な厚
みが得られるまでは、III族元素の揮発性化合物とV
族元素またはV族元素の揮発性化合物とを交互に供給す
る方法によれば成長温度を低く抑えることができるため
、従って■族生導体単結晶基板上に表面平坦性に優れた
高品質なIII−V族半導体エピタキシャル膜を形成す
るIII + V族化合物半導体薄膜形成方法を実現で
きる。The 5i-Al bond is extremely strong and difficult to break compared to the 5i-Ga, 5i-As, etc. bonds, so the Al layer formed on the Si single crystal substrate is flat and continuous from the beginning of its growth. It becomes a membrane. However, in order to suppress the alloying reaction between Si and Al, it is desirable to form this Al layer at a low temperature of 400° C. or lower. In this respect, low-temperature growth is possible when an organic volatile compound is used as the Al raw material. Subsequently, a group V element or a volatile compound of a group V element, such as As
When a volatile compound of is supplied, As generated by decomposition diffuses through the thin Al layer and reaches the interface with the Si substrate, and AlAs crystals grow epitaxially from the interface. As a result, the Al layer is converted into a continuous film of several tens of thin flat AlAs single crystals. Furthermore, using this AlAs film as a buffer layer, a desired III-V original crystal thin film is then grown, but at this time it is necessary to set the growth temperature high to improve crystal quality. However, since the bonds of Al and -As are stronger than the bonds of other III-V bx compounds such as Ga-As, large irregularities do not occur on the surface of the AlAs layer by solid phase growth. Furthermore, at least until a sufficient thickness is obtained, volatile compounds of group III elements and V
By alternately supplying a group element or a volatile compound of a group V element, the growth temperature can be kept low. Therefore, a high quality III with excellent surface flatness can be grown on a group III bioconductor single crystal substrate. - A method for forming a III+V group compound semiconductor thin film for forming a V group semiconductor epitaxial film can be realized.
さらに■族結晶の面方位として(111)面を特定する
もう一つの発明は次の考察に基づいて得られた。■族結
晶として(100)面を用いた場合、結晶と成長層との
界面で発生し容易に上層まで伸びて貫通転位となるのは
60°転位と呼ばれる(111)面上に存在する転位で
ある。そしてこの(111)面上の転位が他の転位に比
べて導入されやすい事実は■族結晶として(111)面
を用いた場合にも共通である。ゆえに(ILL)面を基
板として用いれば、基板と成長層との界面で発生した転
位は基板と平行な(111)面内に容易に曲げられるた
め、貫通転位とはなりにくい。また(111)面は2原
子層ステップからなるため、その上に極性半導体を成長
してもシングル、ドメインとなり、本質的にアンチ・フ
ェイズ・ドメイン形成の問題がない。従って■族結晶と
して(111)面を用い、さらに低温でまず薄いAl層
を形成し、このAl層をIII e V原車結晶層に変
換したのち、所望のIII−V族化合物半導体薄膜を形
成すめことで、薄い膜厚で十分高品質なIII e V
族生導体エピタキシャル膜を形成するIII−V族化合
物半導体薄膜形成方法を実現できる。Furthermore, another invention for specifying the (111) plane as the plane orientation of the group II crystal was obtained based on the following considerations. When the (100) plane is used as a group III crystal, dislocations existing on the (111) plane called 60° dislocations occur at the interface between the crystal and the growth layer and easily extend to the upper layer to form threading dislocations. be. The fact that dislocations on the (111) plane are more easily introduced than other dislocations is also common when the (111) plane is used as a group II crystal. Therefore, if the (ILL) plane is used as a substrate, dislocations generated at the interface between the substrate and the growth layer are easily bent into the (111) plane parallel to the substrate, and therefore are unlikely to become threading dislocations. In addition, since the (111) plane consists of two atomic layer steps, even if a polar semiconductor is grown on it, it becomes a single domain, and there is essentially no problem of anti-phase domain formation. Therefore, using the (111) plane as the group III crystal, we first form a thin Al layer at a low temperature, convert this Al layer into a IIIeV original crystal layer, and then form the desired III-V group compound semiconductor thin film. By recommending III e V, which has a thin film thickness and sufficiently high quality.
A method for forming a III-V compound semiconductor thin film for forming a group III-V compound semiconductor epitaxial film can be realized.
(実施例)
、以下、本発明の実施例について図面を参照して詳細に
説明する。(Embodiments) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(実施例1)
高真空下900〜1000℃で基板の熱クリーニングが
可能なサブチャンバーを備え、III族有機金属原料と
してはジエチルガリウムクロライド(DEGaCl)、
ジエチルアルミニウムクロライド(DEAlCI)およ
びトリメチルガリウム(TMG)、■族原料としてはア
ルシン(AsH3)ガスの供給が可能な減圧MOCVD
装置を用いて、Si単結晶基板上へのGaAs成長を行
った。(Example 1) Equipped with a subchamber capable of thermally cleaning the substrate at 900 to 1000°C under high vacuum, diethyl gallium chloride (DEGaCl) was used as the group III organometallic raw material,
Low-pressure MOCVD that can supply diethylaluminium chloride (DEAlCI), trimethyl gallium (TMG), and arsine (AsH3) gas as a group III raw material.
Using the apparatus, GaAs was grown on a Si single crystal substrate.
GaAsの成長法としてはDEGaClとAsH3を交
互に供給する原子層エピタキシャル成長法(ALE法)
を用いた。この方法は原料ガス分圧や供給時間、また成
長温度によらずDEGaClとAsH3の交互供給、1
サイクル当たりGaAs単分子層単位の成長が得られる
方法である。The GaAs growth method is the atomic layer epitaxial growth method (ALE method) in which DEGaCl and AsH3 are alternately supplied.
was used. This method involves alternately supplying DEGaCl and AsH3 regardless of the raw material gas partial pressure, supply time, or growth temperature.
This method allows growth of GaAs monolayer units per cycle.
Si基板としては(100)4°off to <01
1>および(111)面の物を用い、また成長させる際
に選択成長の可否も同時に調べるため、基板表面の一部
に5i02マスク部分を設けておいた。熟クリーニング
を行った基板を反応管に導入し、キャリアガスとしての
H2を91/min流し、反応管内圧力100Torr
として高周波加熱によってカーボンサセプタ上のSi基
板を350℃に加熱した。しかる後にまず第1図(a)
に示すように、5X10−2torrの分圧のDEAl
CIを30〜60秒間供給してSi基板1上に10〜2
0人のAl層2を堆積した。As a Si substrate, (100)4°off to <01
1> and (111) planes, and in order to simultaneously examine the possibility of selective growth during growth, a 5i02 mask portion was provided on a part of the substrate surface. The thoroughly cleaned substrate was introduced into the reaction tube, H2 was flowed as a carrier gas at 91/min, and the pressure inside the reaction tube was 100 Torr.
The Si substrate on the carbon susceptor was heated to 350° C. by high-frequency heating. After that, first figure 1(a)
DEAl at a partial pressure of 5X10-2 torr as shown in
By supplying CI for 30 to 60 seconds, 10 to 2
0 Al layer 2 was deposited.
このあと1torrの分圧をAsH3を供給しなからS
i基板1の温度を450℃に昇温しで30秒間保、持し
た。この間に330℃で堆積したAl層2は第1図(b
)に示すように、AlAs層3に変換される。その後A
sH3の供給を停止し、0.5秒経過後5刈0’tor
rの分圧のDEGaClを1秒間供給した。このあと原
料無供給時間を0.5秒とり、そのあと1torrの分
圧のAsH3を1秒間供給した。After that, supply AsH3 with a partial pressure of 1 torr.
The temperature of the i-substrate 1 was raised to 450° C. and held for 30 seconds. During this time, the Al layer 2 deposited at 330°C is shown in Figure 1 (b).
), it is converted into an AlAs layer 3. Then A
Stop the supply of sH3, and after 0.5 seconds, 0'tor
DEGaCl at a partial pressure of r was supplied for 1 second. Thereafter, there was a period of 0.5 seconds during which no raw material was supplied, and then AsH3 at a partial pressure of 1 torr was supplied for 1 second.
この3秒間の操作を1000回繰り返すことで第1図(
C)に示すようにSi基板1上にAlAs層3をバッフ
ァ層としてGaAs層4を成長した。さらに450℃よ
り高い温度での成長も行い、この場合もまず最初は45
0℃′″cDEGac1とAsH3の交互供給を70回
繰り返し、しかる後所定の温度に昇温し残り930回の
交互供給を行った。By repeating this 3 second operation 1000 times, Figure 1 (
As shown in C), a GaAs layer 4 was grown on a Si substrate 1 using an AlAs layer 3 as a buffer layer. We also performed growth at a temperature higher than 450°C, and in this case, the initial growth rate was 45°C.
Alternate supply of 0°C''cDEGac1 and AsH3 was repeated 70 times, and then the temperature was raised to a predetermined temperature, and alternate supply was continued for the remaining 930 times.
また比較のためAl層の堆積を行わずに、すなわちAl
Asバッファ層を介さずにGaAsを成長する実験も行
った。この場合、基板を反応管に導入した後、すぐに所
定の温度に昇温しDEGaClとAsH3の交互供給を
1000回繰り返した。For comparison, the Al layer was not deposited, that is, the Al layer was not deposited.
An experiment was also conducted in which GaAs was grown without using an As buffer layer. In this case, after introducing the substrate into the reaction tube, the temperature was immediately raised to a predetermined temperature, and alternate supply of DEGaCl and AsH3 was repeated 1000 times.
第2図は成長温度に対する1サイクル当たりのGaAs
の成長膜厚を示した図で、第2図(a)は5i(100
)4°off<011>i板上に成長した場合、また第
2図(b)は5i(111)基板上に成長した場合であ
る。Figure 2 shows GaAs per cycle versus growth temperature.
Figure 2(a) shows the thickness of the grown film of 5i (100
) 4°off<011>i substrate, and FIG. 2(b) shows the case of growth on a 5i (111) substrate.
AlAsバッファ層を介して成長した場合には側基板上
とも単分子層単位の成長が得られ、基板面内での膜厚分
布は極めて均一で表面も鏡面であった。In the case of growth through the AlAs buffer layer, growth in monolayer units was obtained on the side substrates, and the film thickness distribution within the substrate plane was extremely uniform and the surface was mirror-finished.
これに対して、AlAsバッファ層を介さずに成長した
場合には単分子層単位以下の成長となり、膜厚均一性が
悪くモホロジーも悪かった。On the other hand, when the film was grown without an AlAs buffer layer, the growth was smaller than a monomolecular layer, and the film thickness was not uniform and the morphology was also poor.
次に第3図は成長温度に対するX線回折強度を示した図
である。AlAsバッファ層を介して成長した場合、A
lAsバッファ層を介さずに成長した場合に比べて側基
板上ともX線回折強度が約2〜10倍強くなっており、
結晶性が大幅に改善されていることがわかる。さらに5
i(111)基板上成長した場合の方が、5i(100
)4°off<011>基板上に成長した場合に比べて
数倍から数十倍X線回折強度が強い。従ってSi(11
1)基板上にAlAsバッファ層を介して成長すること
で、この場合的300OAと膜厚が極めて薄いにもかか
わらず良好な結晶性を有するGaAs膜が成長できる二
とがわかる。Next, FIG. 3 is a diagram showing X-ray diffraction intensity versus growth temperature. When grown through an AlAs buffer layer, A
The X-ray diffraction intensity on the side substrate is about 2 to 10 times stronger than when grown without an IAs buffer layer,
It can be seen that the crystallinity is significantly improved. 5 more
When grown on an i(111) substrate, 5i(100
) The X-ray diffraction intensity is several to several tens of times stronger than when grown on a 4°off<011> substrate. Therefore, Si(11
1) It can be seen that by growing on a substrate via an AlAs buffer layer, a GaAs film with good crystallinity can be grown despite the extremely thin film thickness of 300 OA in this case.
さらに上記のいずれの条件で成長した場合も、5i02
マスク部分にはAlAsならびにGaAsの析出は認め
られず選択成長が可能であった。Furthermore, when grown under any of the above conditions, 5i02
No precipitation of AlAs or GaAs was observed in the masked portion, allowing selective growth.
以上、MOCVD装置とじて減圧装置を用いたが常圧装
置を用いても良い。Although a pressure reducing device is used as the MOCVD device in the above, a normal pressure device may also be used.
またAl層を形成する方法としてはDEAlCIを原料
ガスとして用いたが、この原料ガスを用いると低温で平
坦な連続薄膜を選択的にしかも極めて再現性よく均一に
形成できる。そのため本発明に適用するのに最も適した
方法と考えられる。しかし基本的には低)鼠で平坦な連
続薄膜を形成できれば良く、例えばアルキル基をエチル
基からメチル基に替えたDMAlC1等を原料ガスとし
て用いても良い。Furthermore, in the method of forming the Al layer, DEAlCI was used as a raw material gas, and by using this raw material gas, a flat continuous thin film can be formed selectively and uniformly at a low temperature with extremely high reproducibility. Therefore, this method is considered to be the most suitable method to be applied to the present invention. However, basically, it is sufficient if a flat continuous thin film can be formed with low heat resistance, and for example, DMAAlC1 or the like in which the alkyl group is changed from ethyl group to methyl group may be used as the raw material gas.
さらにトリイソブチルアルミニウム(TIBA)や、ジ
メチルアルミニウムハイドライド(DMALH)を原料
ガスとして用いて良いが、この場合ごく限られた条件で
のみ選択成長が可能である。Further, triisobutylaluminum (TIBA) or dimethylaluminum hydride (DMALH) may be used as the source gas, but in this case selective growth is possible only under very limited conditions.
また所望のIII e V族化合物半導体の成長法とし
てDEGaClとAsH3を用いたGaAsの成長を例
に説明したが、III族およびV族原料とは基本的にガ
スとして供給可能であればよい。例えばDEGaClと
PH3を用いたGaP、 DMInClとPH3を用い
たInPの成長、さらにDEGaCl + DMInC
lとAsH3の交互供給によるInGaAsの成長など
の混晶の成長にも本発明を適用することができる。また
III族有機金属原料としては塩素との結合を持たない
TMG、 TEG、 TMIn等でもよいが、この場合
選択成長が困難であるか、またはごく限られた条件での
み可能である。さらにIII族原料としてはGaCl3
等の無機原料を用いてもよく、逆にV族水素化物原料を
TEAs等のV族有機金属原料やさらにAsメタル等の
V族元素に代えても良い。Further, although the growth of GaAs using DEGaCl and AsH3 has been described as an example of a method for growing a desired group III e V compound semiconductor, the group III and group V raw materials may basically be used as long as they can be supplied as gases. For example, growth of GaP using DEGaCl and PH3, InP using DMInCl and PH3, and even DEGaCl + DMInC.
The present invention can also be applied to the growth of mixed crystals such as the growth of InGaAs by alternately supplying l and AsH3. Further, the group III organic metal raw material may be TMG, TEG, TMIn, etc., which do not have a bond with chlorine, but in this case, selective growth is difficult or possible only under very limited conditions. Furthermore, as a group III raw material, GaCl3
Alternatively, the V group hydride raw material may be replaced with a V group organic metal raw material such as TEAs or a V group element such as As metal.
(実施例2)
Si基板として(100)4°off<011>および
(111)面の物を用い、実施例1と同じ装置、同じ手
順でAlAsバッファ層を介して、まず450℃でDE
GaClとAsH3の交互供給し、この場合このサイク
ルを500回繰り返して約150OAのGaAs層を成
長した。しかる後に基板温度を600℃に昇温し、TM
GとAsH3を同時に供給する通常のMOCVD法でG
aAsを2μm成長した。比較のためAlAsバッファ
層は介さずに、他は全く同じ条件で成長する実験も行っ
た。(Example 2) Using Si substrates with (100)4°off<011> and (111) planes, DE was first performed at 450°C via an AlAs buffer layer using the same equipment and the same procedure as in Example 1.
GaCl and AsH3 were alternately supplied, and in this case, this cycle was repeated 500 times to grow a GaAs layer of about 150 OA. After that, the substrate temperature was raised to 600°C, and the TM
G by the normal MOCVD method that simultaneously supplies G and AsH3.
AAs was grown to a thickness of 2 μm. For comparison, an experiment was also conducted in which growth was performed without using an AlAs buffer layer, but under the same conditions.
成長膜はいずれもシングル・ドメインの単結晶であり、
実施例1に比べて膜厚がはるかに厚い分貫通転位も減少
し、結晶性は全体に大きく改善されている。しかしAl
Asバッファ層を介して成長したGaAs膜の表面が側
基板上とも鏡面であるのに対して、AlAsバッファ層
を介さず成長したGaAs膜の表面にはかなり大きな凹
凸が認められた。さらにAlAsバッファ層を介した方
が、介さずに成長した場合に比べてX線回折強度が強く
、結晶性が大幅に改善されており1.また5i(111
)基板上成長した場合の方が、5i(100)4°of
f<011>基板上に成長した場合よりもX線回折強度
がはるかに強く結晶性が良いなど、実施例1と全く同様
の傾向が得られた。All grown films are single-domain single crystals,
Compared to Example 1, since the film thickness is much thicker, threading dislocations are also reduced, and the crystallinity is greatly improved as a whole. However, Al
While the surface of the GaAs film grown through the As buffer layer was mirror-like on the side substrate, considerably large irregularities were observed on the surface of the GaAs film grown without the AlAs buffer layer. Furthermore, the X-ray diffraction intensity is stronger when grown through the AlAs buffer layer than when grown without it, and the crystallinity is significantly improved.1. Also 5i (111
) When grown on a substrate, 5i(100)4°of
Exactly the same trends as in Example 1 were obtained, including a much stronger X-ray diffraction intensity and better crystallinity than when grown on an f<011> substrate.
以上の実施例においてはSi基板上に、III−V族化
合物半導体薄膜を形成させたが、例えばIII−V族化
合物基板上に形成させたSi結晶上に薄膜を形成させて
も良い。また、Si以外の■族材料として例えば5iG
eやGeなどにも上記の方法と同様に発明の効果が確認
された。また、Al層及びIII −V族化合物半導体
薄膜の成長方法としては、化学気相成長法に限らず分子
線成長方法などでも良い。In the above embodiments, the III-V group compound semiconductor thin film was formed on the Si substrate, but the thin film may be formed, for example, on a Si crystal formed on the III-V group compound substrate. In addition, as a group II material other than Si, for example, 5iG
The effect of the invention was confirmed for e, Ge, etc. in the same way as the above method. Furthermore, the method for growing the Al layer and III-V group compound semiconductor thin film is not limited to chemical vapor deposition, but may also be molecular beam growth.
(発明の効果)
本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。(Effects of the Invention) Since the present invention is configured as described above, it produces the effects described below.
請求項1に記載した方法によれば、■族結晶上にAl層
を形成させ、V族元素を供給することにより、■族結晶
と連続なIII−V族結晶層を形成させる。このIn
+ V族結晶層をバッファ層としてIII−V族化合物
半導体薄膜を成長させるので、表面平坦性に優れた高品
質なIII −V族化合物半導体薄膜の形成が可能とな
る。According to the method described in claim 1, an Al layer is formed on the group (1) crystal and a group V element is supplied to form a group III-V crystal layer continuous with the group (2) crystal. This In
+ Since the III-V group compound semiconductor thin film is grown using the V group crystal layer as a buffer layer, it is possible to form a high quality III-V group compound semiconductor thin film with excellent surface flatness.
請求項2のようにAl原料として有機揮発性化合物を用
い、V族元素の原料として揮発性化合物を用いれば、A
l層の成長が低温で行え、■Dlc結晶に連続なIII
−V族結晶が、容易に得られるので、再現性良<III
−V族化合物半導体薄膜が形成できる。If an organic volatile compound is used as the Al raw material and a volatile compound is used as the V group element raw material as in claim 2, A
The growth of the L layer can be performed at low temperatures, and the III layer is continuous to the Dlc crystal.
-V group crystals are easily obtained, so reproducibility is good <III
- A group V compound semiconductor thin film can be formed.
請求項3の方法によれば、■族結晶の面方位として(1
11)面を用いるので、貫通転位の少ないIII−V7
IN化合物半導体薄膜が形成できる。According to the method of claim 3, the plane orientation of the group III crystal is (1
11) III-V7 with fewer threading dislocations because it uses a plane
An IN compound semiconductor thin film can be formed.
請求項4のように、Al層の形成温度を400℃以下と
すると、SiとAlの合金化が抑制されるので、確実に
表面が平坦な連続膜が得られる。When the formation temperature of the Al layer is set to 400° C. or lower as in claim 4, alloying of Si and Al is suppressed, so that a continuous film with a flat surface can be reliably obtained.
請求項5のようにAlの原料としてAlとハロゲンの結
合した有機金属化合物を用いると、選択性に優れたII
I e V族化合物半導体薄膜の形成方法が実現できる
。When an organometallic compound in which Al and a halogen are bonded is used as a raw material for Al as claimed in claim 5, II.
A method for forming an I e V group compound semiconductor thin film can be realized.
請求項6に記載したように、III−V族化合物半導体
薄膜形成の際にIII族原料とV族原料を用いれば、成
長温度が下げられるので、より確実に高品質な薄膜が得
られる。As described in claim 6, if a group III raw material and a group V raw material are used when forming a group III-V compound semiconductor thin film, the growth temperature can be lowered, so that a thin film of high quality can be obtained more reliably.
第1図は本発明の実施例に係る一例としての結晶成長工
程を示す断面図、第2図は同実施例における成長温度に
対する1サイクル当たりのGaAsの成長膜厚を示した
図で、第2図(a)は5i(100)4°off<01
1>基板上に成長した場合、また第2図(b)は5i(
111)基板上に成長した場合、第3図は同実施例にお
ける成長温度に対するX線回折強度示した図である。
1−8i基板、2−Al層、3−AlAs層、4−Ga
As層。FIG. 1 is a cross-sectional view showing an example of a crystal growth process according to an embodiment of the present invention, and FIG. 2 is a diagram showing the growth film thickness of GaAs per cycle with respect to growth temperature in the same embodiment. Figure (a) shows 5i(100)4°off<01
1> When grown on a substrate, and FIG. 2(b) shows that 5i (
111) When grown on a substrate, FIG. 3 is a diagram showing the X-ray diffraction intensity versus growth temperature in the same example. 1-8i substrate, 2-Al layer, 3-AlAs layer, 4-Ga
As layer.
Claims (6)
する方法において、前記IV族結晶上に薄いAl層を形成
する工程と、前記Al層上にV族原料を供給することに
より前記Al層をIII族構成元素をAlとするIII−V族
化合物単結晶層に変換する工程と、前記III−V族化合
物単結晶層上に所望のIII−V族化合物半導体薄膜を形
成する工程とを行うことを特徴とするIII−V族化合物
半導体薄膜の形成方法。(1) A method for forming a III-V compound semiconductor thin film on a group IV crystal, which includes the steps of forming a thin Al layer on the group IV crystal, and supplying a group V raw material onto the Al layer. a step of converting the Al layer into a group III-V compound single crystal layer in which the group III constituent element is Al; and a step of forming a desired group III-V compound semiconductor thin film on the group III-V compound single crystal layer. A method for forming a III-V compound semiconductor thin film, the method comprising:
する方法において、前記IV族結晶上にAlを含む有機揮
発性化合物を供給することにより薄いAl層を形成する
工程と、このAl層上にV族元素またはV族元素の揮発
性化合物を供給することにより前記Al層をIII族構成
元素をAlとするIII−V族化合物単結晶層に変換する
工程と、前記III−V族化合物単結晶層上に所望のIII−
V族化合物半導体薄膜を形成する工程とを行うことを特
徴とするIII−V族化合物半導体薄膜の形成方法。(2) A method for forming a III-V compound semiconductor thin film on a group IV crystal, including the step of forming a thin Al layer by supplying an organic volatile compound containing Al on the group IV crystal; a step of converting the Al layer into a single crystal layer of a III-V compound having Al as a group III constituent element by supplying a group V element or a volatile compound of a group V element onto the layer; Desired III− on the compound single crystal layer
1. A method for forming a III-V compound semiconductor thin film, comprising the steps of: forming a group V compound semiconductor thin film.
を形成する方法において、IV族単結晶基板の面方位とし
て(111)面を用い、かつ前記IV族単結晶基板上にA
lを含む有機揮発性化合物を供給することにより薄いA
l層を形成する工程と、このAl層上にV族元素または
V族元素の揮発性化合物を供給することにより、前記A
l層をIII族構成元素がAlであるIII−V族化合物単結
晶層に変換する工程と前記III−V族化合物単結晶層上
に所望のIII−V族化合物半導体薄膜を形成する工程と
を行うことを特徴とするIII−V族化合物半導体薄膜の
形成方法。(3) In a method of forming a III-V compound semiconductor single crystal thin film on a group IV crystal, the (111) plane is used as the plane orientation of the group IV single crystal substrate, and the A
A thin A by supplying an organic volatile compound containing l
The above A
A step of converting the L layer into a III-V group compound single crystal layer whose group III constituent element is Al, and a step of forming a desired III-V group compound semiconductor thin film on the III-V group compound single crystal layer. 1. A method for forming a III-V compound semiconductor thin film, the method comprising:
特徴とする請求項1、2又は3記載のIII−V族化合物
半導体薄膜の形成方法。(4) The method for forming a III-V compound semiconductor thin film according to claim 1, 2 or 3, wherein the Al layer is formed at a low temperature of 400°C or lower.
ゲン元素の結合を少なくとも1つ持つ有機金属化合物を
用いることを特徴とする請求項2、3又は4記載のIII
−V族化合物半導体薄膜の形成方法。(5) III according to claim 2, 3 or 4, characterized in that the organic volatile compound containing Al is an organometallic compound having at least one bond between Al and a halogen element.
- A method for forming a group V compound semiconductor thin film.
の全体または少なくともその初期の一部が、III族元素
の揮発性化合物とV族元素またはV族元素の揮発性化合
物とを交互に供給する方法によることを特徴とするを請
求項2、3、4又は5記載のIII−V族化合物半導体薄
膜の形成方法。(6) The whole or at least an initial part of the formation of the desired Group III-V compound semiconductor single crystal thin film is performed by alternating between a volatile compound of a Group III element and a Group V element or a volatile compound of a Group V element. 6. The method of forming a III-V compound semiconductor thin film according to claim 2, 3, 4 or 5, characterized in that the method is based on a supplying method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1042130A JPH0822800B2 (en) | 1989-02-21 | 1989-02-21 | III-Method of forming group V compound semiconductor thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1042130A JPH0822800B2 (en) | 1989-02-21 | 1989-02-21 | III-Method of forming group V compound semiconductor thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02221196A true JPH02221196A (en) | 1990-09-04 |
JPH0822800B2 JPH0822800B2 (en) | 1996-03-06 |
Family
ID=12627353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1042130A Expired - Lifetime JPH0822800B2 (en) | 1989-02-21 | 1989-02-21 | III-Method of forming group V compound semiconductor thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0822800B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003324070A (en) * | 2002-04-30 | 2003-11-14 | Suzuki Motor Corp | Method and device of manufacturing thin film |
JP5401706B2 (en) * | 2007-03-23 | 2014-01-29 | 旭化成エレクトロニクス株式会社 | Compound semiconductor laminate, method for manufacturing the same, and semiconductor device |
JP2015512139A (en) * | 2012-01-13 | 2015-04-23 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method for depositing a group III-V layer on a substrate |
JP2019182712A (en) * | 2018-04-12 | 2019-10-24 | 株式会社デンソー | Semiconductor device |
CN113097057A (en) * | 2021-03-31 | 2021-07-09 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method, epitaxial structure and photoelectric device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167895A (en) * | 1988-12-20 | 1990-06-28 | Fujitsu Ltd | Method for growing compound semiconductor |
-
1989
- 1989-02-21 JP JP1042130A patent/JPH0822800B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02167895A (en) * | 1988-12-20 | 1990-06-28 | Fujitsu Ltd | Method for growing compound semiconductor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003324070A (en) * | 2002-04-30 | 2003-11-14 | Suzuki Motor Corp | Method and device of manufacturing thin film |
JP5401706B2 (en) * | 2007-03-23 | 2014-01-29 | 旭化成エレクトロニクス株式会社 | Compound semiconductor laminate, method for manufacturing the same, and semiconductor device |
JP2015512139A (en) * | 2012-01-13 | 2015-04-23 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method for depositing a group III-V layer on a substrate |
JP2019182712A (en) * | 2018-04-12 | 2019-10-24 | 株式会社デンソー | Semiconductor device |
CN113097057A (en) * | 2021-03-31 | 2021-07-09 | 中国科学院苏州纳米技术与纳米仿生研究所 | Epitaxial growth method, epitaxial structure and photoelectric device |
Also Published As
Publication number | Publication date |
---|---|
JPH0822800B2 (en) | 1996-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2704181B2 (en) | Method for growing compound semiconductor single crystal thin film | |
JPH01225114A (en) | Manufacture of semiconductor thin-film | |
JPH01289108A (en) | Heteroepitaxy | |
US4908074A (en) | Gallium arsenide on sapphire heterostructure | |
US6648966B2 (en) | Wafer produced thereby, and associated methods and devices using the wafer | |
JPH0513342A (en) | Semiconductur diamond | |
JP2003332234A (en) | Sapphire substrate having nitride layer and its manufacturing method | |
JPH02221196A (en) | Formation of thin film of iii-v compound semiconductor | |
JP2005203418A (en) | Nitride compound semiconductor substrate and its manufacturing method | |
JP2845464B2 (en) | Compound semiconductor growth method | |
JP3743013B2 (en) | Epitaxial wafer manufacturing method | |
JPH01290221A (en) | Semiconductor vapor growth method | |
JP3107646U (en) | Compound semiconductor epitaxial wafer | |
JP3078927B2 (en) | Method for growing compound semiconductor thin film | |
JP2753832B2 (en) | III-V Vapor Phase Growth of Group V Compound Semiconductor | |
JPH08181077A (en) | Growing method of nitride iii-v compound semiconductor crystal | |
JPH0686355B2 (en) | Group III-V vapor deposition method for group V compound semiconductors | |
JP2668236B2 (en) | Semiconductor element manufacturing method | |
JPH05283336A (en) | Formation of compound semiconductor layer | |
JP2704224B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH01272108A (en) | Growth of compound semiconductor | |
JPS621224A (en) | Semiconductor element structure | |
JPH047819A (en) | Gaas thin film | |
JPH02252695A (en) | Crystal growth of compound semiconductor | |
CN115831719A (en) | Preparation method of high-quality AlN thin film material on Si substrate |