JPS58212126A - Semiconductor manufacturing device - Google Patents

Semiconductor manufacturing device

Info

Publication number
JPS58212126A
JPS58212126A JP9409182A JP9409182A JPS58212126A JP S58212126 A JPS58212126 A JP S58212126A JP 9409182 A JP9409182 A JP 9409182A JP 9409182 A JP9409182 A JP 9409182A JP S58212126 A JPS58212126 A JP S58212126A
Authority
JP
Japan
Prior art keywords
gas
exhaust
nozzle
reaction
wafers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9409182A
Other languages
Japanese (ja)
Inventor
Mitsuo Tanomoto
田野本 満男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP9409182A priority Critical patent/JPS58212126A/en
Publication of JPS58212126A publication Critical patent/JPS58212126A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To prevent the reduction of yield of the semiconductor element while unifying thickness distribution of thin films to be generated on the surfaces of wafers, and to obtain the semiconductor device of high quality by a method wherein the sides of an exhaust nozzle are prolonged, while a plurality of exhaust vents are arranged thereto. CONSTITUTION:Reaction gas supplied in the direction shown with an arrow mark 7 by a gas feed pipe 8 passes through a gas nozzle 6 in a reaction furnace 5, diffuses on the surfaces of the wafers 1 on a heater plate 2, and is adsorbed to generate the thin films. Reaction completed gas is exhausted in the direction shown with an arrow mark 10 by the exhaust vents 12 of the plural number provided on the sides of the exhaust nozzle 9 and a gas exhaust pipe 11. By providing the exhaust vents 12 on the sides of the exhaust nozzle 9 like this, a fixed displacement can be secured, and as the result, because reaction gas flows in the reaction furnace 5 more uniformly than usual, film thicknesses of the thin films generated on the wafers 1 in the fixed time period by making the wafers 1 to pass through the gas nozzle 9 in the reaction furnace 5 become uniform. Accordingly ununiformity of film thickness distribution generated at the position of the gas nozzle 6 caused so far can be suppressed to the minimum.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体製造装置にかかり、符に化学反応によっ
てウェハ表面に8i、、5i02 等の薄膜を生成させ
るCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to semiconductor manufacturing equipment, and in particular to a CVD equipment for producing thin films such as 8i, 5i02, etc. on the surface of a wafer by chemical reaction.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来よシ半導体集積回路の製作において、S11金属、
窒化物、酸化物などのエピタキシャル成長、Sin、 
、8iN、  などによる絶縁保護膜の作成等のために
主に用いられているCVD (Chemical Va
porDeposition、化学的気相成長)法は、
例えば揮発性の金属ハロゲン化物や金属の有機化合物な
どの高温での気相化学反応(熱分解、水素還元、酸化、
置換反応など)によって、ウニノ・表面上に窒化物、酸
化物、炭化物、ケイ化物、ホウ化物、高融点金属、金属
、半導体などの薄膜を作成する方法である。この揮発性
化合物は、気化され一般にH2、A r XN 、など
の気体(キャリヤガス)と混合されて反応ガスとして反
応炉の内部に送り込まれ、ウェハ表面に拡散し吸着され
て化学反応により薄膜が生成される。そしてウニノ・表
面から副生成ガスが離脱して拡散退去される。そして一
般にCVD装置は、反応ガスを反応炉に輸送するキャリ
アガスの精製装置、反応ガス原料を気化する反応ガスの
気化室、反応炉(気相成長炉)、反応源ガスの回収装置
からなっているが、その中心部分は反応炉でヒーターグ
レート上に載置されたウニノ・表面上にいかにして均等
に反応ガスを供給し排気してウェハ表面に均質な薄膜を
生成させるがが重要な問題であった。
Conventionally, in the production of semiconductor integrated circuits, S11 metal,
Epitaxial growth of nitrides, oxides, etc., Sin,
CVD (Chemical Vapor Deposition) is mainly used to create insulating protective films such as
The porDeposition (chemical vapor deposition) method is
For example, gas phase chemical reactions (thermal decomposition, hydrogen reduction, oxidation,
This is a method of creating thin films of nitrides, oxides, carbides, silicides, borides, high-melting point metals, metals, semiconductors, etc., on the surface of the surface of the surface of the surface of the surface of the surface of the surface of the surface. This volatile compound is vaporized and generally mixed with a gas (carrier gas) such as H2, ArxN, etc., and sent into the reactor as a reaction gas, where it is diffused and adsorbed onto the wafer surface, and a thin film is formed through a chemical reaction. generated. The by-product gas then separates from the surface and is diffused away. In general, a CVD apparatus consists of a carrier gas purification device that transports the reaction gas to the reaction furnace, a reaction gas vaporization chamber that vaporizes the reaction gas raw material, a reaction furnace (vapor phase growth furnace), and a reaction source gas recovery device. However, the central part of the process is how to uniformly supply and exhaust the reaction gas onto the wafer surface placed on the heater grate in the reactor, and the important issue is how to generate a homogeneous thin film on the wafer surface. Met.

しかるに、上述のような従来のCVD装置の反応炉内に
設けた反応済ガスを排気する排気ノズルは、一方向にの
み開放されているため排不が一方向にのみ片寄り、排気
ノズルの位置にょシ反応ガスの流れが変わってくる。そ
の結果第1図に示すように生成される薄膜の薄厚分布が
不均一になる。
However, the exhaust nozzle for exhausting the reacted gas provided in the reactor of the conventional CVD apparatus as described above is open only in one direction, so the exhaust is biased in only one direction, and the position of the exhaust nozzle is The flow of the reaction gas changes. As a result, the thickness distribution of the produced thin film becomes non-uniform as shown in FIG.

従って、例えばエピタキシャル層の成長に要する時間に
差異が生じ、部分的に成長が不均一になって均一なエピ
タキシャル層が形成されず、半導体素子の歩留低下やエ
ビタキンヤル・トランジスタ等の信頼性を悪くしていた
Therefore, for example, differences occur in the time required to grow an epitaxial layer, and the growth becomes non-uniform in some areas, making it impossible to form a uniform epitaxial layer, resulting in lower yields of semiconductor devices and worse reliability of epitaxial transistors, etc. Was.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来の難点を解消するためになされたも
ので、SiH4等の反応ガスを反応炉へ供給し排気ノズ
ルを介して排気量ながら反応炉内を通過するヒータープ
レート呈ニ載置したウェハ表面に、Sl、8102等の
薄膜を気相成長させる半導体製造装置において、排気ノ
メルの側面全延長するとともに、該側面には反応ガスが
ウェハ表面に均一に流れるよう複数の排気孔を配設して
、ウェハ表面上に生成する薄膜の薄厚分布を均一にして
半導体素子の歩留9低下を防ぎ、高品質の半導体装置が
得られる半導体製造装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the conventional method, and the wafers placed on the heater plate are supplied with a reactant gas such as SiH4 to the reactor, and the wafers placed on the heater plate are passed through the reactor while being evacuated through an exhaust nozzle. In semiconductor manufacturing equipment that grows a thin film of Sl, 8102, etc. on the surface by vapor phase, the side of the exhaust gas is fully extended, and a plurality of exhaust holes are arranged on the side so that the reaction gas flows uniformly over the wafer surface. It is an object of the present invention to provide a semiconductor manufacturing apparatus which can prevent a decrease in the yield of semiconductor elements by making the thickness distribution of a thin film formed on a wafer surface uniform, and can produce high-quality semiconductor devices.

〔発明の概要〕[Summary of the invention]

本発明はSiH4等の反応ガスを反応炉へ供給し排気ノ
ズルを介して排気しながら前記反応炉内を通過するヒー
タープレート上に載置したウェハ表面にSi、8i0.
  等の薄膜を気相成長させる半導体製造装置において
、前記排気ノズルの側面を延長するとともに、該側面に
は前記反応ガスが前記ウェハ表面に均一に流れるよう複
数の排気孔を配設しであることを特徴とする。
In the present invention, a reactant gas such as SiH4 is supplied to a reactor and exhausted through an exhaust nozzle, and Si, 8i0.
In a semiconductor manufacturing apparatus for vapor phase growth of a thin film such as the above, the side surface of the exhaust nozzle is extended, and a plurality of exhaust holes are arranged on the side surface so that the reaction gas flows uniformly over the wafer surface. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

以下本発明を図m1..にもとづき詳細に説明する。 The present invention will be described below in Figure m1. .. This will be explained in detail based on the following.

第2図は本発明の半導体製造装置の平面図、第3図は該
装置の反応炉上部の側面図を示したものである。その上
面にウェハ1を載置し一定の温度にコントロールされた
ヒータープレート2はボディ3の上面に配設し、矢印4
の向きに所定の速度で反応炉5(第3図)内のガスノズ
ル6を通過するようにしである。ガスノズル6には8i
H,等の反応ガスを矢印7の向きに供給するガス供給管
8、反応済刀ス金排気ノズル9を介して矢印10の向き
に排気するカス排気管11とが設けてめる。第4図に示
すように排気ノズル9の延長した側面には排気孔12が
設けてあり、排気ノズル9の両端はカス排気管11と連
通されている。排気孔12の実施例を第5図(al〜(
C1に示す。第5図(a)の実施例では、排気ノズル9
の両端部の口径が30顛の場合、側面中央部の孔径12
aを15竺φ とし、12++mψ、9誼φ、6鶴φと
両端にある孔径はど級数的に小3くしである。第5図(
b)の実施例では、排気ノズル9の両端部の口径が30
囮の場合で、10朋φの排気孔12bが20m間隔で設
けである。
FIG. 2 is a plan view of the semiconductor manufacturing apparatus of the present invention, and FIG. 3 is a side view of the upper part of the reactor of the apparatus. The heater plate 2, on which the wafer 1 is placed and whose temperature is controlled at a constant temperature, is arranged on the upper surface of the body 3, and is indicated by the arrow 4.
The gas is made to pass through the gas nozzle 6 in the reactor 5 (FIG. 3) at a predetermined speed in the direction of . 8i for gas nozzle 6
A gas supply pipe 8 for supplying reactive gas such as H, etc. in the direction of the arrow 7, and a waste exhaust pipe 11 for exhausting the reacted metal in the direction of the arrow 10 through the reacted metal exhaust nozzle 9 are provided. As shown in FIG. 4, an exhaust hole 12 is provided on the extended side surface of the exhaust nozzle 9, and both ends of the exhaust nozzle 9 are communicated with a waste exhaust pipe 11. An example of the exhaust hole 12 is shown in FIG.
Shown in C1. In the embodiment of FIG. 5(a), the exhaust nozzle 9
If the diameter of both ends is 30mm, the hole diameter of the center of the side is 12mm.
Let a be 15 φ, and the hole diameters at both ends are 12++ mψ, 9 φ, and 6 crane φ, and the diameters of the holes at both ends are 3 small combs in terms of a series. Figure 5 (
In the embodiment b), the diameter of both ends of the exhaust nozzle 9 is 30 mm.
In the case of a decoy, exhaust holes 12b with a diameter of 10 mm are provided at intervals of 20 m.

そして第5図(C1の実施例は排気ノスル9の側面の任
意の箇所に糧々の径の排気孔12Gが多数段けである、 上記のように構成した本発明の半導体製造装置では、ガ
ス供給管8により矢印7の向きに供給された反応ガスは
、反応炉5内のガスノズル6を通過してヒータープレー
ト2上のウェハ1の表面に拡散し吸着されて薄膜が生成
される。そして反応済ガスは排気ノズル9の側面に設け
られた複数の排気孔12(第4図)とガス排気管11と
にょシ矢印10の向きに排気される。このように排気ノ
ズル9の側面に排気孔12を設けて、一定の排気量が確
保された結果、反応ガスは従来よシも均一に反応炉5内
を流れるので、反応炉5のガスノズル9内をウェハ1が
通過して一定時曲で生成されるウェハ1上の薄膜の膜−
厚は第6図に示すように均一になった。従って第1図に
示したように従来みられたガスノズル4の位置での膜厚
分布の不均一が最小限におさえられた。
5 (Embodiment C1 has multiple stages of exhaust holes 12G of suitable diameters at arbitrary locations on the side surface of the exhaust nostle 9. In the semiconductor manufacturing apparatus of the present invention configured as described above, the gas The reaction gas supplied in the direction of the arrow 7 through the supply pipe 8 passes through the gas nozzle 6 in the reactor 5, diffuses and is adsorbed onto the surface of the wafer 1 on the heater plate 2, and a thin film is produced.Then, a reaction occurs. The exhausted gas is exhausted in the direction of the arrow 10 through a plurality of exhaust holes 12 (FIG. 4) provided on the side of the exhaust nozzle 9 and the gas exhaust pipe 11. 12 to ensure a constant exhaust volume, the reaction gas flows through the reactor 5 more uniformly than before, so the wafer 1 passes through the gas nozzle 9 of the reactor 5 and curves for a certain period of time. Thin film produced on wafer 1 -
The thickness became uniform as shown in FIG. Therefore, as shown in FIG. 1, the non-uniformity of the film thickness distribution at the position of the gas nozzle 4, which was conventionally seen, was minimized.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による半導体製造装置ヤは
SiH,等の反応ガスを反応炉へ供給し排気ノズルを介
して排気しながら反応炉内を通過するヒータープレート
上に載置したウェハ表面に、Si、SiO2等の薄膜を
曳相成長させる半導体製造装置において、排気ノズルの
側面を延長するとともに該仰1面には反応ガスがウェハ
表面に均一に流れるよう複数の排気孔を配設したので、
均一に流れる反応ガスにより一定時間で生成されるウェ
ハ上の薄膜の膜厚の分布は均質に々す、薄膜の品質が向
上し、かつパッシベーションが安定して歩留低下を防ぐ
ことができた。
As explained above, the semiconductor manufacturing apparatus according to the present invention supplies a reactant gas such as SiH to a reactor, and evacuates the gas through an exhaust nozzle to the surface of a wafer placed on a heater plate that passes through the reactor. In semiconductor manufacturing equipment that grows thin films such as Si, SiO2, etc., the side surface of the exhaust nozzle is extended, and multiple exhaust holes are provided on one side of the exhaust nozzle so that the reactant gas flows uniformly over the wafer surface. ,
The thickness distribution of the thin film on the wafer, which is generated over a certain period of time by the uniformly flowing reactant gas, is uniform, the quality of the thin film is improved, and the passivation is stabilized, preventing a drop in yield.

【図面の簡単な説明】[Brief explanation of drawings]

筆1図は従来の半導体製造装置により生成された薄膜の
薄厚を示す図、第2図は本発明の半導体製造装置の平面
図、第3Vは第2図の装置の反応炉のガスノズルを示す
側面図、第4図は本発明の装置のガスノズル内に配設さ
れている排気ノズルを示す斜視図、第5図(a)〜(C
)−は本発明の装置に用いられた排気ノズルを示す斜視
甲、r第6図は本発明装置により生成された薄膜の膜厚
を示す図である。 1・・・ウェハ 2・−゛・・・ヒータープレート 5・・−・反応炉 6・・・・・・ガスノズル 8・・・・ガス供給管 9・・・・排気ノズル 11 ・・ガス排気管 12.12a、 12b、 12c −排気孔C731
7)代理人 弁理士 則 近 τ 佑(ほか1名) :・i″: 第 1 図 第 2 図 第 3 図 第 4 図 第 5 図 46 図 距 離   −
Figure 1 is a diagram showing the thin thickness of a thin film produced by a conventional semiconductor manufacturing apparatus, Figure 2 is a plan view of the semiconductor manufacturing apparatus of the present invention, and Figure 3V is a side view showing the gas nozzle of the reactor of the apparatus in Figure 2. 4 are perspective views showing the exhaust nozzle arranged in the gas nozzle of the device of the present invention, and FIG. 5(a) to (C)
)- is a perspective view showing the exhaust nozzle used in the apparatus of the present invention, and FIG. 6 is a diagram showing the thickness of the thin film produced by the apparatus of the present invention. 1... Wafer 2... Heater plate 5... Reactor 6... Gas nozzle 8... Gas supply pipe 9... Exhaust nozzle 11... Gas exhaust pipe 12.12a, 12b, 12c - Exhaust hole C731
7) Agent Patent attorney Nori Chika τ Yu (and 1 other person) :・i'': Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 46 Figure distance -

Claims (1)

【特許請求の範囲】[Claims] 8 iH,等の反応ガスを反応炉へ供給し排気ノズルを
介して排気しながら前記反応炉内を通過するヒータープ
レート上に載置したウェハ表面に、5118i02等の
薄膜を気相成長させる半導体製造装置において、前記排
気ノズルの側面を延長するとともに、該側面には前記反
応ガスが前記ウェハ表面に均一に流れるよう複数の排気
孔を配設しであることを特徴とする半導体製造装置。
Semiconductor manufacturing in which a thin film such as 5118i02 is grown in vapor phase on the surface of a wafer placed on a heater plate that passes through the reactor while supplying a reaction gas such as 8 iH to the reactor and exhausting it through an exhaust nozzle. A semiconductor manufacturing apparatus characterized in that the side surface of the exhaust nozzle is extended, and a plurality of exhaust holes are provided on the side surface so that the reaction gas flows uniformly over the wafer surface.
JP9409182A 1982-06-03 1982-06-03 Semiconductor manufacturing device Pending JPS58212126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9409182A JPS58212126A (en) 1982-06-03 1982-06-03 Semiconductor manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9409182A JPS58212126A (en) 1982-06-03 1982-06-03 Semiconductor manufacturing device

Publications (1)

Publication Number Publication Date
JPS58212126A true JPS58212126A (en) 1983-12-09

Family

ID=14100779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9409182A Pending JPS58212126A (en) 1982-06-03 1982-06-03 Semiconductor manufacturing device

Country Status (1)

Country Link
JP (1) JPS58212126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980003B2 (en) * 2006-01-25 2011-07-19 Tokyo Electron Limited Heat processing apparatus and heat processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7980003B2 (en) * 2006-01-25 2011-07-19 Tokyo Electron Limited Heat processing apparatus and heat processing method

Similar Documents

Publication Publication Date Title
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
CN101321893B (en) Gas head and thin-film manufacturing device
US6645884B1 (en) Method of forming a silicon nitride layer on a substrate
US6586343B1 (en) Method and apparatus for directing constituents through a processing chamber
JPH07201762A (en) Gas feeder for manufacturing semiconductor element
JPS62152171A (en) Thin-film transistor
US4137108A (en) Process for producing a semiconductor device by vapor growth of single crystal Al2 O3
US3304908A (en) Epitaxial reactor including mask-work support
JPS58212126A (en) Semiconductor manufacturing device
JPS62263629A (en) Vapor growth device
KR20070037503A (en) Method for the deposition of layers containing silicon and germanium
JP3015710B2 (en) Semiconductor manufacturing method
KR100226764B1 (en) Thin film forming method using chemical vapor deposition system
JP3880096B2 (en) Vapor growth method
JPH06163426A (en) Chemical vapor growth method
US20070254451A1 (en) Process for forming a silicon-based single-crystal portion
JP2008243938A (en) Thermal cvd method and thermal cvd device
JP2002141290A (en) System for producing semiconductor
JPS587821A (en) Formation of metal and silicon compound layer
US20220301829A1 (en) Temperature controlled reaction chamber
JPS5493357A (en) Growing method of polycrystal silicon
TWI261871B (en) Apparatus and method for thin film deposition
JP3112796B2 (en) Chemical vapor deposition method
JPS61198628A (en) Selective growth method for tungsten film
JPH1192940A (en) Device for forming material, such as semiconductor and superconducting material