JPS5821011B2 - Manufacturing method for steel sheets with excellent low-temperature toughness - Google Patents

Manufacturing method for steel sheets with excellent low-temperature toughness

Info

Publication number
JPS5821011B2
JPS5821011B2 JP8150377A JP8150377A JPS5821011B2 JP S5821011 B2 JPS5821011 B2 JP S5821011B2 JP 8150377 A JP8150377 A JP 8150377A JP 8150377 A JP8150377 A JP 8150377A JP S5821011 B2 JPS5821011 B2 JP S5821011B2
Authority
JP
Japan
Prior art keywords
temperature
less
steel
toughness
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8150377A
Other languages
Japanese (ja)
Other versions
JPS5417317A (en
Inventor
千晃 志賀
晃郎 鎌田
延夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP8150377A priority Critical patent/JPS5821011B2/en
Publication of JPS5417317A publication Critical patent/JPS5417317A/en
Publication of JPS5821011B2 publication Critical patent/JPS5821011B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 この発明は低温じん性の優れた鋼板、とくに衝撃破かい
吸収エネルギーが高く、かつ延性−ぜい性遷移温度が著
しく低い引張強さ40〜60Kp/一級低温用鋼板の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a steel plate with excellent low-temperature toughness, especially a steel plate for low-temperature use of class 1 with a tensile strength of 40 to 60 Kp/1, which has high impact fracture absorption energy and a significantly low ductility-brittle transition temperature. This relates to a manufacturing method.

最近造船業界ではLNG、LPGなど液化石油ガスの運
搬船および貯蔵槽の建造が活発化してきており、これら
のタンクや2次防壁ないしは内構部材に用いられる低温
用鋼板は低温における優れたしん性が要求されている。
Recently, in the shipbuilding industry, construction of carrier vessels and storage tanks for liquefied petroleum gases such as LNG and LPG has become active, and the low-temperature steel plates used for these tanks, secondary barriers, and internal structural members have excellent toughness at low temperatures. requested.

また寒冷地で使用される石油や天然ガス用ラインパイプ
用材についても、衝撃破かい吸収エネルギーが高く、か
つ延性−ぜい性遷移温度が著しく低い鋼板が求められて
いる。
Furthermore, for oil and natural gas line pipe materials used in cold regions, there is a demand for steel sheets that have high impact fracture absorption energy and a significantly low ductility-brittle transition temperature.

これらの要求に応える素材として、たとえばラインパイ
プ用高張力鋼などでは、いわゆる制御圧延を施し、極細
粒化させることによるしん性の向上が行なわれてきてい
るが、この種の鋼では衝撃破面に小さなラミネーション
が現われていわゆるセパレーションが多発する傾向にあ
り、材料の信頼の面で一つの問題点となっている。
To meet these demands, materials such as high-strength steel for line pipes have been subjected to so-called controlled rolling to improve their toughness by making the grains extremely fine. There is a tendency for small laminations to appear and so-called separations to occur frequently, which is a problem in terms of material reliability.

とくにセパレーションが発生しやすい材料は水素誘起割
れを発生しやすい傾向のあることが認められることから
も改善が必要とされている。
In particular, it has been recognized that materials that are prone to separation tend to be prone to hydrogen-induced cracking, so improvements are needed.

一方、従来から実用化されている熱処理鋼、たとえば焼
入れ、焼戻し、あるいは焼ならしを施した鋼では、この
ようなセパレーションは発生しないが、衝撃破かいでの
延性−ぜい性遷移温度を制御圧延材なみに下げるとすれ
ばNiなとの高価な合金元素を多量に添加する必要があ
り、その点で実用上の限界があった。
On the other hand, such separation does not occur with heat-treated steels that have been put into practical use, such as steels that have been quenched, tempered, or normalized, but the ductility-brittle transition temperature during impact fracture can be controlled. If it were to be made as low as that of a rolled material, it would be necessary to add a large amount of an expensive alloying element such as Ni, which was a practical limit.

発明者らはこれらの点に鑑み、衝撃破かい吸収エネルギ
ーが高く同時に延性−ぜい性遷移温度が著しく低い鋼板
の開発を進めてきたがその結果、特定成分と特定な圧延
条件を組み合わせ、かつ適切な熱処理を施すことにより
、上述の問題点を有利に回避した新しい低温鋼板の製造
方法を確立したものである。
In view of these points, the inventors have been developing steel sheets that have high impact fracture absorption energy and at the same time a significantly low ductility-brittle transition temperature. A new method for manufacturing low-temperature steel sheets has been established that advantageously avoids the above-mentioned problems by applying appropriate heat treatment.

この発明の要旨は次のとおりである。The gist of this invention is as follows.

重量で0;0.04〜0.16%、Si;0.10〜0
.50%、Mn ; 1.0〜2.0%、Altota
A ; 0.010〜0.060%およびNb;0.0
1〜0.06%を含み、さらに必要によっては0.15
%以下のV、0.50係以下のOu、 0.30以下の
Orおよび0.50係以下のNiのうちから選ばれる一
種または二種以上を含有し、残部Fe及び不可避的不純
物よりなる鋼を、Nbが0.01%以上固溶する温度以
上に加熱し、ついで900℃以下の温度領域での累積圧
下率30〜85係、圧延終了温度700℃以上850℃
以下の条件で熱間圧延し、いったん空冷したあと850
〜950℃の温度範囲で焼ならし処理を行うことを特徴
とする低温じん性の優れた鋼板の製造法。
Weight: 0: 0.04-0.16%, Si: 0.10-0
.. 50%, Mn; 1.0-2.0%, Altota
A; 0.010-0.060% and Nb; 0.0
Contains 1 to 0.06%, and optionally 0.15%
% or less of V, O of 0.50 or less, Or of 0.30 or less, and Ni of 0.50 or less, with the balance consisting of Fe and inevitable impurities. is heated to a temperature above which 0.01% or more of Nb is dissolved in solid solution, and then a cumulative reduction rate of 30 to 85 in a temperature range of 900°C or less, and a rolling end temperature of 700°C to 850°C.
After hot rolling under the following conditions and once air cooling, 850
A method for producing a steel sheet with excellent low-temperature toughness, characterized by carrying out a normalizing treatment in a temperature range of ~950°C.

この発明の実施に当っては鋼中不純物としてのPおよび
Sはそれぞれ0.03%以下、o、o2%以下で許容さ
れ得る。
In carrying out the present invention, P and S as impurities in the steel can be allowed at 0.03% or less, o, and o2% or less, respectively.

すなわちこの発明では、上記した特定成分の鋼を特定の
条件下で制御圧延し、それによって結晶粒をいったん極
微細化したのち、改めて特定条件での焼ならしを施す工
程の結合に特徴があり、従来の単なる焼ならし材では得
られなかったような微細粒を鋼中に形成させ、それによ
って強度とともにしん性の著しい向上を図ったものであ
る。
In other words, this invention is characterized by the combination of the steps of subjecting the steel with the above-mentioned specific components to controlled rolling under specific conditions, thereby once making the grains extremely fine, and then normalizing the steel again under specific conditions. , by forming fine grains in the steel that could not be obtained with conventional simply normalized materials, thereby significantly improving both strength and toughness.

さて焼ならし処理により微細なフェライト粒を得るには
、この熱処理前の状態、すなわち圧延のままの状態で細
粒であることがまず必要である。
Now, in order to obtain fine ferrite grains by normalizing treatment, it is first necessary that the grains be fine in the state before the heat treatment, that is, in the as-rolled state.

そこでこの発明は必須成分であるNbが0.011以上
固溶するような温度以上に鋼を加熱したあと900℃以
上温度域での熱間圧延だけではなく、900℃以下の未
再結晶領域でもさらに累積圧下を与えて伸長したオース
テナイト粒界ならびに粒内の変形バンドからフェライト
粒を変態生成させることによる制御圧延法の極微細粒化
効果をその基礎とし、そして上記固溶Nbが圧延途中も
しくはその後の冷却途上にNb(0,N)としてフェラ
イト粒界およびサブグレイン粒界に微細に析出すること
を利用するが、さらにその後焼ならしを施す。
Therefore, this invention is not only capable of hot rolling in a temperature range of 900°C or higher after heating the steel to a temperature at which 0.011 or more of Nb, an essential component, forms a solid solution, but also in the non-recrystallized region of 900°C or lower. Furthermore, it is based on the ultra-fine graining effect of the controlled rolling method by transforming and generating ferrite grains from austenite grain boundaries elongated by cumulative reduction and deformation bands within the grains, and the above-mentioned solid solution Nb is removed during or after rolling. The method utilizes the fact that Nb (0, N) is finely precipitated at ferrite grain boundaries and subgrain grain boundaries during cooling, and is further normalized afterwards.

ことによって前述のような制御圧延法に伴われた欠点を
回避することに意義がある。
Therefore, it is significant to avoid the drawbacks associated with the above-mentioned controlled rolling method.

第1図と第2図に900℃以下の累積圧下率および圧延
仕上げ温度に対する熱処理後の機械的諸性質の関係を示
す。
FIGS. 1 and 2 show the relationship between various mechanical properties after heat treatment with respect to cumulative rolling reduction of 900° C. or lower and finishing rolling temperature.

第1図では供試鋼として0.06係0−0.25、se
−1,7%、 Mn −0,03%、AAtota/
−0,04係、Nb−0,02%V−0,2%N1(
7)転炉溶製鋼を用い、この鋼スラブを1150°Cに
再加熱しNbを0.04係固溶させ、1050〜950
℃で60係の累積圧下率を加え、続いて900〜850
°Cの温度域で累積圧下率を20〜90係変えた。
In Figure 1, the sample steel is 0.06, 0-0.25, se
-1.7%, Mn -0.03%, AAtota/
-0,04 section, Nb-0,02%V-0,2%N1 (
7) Using converter molten steel, this steel slab was reheated to 1150°C to dissolve Nb at 0.04% and
Apply a cumulative reduction rate of 60 at °C, followed by 900 to 850
The cumulative reduction rate was varied by 20 to 90 points in the temperature range of °C.

その後空冷した後再び900℃に再加熱し焼ならし処理
をしたものについて27ERVノツチ・シャルピー衝撃
試験と引張試験を行なった。
Thereafter, the material was cooled in air, reheated to 900.degree. C. and normalized, and then subjected to a 27ERV notch Charpy impact test and a tensile test.

なお、第1図は900〜850℃の累積圧下率と焼なら
し処理後のvTrsの関係である。
In addition, FIG. 1 shows the relationship between the cumulative reduction rate of 900 to 850° C. and vTrs after normalizing treatment.

一方第2図では第1図と同一の供試鋼を用い同様のスラ
1ブ加熱を経て、1050〜950℃域での同一の圧下
を施した後、900°C以下の累積圧下を50係に固定
し、圧延仕上げ温度を変え、その後第1図の場合と同条
件の焼ならし処理を施したもののvTrsとY、S、の
関係を求めたものである。
On the other hand, in Fig. 2, the same test steel as in Fig. 1 was heated through the same slab heating, and the same reduction in the range of 1050 to 950°C was applied, followed by a cumulative reduction of 50 times below 900°C. The relationship between vTrs and Y, S was obtained by fixing the rolling finish temperature to , changing the rolling finishing temperature, and then performing normalizing treatment under the same conditions as in the case of FIG. 1.

第1図で900℃以下の累積圧下率30係でじん性の向
上がみられ、さらに900℃以下での累積圧下率が50
係以上に大きくなるほど第1図のようにまた圧延仕上げ
温度が低くなるほど、第2図のように焼ならし処理後の
強度とじん性が良好となる。
In Figure 1, an improvement in toughness is seen at a cumulative reduction rate of 30 below 900°C, and an improvement in toughness is seen at a cumulative reduction rate of 50 below 900°C.
As shown in FIG. 1, the lower the rolling finishing temperature, the better the strength and toughness after normalizing treatment as shown in FIG. 2.

しかし900℃以下の累積圧下率が30係未満、あるい
は圧延仕上げ温度が850℃を越えるとじん性の向上が
みられず、また900°C以下での累積圧下率が85%
をこえてもあるいは、仕上げ温度を700℃未満にして
も、上記効果は飽和していたずらに圧延能率を悪くする
However, if the cumulative rolling reduction below 900°C is less than 30 degrees or the rolling finishing temperature exceeds 850°C, no improvement in toughness will be seen, and if the cumulative rolling reduction below 900°C is 85%.
Even if the finishing temperature exceeds 700° C. or lowers the finishing temperature to less than 700° C., the above effects are saturated and the rolling efficiency is unnecessarily deteriorated.

かような理由で900°C以下の累積圧下率は上限を8
5係に、下限を30係に設定し、そして仕上げ温度は上
限を850℃、下限を700℃とした。
For this reason, the upper limit of the cumulative reduction rate below 900°C is 8
The lower limit was set to 5 and the lower limit was set to 30. The upper limit of the finishing temperature was 850°C and the lower limit was 700°C.

焼ならし処理で細かいフェライト粒を得るにはまず圧延
のままで細かい粒であることが望ましいことについては
上押したが、また同時にそれらの粒が熱処理温度までの
加熱途上で粒生長しにくいことが必要である。
We have already emphasized that in order to obtain fine ferrite grains through normalizing treatment, it is desirable to have fine grains as rolled, but at the same time, these grains are difficult to grow during heating to the heat treatment temperature. is necessary.

すなわち焼ならし温度に到達する途中でα→γ変態を起
こす際、γ粒発生の核となるところは主として粒界であ
り、したがって粒界面積が大きいこと、つまり変態直前
まで細粒であることが変態後の細粒をもたらす所以とな
る。
In other words, when the α → γ transformation occurs on the way to the normalizing temperature, the nucleus of γ grain generation is mainly at the grain boundaries, and therefore the grain boundary area is large, that is, the grains must be fine until immediately before the transformation. This is the reason for the formation of fine grains after metamorphosis.

ところで、一般には熱処理前にフェライト粒が細かくて
も、焼ならし温度までの加熱途上、400℃あたりから
粒生長を起すため、通常組成の鋼では圧延のままでたと
え細粒であっても焼ならし処理を行うと効果は弱まって
しまうのが普通である。
By the way, in general, even if the ferrite grains are fine before heat treatment, grain growth occurs from around 400℃ during heating to the normalizing temperature, so steel with a normal composition cannot be sintered even if the grains are fine as rolled. Normally, the effect will be weakened by the conditioning process.

しかしこの発明のように圧延前に固溶Nbをo、o1%
以上存在させである場合は、圧延途中もしくはその後の
冷却途上でNb(ON)がフェライト粒界およびサブグ
レイン粒界に微細に析出し、その上この析出物がα→γ
変態温度以下では固溶しないため、圧延後再び熱処理温
度まで加熱してもα→γ変態直前まで、それらがフェラ
イト粒の生長およびサブグレインの消滅を抑制する効果
を維持することになり、その結果としてこの発明により
はじめて焼ならし処理による細粒効果は一段と向上する
のである。
However, as in this invention, solid solution Nb is added to o or o1% before rolling.
In the case where Nb(ON) is present in the ferrite grain boundaries and subgrain boundaries during rolling or during subsequent cooling, the precipitates are
Since they do not form a solid solution below the transformation temperature, even if they are heated again to the heat treatment temperature after rolling, they maintain their effect of suppressing the growth of ferrite grains and the disappearance of subgrains until just before the α→γ transformation. As a result, the fine grain effect of normalizing treatment can be further improved by this invention.

ここで焼ならし温度と機械的諸性質の関係を調査したと
ころ第3図に示すように800℃近傍と、1050°C
以上の温度にぜい化成があるのでこの発明では焼ならし
温度の範囲の下限を850℃、上限を950℃とした。
When we investigated the relationship between the normalizing temperature and various mechanical properties, we found that it was around 800°C and 1050°C, as shown in Figure 3.
In this invention, the lower limit of the normalizing temperature range is set to 850°C, and the upper limit is set to 950°C, since brittle formation occurs at the above temperatures.

ところで第3図は第1図と同一の供試鋼を用い、また同
様のスラブ加熱、また1050〜950°C域での同一
の圧下を施した後、900〜800°Cで50係の累積
圧下率を施した後空冷し、その後焼ならし温度(保持時
間1hr)を750〜1050゜の範囲で変えたときの
vTrsと一50℃におけるシャルピー衝撃吸収エネル
ギー(vE−50°G)の関係である。
By the way, Fig. 3 uses the same test steel as in Fig. 1, and after applying the same slab heating and the same reduction in the 1050 to 950°C range, the 50% cumulative temperature was measured at 900 to 800°C. Relationship between vTrs and Charpy impact absorption energy (vE-50°G) at -50°C when the reduction rate is applied, air-cooled, and then the normalizing temperature (holding time 1 hr) is varied in the range of 750 to 1050° It is.

以下にこの発明における成分限定の理由について説明す
る。
The reasons for limiting the ingredients in this invention will be explained below.

Cは0.04CI)未満では鋼板の強度が低下すること
および溶接熱影響部(以下HAZと略記する)の軟化が
大きいため、C含有量の下限は0.04%とした。
If C is less than 0.04 CI), the strength of the steel plate will decrease and the weld heat affected zone (hereinafter abbreviated as HAZ) will be greatly softened, so the lower limit of the C content was set to 0.04%.

またCが0.16%を越えると母材のじん。性が劣化す
るとともに溶接部の硬化、耐割れ性の劣化が著しいので
上限を0.16%とした。
Also, if C exceeds 0.16%, the base material becomes dusty. The upper limit was set at 0.16% because the hardening of the welded area and the deterioration of cracking resistance were significant.

Siは鋼精錬時に脱酸上必然的に含有される元素である
が、0.1%未満になると母材じん性が劣化するため下
限を0.1係とした。
Si is an element that is inevitably included for deoxidation during steel refining, but if it becomes less than 0.1%, the toughness of the base material deteriorates, so the lower limit was set to 0.1%.

一方Siが多過ぎ。ると鋼の清浄度が劣化し、じん性を
低下させるため上限を0.50係とした。
On the other hand, there is too much Si. If this happens, the cleanliness of the steel deteriorates and the toughness decreases, so the upper limit was set to 0.50.

Mnは1.0%未満では鋼板の強度およびじん性が低下
すること、そしてHAZの軟化が大きくなるため下限を
1.0%とした。
If Mn is less than 1.0%, the strength and toughness of the steel sheet will decrease, and the HAZ will become more softened, so the lower limit was set at 1.0%.

一方Mnが多過ぎると・HAZのじん性が劣化するため
上限を2.0係とした。
On the other hand, if there is too much Mn, the toughness of the HAZ deteriorates, so the upper limit was set to 2.0.

Adは鋼の脱酸上最低0.01%のAllが固溶するよ
うに添加することが必要であることがらAA!tota
lの下限を0.01係とした。
Ad is required to be added so that at least 0.01% of All is dissolved in solid solution for deoxidation of steel.AA! tota
The lower limit of l was set to 0.01.

一方固溶Alが0.06%以上になるとHAZのしん件
のみならず溶接金属のしん性も著しく劣化する。
On the other hand, if the solid solution Al content exceeds 0.06%, not only the toughness of the HAZ but also the toughness of the weld metal will deteriorate significantly.

このためAlltotallの上限をo、o6o%とし
た。
For this reason, the upper limit of Alltotal was set to o, o6o%.

Nbは先に述べたように圧延温度において少くともo、
o1%以上固溶しないと遷移温度を向上させる細粒効果
が得られず、このことから、全Nb量の下限をo、o1
%とした。
As mentioned above, Nb is at least o at the rolling temperature.
If o1% or more is not dissolved in solid solution, the fine grain effect that improves the transition temperature cannot be obtained, and for this reason, the lower limit of the total Nb amount is set to o, o1
%.

0.06%までは母材じん性を劣化させることなく添加
量の増大とともに;強度を増加させるが、0.06%以
上添加するとHAZのじん性が著しく劣化する。
Up to 0.06%, the strength increases as the amount added increases without deteriorating the base material toughness; however, when added in excess of 0.06%, the toughness of the HAZ deteriorates significantly.

このため上限を0.06%とした。Therefore, the upper limit was set at 0.06%.

次に選択成分としてNi0.50%以下、Or 0.3
0%以下、OuO,50%以下およびVo、15%以下
の1種または2種以上をさらに添加するのは上述したと
ころよりも一層母材の強度、じん性を向上させ、製造可
能な板厚の拡大を可能とするためであるが、その添加量
の制限理由は以下に述べるとおりである。
Next, as selected components, Ni 0.50% or less, Or 0.3
Adding one or more of 0% or less, OuO, 50% or less, and Vo, 15% or less improves the strength and toughness of the base material even more than the above, and increases the thickness that can be manufactured. The reason for limiting the amount added is as described below.

・ NiはHAZの硬化性およびじん性に悪い影響を与
えることなく母材の強度、じん性を向上させるが、この
発明の目的に対しては0.5%を越えて添加する必要は
なく、それ以上は製造コストの上昇を招くので上限を0
.5%とした。
- Ni improves the strength and toughness of the base material without adversely affecting the hardenability and toughness of HAZ, but for the purpose of this invention, it is not necessary to add more than 0.5%; Anything more than that will increase manufacturing costs, so set the upper limit to 0.
.. It was set at 5%.

Orは焼ならし後の組織内に生成しやすいバンド状パー
ライト組織を抑制する働きがあり、それによってじん性
を向上させるが、一方HAZの硬化性を増大させ、じん
性および耐割れ性の低下を招きやすく、この点を考慮し
てその上限を0.3 %とした。
Or has the function of suppressing the band-like pearlite structure that tends to form in the structure after normalization, thereby improving toughness, but on the other hand, it increases the hardenability of HAZ, resulting in a decrease in toughness and cracking resistance. Taking this into consideration, the upper limit was set at 0.3%.

OuはNiとほぼ同様の効果があるだけでなく、耐食性
も向上させるが、0.50%を越えると熱間圧延中にク
ランクが発生しやすくなり、鋼板の表面性状が劣化する
ので上限を0.50%とした。
Ou not only has almost the same effect as Ni, but also improves corrosion resistance, but if it exceeds 0.50%, cranks are likely to occur during hot rolling and the surface quality of the steel sheet deteriorates, so the upper limit should be set to 0. .50%.

■はこの発明による鋼板の母材強度とじん性向上、製造
可能板厚の拡大、並びに溶接部の継手強度確保のために
添加するもので挑る。
(2) is an attempt to improve the strength and toughness of the base material of the steel plate according to the present invention, increase the thickness of the steel plate that can be manufactured, and ensure the strength of the joint at the welded part.

しかし添加量が多きに失すると母材及びHAZのじん性
を著しく劣化させるため上限を0.15%とした。
However, if the amount added is too large, the toughness of the base material and HAZ will deteriorate significantly, so the upper limit was set at 0.15%.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

厚板ミルによる制御圧延を経て焼ならしを施し、得られ
た供試鋼板の化学成分と製造条件を第1表に、またそれ
らの鋼板の機械的諸性質を第2表に示す。
Table 1 shows the chemical composition and manufacturing conditions of the test steel plates obtained by controlled rolling in a thick plate mill and normalization, and Table 2 shows the mechanical properties of the steel plates.

比較鋼#1と#2は何れもNbを含有せず、そして#1
は通常行われている圧延法に従って圧延仕上温度を90
0℃としたもの、#2は900°C以下で50チの累積
圧下率を与え圧延仕上げ温度を850°Cとしたもの、
また比較鋼#3と#4は伺れもNbを0.02係含有し
ているが、#3は900℃以下の圧下を与えず#4は#
2と同じ熱処理を行ったものであるが、これらの鋼はい
ずれも焼ならし後のシャルピー衝撃遷移温度vTrsは
一600C〜−75°C最も高い#4でもせいぜい一8
2°C程度の値しか示さないのに対し、0.02%のN
bを添加し、かつ900℃以下の累積圧下率をそれぞれ
50%あるいは80係を与えて焼ならしたこの発明によ
る鋼板#5と#6は一120℃と一140℃のvTrs
を示し衝撃遷移温度が著しく向上している、その上この
発明による鋼板は引張強さ、衝撃吸収エネルギーも同時
に良好となっているのが特徴である。
Comparative steels #1 and #2 both contain no Nb, and #1
The rolling finishing temperature was set at 90°C according to the commonly used rolling method.
0℃, #2 has a cumulative reduction of 50 inches at 900℃ or less, and the rolling finishing temperature is 850℃,
Comparative steels #3 and #4 both contain 0.02% Nb, but #3 is not subjected to a reduction of 900°C or less, and #4 is #4.
These steels were subjected to the same heat treatment as No. 2, but the Charpy shock transition temperature vTrs after normalization was -600C to -75°C, and even #4, which is the highest, was only 18
While it only shows a value of about 2°C, 0.02% N
Steel plates #5 and #6 according to the present invention, which were normalized by adding B and giving a cumulative reduction rate of 50% or 80, respectively, at 900°C or less had vTrs of -120°C and -140°C.
The steel sheet according to the present invention is characterized in that the impact transition temperature is significantly improved, and the tensile strength and impact absorption energy are also improved.

供試鋼板#10、#11および#12は多少のしん件の
向上と50 Ky1m1M上の強度増大及び279まで
の厚肉化を狙ってさらにNi、Or、OuおよびVを少
量ずつ添加した実施例であって、Nbを含有しない比較
鋼#7、#8および#9が一82°C程度以下のvTr
sであるのに比べ、この発明による鋼板は強度の増大に
もかかわらず、vTrsが−118〜−150℃の値を
呈し、衝撃遷移温度が著しく向上している。
Test steel plates #10, #11, and #12 are examples in which Ni, Or, Ou, and V are added in small amounts with the aim of improving the strength to some extent, increasing the strength to 50 Ky1m1M, and increasing the thickness to 279. Comparative steels #7, #8, and #9 that do not contain Nb have a vTr of about 182°C or less.
s, the steel plate according to the present invention exhibits a value of vTrs of -118 to -150°C, and the impact transition temperature is significantly improved, despite the increase in strength.

この発明による鋼板はシャルピー衝撃特性のみならず第
2表に示すようにDWTT特性もあわせて著しく良好で
さらにセパレーションの心配もない。
The steel sheet according to the present invention not only has excellent Charpy impact properties but also extremely good DWTT properties as shown in Table 2, and there is no fear of separation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧延仕上げ温度を850°Cに固定して、90
0°C以下の累積圧下率を変えた場合、その後900°
Cで1時間焼ならした鋼のシャルピー衝撃遷移温度(v
Trs)と降伏応力(y、s、)の関係を示すグラフ、
また第2図は900℃以下の累積圧下率を50係に固定
し、圧延仕上げ温度を変えた場合、その後第1図の鋼と
同条件の焼ならし処理を施したもののvTrsとY、S
、の関係を示すグラフ、そして第3図は900°Gと8
50℃の温度域で50%の累積圧下率を与えた鋼板の焼
ならし温度(保持時間1hr)を変えたときのvTrs
と一50℃におけるシャルピー衝撃吸収エネルギー(v
E−50℃の関係を示すグラフである。
Figure 1 shows the rolling finishing temperature fixed at 850°C and 90°C.
If the cumulative reduction rate is changed below 0°C, then 900°
Charpy impact transition temperature (v
A graph showing the relationship between Trs) and yield stress (y, s,),
Figure 2 also shows vTrs, Y, and S of the steel shown in Figure 1, which was normalized under the same conditions as the steel shown in Figure 1, when the cumulative reduction rate below 900°C was fixed at 50 degrees and the rolling finishing temperature was changed.
, and Figure 3 shows the relationship between 900°G and 8
vTrs when the normalizing temperature (holding time 1 hr) of a steel plate given a cumulative reduction rate of 50% in a temperature range of 50°C is changed
and Charpy impact absorption energy (v
It is a graph showing the relationship between E and 50°C.

Claims (1)

【特許請求の範囲】[Claims] 1 重量で0;0.04〜0.16係、Si;0.10
〜o、so%、Mn ; 1.0〜2.0%、A#to
tad ; 0.010〜0.060係およびNb;0
.01〜0.06係を含み、さらに必要によっては0.
15%以下のV、0.50%以下のOu、0.30係以
下のOrおよび0.50係以下のNiのうちから選ばれ
る一種又は二種以上を含有し、残部は実質的にFe及び
不可避的不純物よりなる鋼を、Nbがo、o1%以上固
溶する温度以上に加熱し、ついで900℃以下の温度領
域での累積圧下率30〜85%、圧延終了温度700℃
以上850℃以下の条件で熱間圧延し、いったん空冷し
たあと850〜950℃の温度範囲で焼ならし処理を行
うことを特徴とする低温じん性の優れた鋼板の製造法。
1 Weight: 0; 0.04-0.16, Si: 0.10
~o, so%, Mn; 1.0-2.0%, A#to
tad; 0.010-0.060 and Nb; 0
.. 01 to 0.06, and further 0.0 as necessary.
Contains one or more selected from 15% or less of V, 0.50% or less of O, 0.30% or less of Or, and 0.50% or less of Ni, and the remainder is substantially Fe and Steel containing unavoidable impurities is heated above the temperature at which 1% or more of Nb is dissolved in solid solution, and then the cumulative reduction rate is 30 to 85% in a temperature range of 900°C or less, and the rolling end temperature is 700°C.
A method for producing a steel sheet with excellent low-temperature toughness, characterized by hot rolling at a temperature of 850°C or less, once air cooling, and then normalizing in a temperature range of 850 to 950°C.
JP8150377A 1977-07-09 1977-07-09 Manufacturing method for steel sheets with excellent low-temperature toughness Expired JPS5821011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8150377A JPS5821011B2 (en) 1977-07-09 1977-07-09 Manufacturing method for steel sheets with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8150377A JPS5821011B2 (en) 1977-07-09 1977-07-09 Manufacturing method for steel sheets with excellent low-temperature toughness

Publications (2)

Publication Number Publication Date
JPS5417317A JPS5417317A (en) 1979-02-08
JPS5821011B2 true JPS5821011B2 (en) 1983-04-26

Family

ID=13748155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8150377A Expired JPS5821011B2 (en) 1977-07-09 1977-07-09 Manufacturing method for steel sheets with excellent low-temperature toughness

Country Status (1)

Country Link
JP (1) JPS5821011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5789428A (en) * 1980-11-19 1982-06-03 Sumitomo Metal Ind Ltd Production of normalized steel plate

Also Published As

Publication number Publication date
JPS5417317A (en) 1979-02-08

Similar Documents

Publication Publication Date Title
JPH0127128B2 (en)
JP3301348B2 (en) Manufacturing method of hot-rolled high-tensile steel sheet
JP2020509181A (en) Sour-resistant thick steel plate excellent in low-temperature toughness and post-heat treatment characteristics and method for producing the same
JPS6155572B2 (en)
JPH0563525B2 (en)
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH028349A (en) High tensile hot rolled steel strip having excellent cold workability and weldability and having >=55kgf/mm2 tensile strength
JPS58100625A (en) Production of high toughness high tensile steel plate having excellent weldability
JPH07316650A (en) Production of high strength hot rolled steel plate with low yield ratio
JPH08283906A (en) High tensile strength steel plate for fitting material, excellent in hydrogen induced cracking resistance and sulfide stress corrosion cracking resistance
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JPH08319538A (en) Hot rolled steel plate excellent in toughness and having low yield ratio and high strength and its production
JPS62174324A (en) Manufacture of high yield point steel for low temperature superior in toughness welding heat affected-zone
JPS5821011B2 (en) Manufacturing method for steel sheets with excellent low-temperature toughness
JPS5877531A (en) Production of high toughness high tensile steel plate with less separation
JPH064890B2 (en) Manufacturing method of high yield point steel for low temperature
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS6143413B2 (en)
JPH1180832A (en) Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature
JPH10183241A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH0143005B2 (en)
JPH01172520A (en) Manufacture of 80kgf/mm2 class electric welded steel pipe having superior toughness at low temperature and low yield ratio
KR100435458B1 (en) A method for manufacturing steel strip for linepipe with low yield ratio and superior low temperature toughness