JPS58207947A - Catalyst for oxidizing carbon monoxide - Google Patents

Catalyst for oxidizing carbon monoxide

Info

Publication number
JPS58207947A
JPS58207947A JP57090377A JP9037782A JPS58207947A JP S58207947 A JPS58207947 A JP S58207947A JP 57090377 A JP57090377 A JP 57090377A JP 9037782 A JP9037782 A JP 9037782A JP S58207947 A JPS58207947 A JP S58207947A
Authority
JP
Japan
Prior art keywords
catalyst
composition
carbon monoxide
palladium
salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57090377A
Other languages
Japanese (ja)
Other versions
JPS5951852B2 (en
Inventor
Shigeo Ichise
市瀬 茂男
Ikuo Horii
堀井 郁夫
Kenichiro Sugimori
健一郎 杉森
Masaru Yamamoto
勝 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GOSEI KAGAKU KENKYUSHO KK
Original Assignee
GOSEI KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GOSEI KAGAKU KENKYUSHO KK filed Critical GOSEI KAGAKU KENKYUSHO KK
Priority to JP57090377A priority Critical patent/JPS5951852B2/en
Publication of JPS58207947A publication Critical patent/JPS58207947A/en
Publication of JPS5951852B2 publication Critical patent/JPS5951852B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To enhance activation, by forming the catalyst from at least one catalytic assistant selected from palladium, copper, silver and rare earth metal salts, and an activating assistant such as ammonium persulfate. CONSTITUTION:A catalyst composition is blended with a basic composition of (Pd<2+>+2.0-3.0 X+0.01-0.5 Y) [wherein X is pref. approx. 2 in case of gamma-Al2O3 (having a micropore volume of 0.1-0.5cc/g and a specific surface area of 20- 400m<2>/g, and Y is pref. ammonium persulfate in a range pref. of 0.01-0.5molar or ratio for Pd<2+>=1] based on the amount of Pd<2+>, and treated by a method for accelerating uniform blending or maturing it for 7-10 days. This liquid catalytic composition is used to impregnate into a carrier such as porous ceramics, an amorphous compound, active carbon, alumina or silica.

Description

【発明の詳細な説明】 本発明は一酸化炭素を含有するガス体から常温で一酸化
炭素を除去する触媒に関するものである、 衆知のように一酸化炭素は、燃焼機器、暖房機器、車輛
等の排気ガス中に含有されているほか。
[Detailed Description of the Invention] The present invention relates to a catalyst that removes carbon monoxide from a gaseous body containing carbon monoxide at room temperature.As is well known, carbon monoxide is used in combustion equipment, heating equipment, vehicles, etc. In addition to being contained in the exhaust gas of

九ばこ等の煙中にも含有され、それぞれ環境の保全や人
体の健康上問題となっている。しかしながら−酸化炭素
は触媒しての活性が低いため、これを低温度で酸化し無
害化しうるような触媒はきわめて少ないのが現状である
It is also contained in the smoke of cigarettes, etc., and each poses a problem for environmental conservation and human health. However, since carbon oxide has low activity as a catalyst, there are currently very few catalysts that can oxidize it at low temperatures and render it harmless.

従来知られている銀−マンガン−鋼−コバルトの酸化物
からなるホブカライド触媒は、室温で活性を示すが少量
の水分で失活し、酸化銀や過マンガン酸銀の触媒は、水
分の存在下でも活性を示すが反応が多分に化学量論的で
あり、寿命が短くかつ高価である等の欠点がある。
The conventionally known fobcalide catalyst consisting of silver-manganese-steel-cobalt oxide is active at room temperature, but is deactivated by a small amount of moisture, and silver oxide and silver permanganate catalysts are active in the presence of moisture. However, although it exhibits activity, it has disadvantages such as a highly stoichiometric reaction, short lifespan, and high cost.

またパラジウムおよびその堰による触媒は室温で一酸化
炭素1[化して炭酸ガスにして無害化することができる
が、必要量が多いことと高1面であることに問題があっ
た。パラジウムを劇薬化する方法として従来知られてい
るものに、堰化パラジウム、(PdC12)に埴化嘴(
Curl、 )  e Q加してPd(0) =Pd(
n) C1,の反応を可逆的に繰返して活性を付与する
方法があるが(友とえばドイツ特許第713791号)
、この方法は反応速度が遅く実用化に至らなかつ7ヒ。
Furthermore, palladium and its weir-based catalysts can convert carbon monoxide into carbon monoxide at room temperature and make it harmless, but there are problems in that a large amount is required and the catalyst is highly carbon monoxide. Conventionally known methods for making palladium into a powerful drug include weir-forming palladium, (PdC12) and clay-forming beak (
Curl, ) e Q plus Pd(0) = Pd(
n) There is a method of imparting activity by reversibly repeating the reaction of C1 (for example, German Patent No. 713,791).
However, this method has a slow reaction rate and has not been put into practical use.

この方法の改良方法としてPd(n) −Cu (n)
 触媒に少量の硝酸塩イオンを添加し9反応速度を早め
る方法(たとえば米国特許第3790662号)が提案
されたが、実用化のためにはなお活性量が不足している
。これは現在使用条件として求められている基準が速い
流速でしかも一酸化炭素含有量が高いことと、  Pd
  の高価であることから少量の触媒量で使用条件に合
致しなければならないからである。
As an improvement method of this method, Pd(n) −Cu(n)
A method of accelerating the 9 reaction rate by adding a small amount of nitrate ions to the catalyst has been proposed (for example, US Pat. No. 3,790,662), but the amount of activity is still insufficient for practical use. This is because the current standards for use are high flow rates and high carbon monoxide content, and Pd
This is because the use conditions must be met with a small amount of catalyst since it is expensive.

本発明は、パラジウムを用いた触媒の組成として、塩化
鋼等の他に独自な活性促進剤を付加することにより、パ
ラジウム系触媒の活性量を著しく増やし、従来必要とさ
れているパラジウム使用量の節減を可能にしたもので1
本発明だよるパラジウム系触媒は、(1)−酸化炭素の
酸化速度が大きいこと、(2)ガス中の水分の存在下で
失活しないこと。
The present invention significantly increases the activity of the palladium-based catalyst by adding a unique activation promoter in addition to chlorinated steel to the composition of the palladium-based catalyst, thereby reducing the amount of palladium used conventionally. It made it possible to save 1
The palladium-based catalyst of the present invention (1) has a high rate of oxidation of carbon oxide, and (2) does not deactivate in the presence of moisture in the gas.

(3)室温で活性を持続すること、(4)有囁エフ0ゾ
ル多量含有ガスに対しても一清化炭素を選択的に酸化し
うろこと、(5)活性差が犬であるため触媒使用量が少
く経済的に安価であること等のすぐれた性能を備えてい
る。
(3) It maintains its activity at room temperature, (4) It selectively oxidizes the carbon even in gases containing a large amount of sol, and (5) The catalyst has a similar activity difference. It has excellent performance such as being used in small quantities and being economically inexpensive.

本発明の触媒の基本組成はpb”+x+yからなるOX
はCu”、  Ag2+ もしくはAg+v又はLa 
3+などの稀土類元素イオンの塩類を示し、主触媒Pd
2+をPd’→Pd2+に復元して組成全体系を1)d
2+=Pd0(サイクル)にする助触媒成分であり、Y
は過硫酸アンモニウムもしズは過硫酸アルカリで。
The basic composition of the catalyst of the present invention is OX consisting of pb''+x+y
is Cu”, Ag2+ or Ag+v or La
Indicates salts of rare earth element ions such as 3+, and the main catalyst is Pd.
2+ is restored to Pd' → Pd2+ and the entire composition system is 1) d
It is a promoter component that makes 2+ = Pd0 (cycle), and Y
If it is ammonium persulfate, it is alkaline persulfate.

助触媒成分Xの酸化還元機能を促進させる活性助剤成分
である。X、Yの好ましい範囲をモル比で示セハPd2
+1ニ対しテXlO〜3.0. 、yo、o 1〜0.
5である。
It is an active co-agent component that promotes the redox function of co-catalyst component X. The preferred ranges of X and Y are shown in molar ratios.SehaPd2
+1 versus TeXlO~3.0. , yo, o 1-0.
It is 5.

本発明看等は、基本組成3成分の相関的な反応系のなか
で、とくに助!独媒成分Xに対する活性助剤成分Yの作
用が、触媒活性1を著しく増大させることを実験的に、
、、、、実証したものでめる。
The present invention is particularly useful in a correlated reaction system of three basic components. It has been experimentally shown that the action of the active aid component Y on the solvent component X significantly increases the catalyst activity 1.
,,,,I will use what has been proven.

本発明におけるY成分の物質およびその作用効果は、多
くの実験により明確にされたものであり。
The substance of component Y in the present invention and its effects have been clarified through many experiments.

効果は大きい順にア/七ニウム遍諷酸;温、アルカリ過
硫酸塩の頃であり、前記した公知の添加剤とは後記する
ように大きな差を示している。
In descending order of effectiveness, the effects are in the order of a/heptinium persulfate, warm, and alkali persulfates, and show a large difference from the above-mentioned known additives, as will be described later.

各種の過硫酸塩類は、常温又は熱水甲で分解して酸素を
発生し、硫酸塩または硫酸に変化するものであるが1本
発明に関連する各種過硫酸塩の種類別の性質を述べると
、(1)ナトリウムの過硫酸塩は、潮解性が大きく常温
から分解する。(2)カリウムの過硫酸塩は、結晶の分
解温度が約i o o ’cであるが、水への溶解度は
少く、常温で約L7%。
Various persulfates decompose at room temperature or in hot water to generate oxygen and change to sulfates or sulfuric acid. 1. To describe the properties of each type of persulfates related to the present invention: (1) Sodium persulfate is highly deliquescent and decomposes at room temperature. (2) Potassium persulfate has a crystal decomposition temperature of about io'c, but its solubility in water is low, about 7% at room temperature.

熱水で約lO%である。(3)アンモニウムの過硫酸塩
は、結晶分解温度が約120℃であるが、水に対する溶
解度が犬で常温での溶解量は58%に達する。しかも水
と会うと、100℃以下でも徐々に分解し、100’c
では盛んに分解する。
It is about 10% in hot water. (3) Ammonium persulfate has a crystal decomposition temperature of about 120°C, but its solubility in water is as high as 58% at room temperature. Moreover, when it meets water, it gradually decomposes even at temperatures below 100°C.
Let's break it down in detail.

これ等の過硫酸塩の本発明における役割は、活性助剤と
して水分の存在下にPける活性改築を触媒反応系に供給
することであるが、なかんずくアンモニウム塩は効果が
太きく、〔冥瞑によればアルカリ塩の効果はアンモニウ
ム塩の60%である〕゛こ几は効果の要因である塩類の
分解温度や水への溶解性の因子の外に、アンモニウム塩
はNH4成分を持つことにより、助+’A媒成分の羽ま
たは稀±1元素(例えばLa3+)に対して、ガス中の
qt水分の存在によりアンモニウム錯塩を形成し、−シ
!化炭素の溶解性を向上させることからIPA媒反応系
での一酸化炭素と活性酸素との会合度を促進させること
によるものと考えられる。
The role of these persulfates in the present invention is to supply active modification to the catalytic reaction system in the presence of water as an activation aid, and ammonium salts are particularly effective; According to the study, the effectiveness of alkali salts is 60% that of ammonium salts. In addition to the decomposition temperature and water solubility of the salts, which are factors for the effectiveness, ammonium salts have NH4 components. , an ammonium complex salt is formed by the presence of qt moisture in the gas with respect to the wing or rare ±1 element (for example, La3+) of the auxiliary +'A medium component, and -shi! This is thought to be due to the fact that it improves the solubility of carbon monoxide and promotes the degree of association between carbon monoxide and active oxygen in the IPA medium reaction system.

次にXとしては従来からPd2+ と組合せて使用され
ているCu”+ のほか少の過酸化物(Ag”)及び酸
化物(Ag”)、  ランタン等の稀土類元素が使用で
きる。根の過酸化物例えば硝酸塩は酸化活性の高い物質
で強力な酸化作用を示す。発明者等はこの点に着目し、
パラジウムの直接酸化復元が常温において可能であり、
  Pd二Pd”+サイクル維持に有効である触′W、
組成であることを実験に二って見いだした。
Next, as X, in addition to Cu"+, which has conventionally been used in combination with Pd2+, small amounts of peroxide (Ag") and oxide (Ag"), and rare earth elements such as lanthanum can be used. Oxides such as nitrates are substances with high oxidizing activity and exhibit strong oxidizing effects.The inventors focused on this point, and
Direct oxidation restoration of palladium is possible at room temperature,
Pd2Pd"+Tactile W which is effective for maintaining the cycle,
It was discovered through experiments that the composition was

銀塩の穏類は過酸化物に限らない・。水に対する溶解度
が小さい硫情銀(Ag2so4.  溶解度約057%
at Q℃)等の根の一価の塩(Ag” )であっても
本発明の触媒に利用でき、十分にその性能が発1されろ
うまたランタン等の稀土類元素の塩類でも同様である。
Mild forms of silver salts are not limited to peroxides. Silver sulfate (Ag2so4. Solubility approximately 057%) has low solubility in water.
Even monovalent salts (Ag'') of roots such as at Q°C) can be used in the catalyst of the present invention, and their performance will be sufficiently exhibited1.The same is true for salts of rare earth elements such as lanthanum. .

以上のことから1本発明の触媒組成物+dパラジウム及
びパラジウム塩と、銅塩、銀塩、稀土類の塩類から選ば
れた少なくとも一種の触媒助剤及び過硫酸のアンモニウ
ム塩もしくはアルカリ塩から選ばれた少なくとも一種の
活性化助剤から構成される。そしてこの触媒組成物は後
述する各種の担体に担持して使用される。
From the above, the catalyst composition of the present invention +d palladium and palladium salt, at least one catalyst aid selected from copper salts, silver salts, rare earth salts, and ammonium salt or alkali salt of persulfuric acid. and at least one activation aid. This catalyst composition is used by being supported on various carriers described below.

本発明の触媒組成物は、基本組成の相関する作用、とく
に上記した活性′11成分と助触媒成分の作用により従
来のPd  系触媒の到達できなかった高い活性化を実
現したものである。
The catalyst composition of the present invention achieves a high level of activation that could not be achieved with conventional Pd-based catalysts due to the interrelated effects of the basic composition, particularly the effects of the active '11 component and the co-catalyst component described above.

次に本発明の触媒の製造方法について説明する。Next, a method for producing the catalyst of the present invention will be explained.

本発明の触媒は均一なイオン配合法により調製される。The catalyst of the present invention is prepared by a homogeneous ionic blending method.

触媒の組成はPd2+ の量を基本とし、好ましくは基
本組成(Pd”+2.0〜3. oX+o、 OJ 〜
0.5Y)の範囲内で2ばれる。そのうちX成分、X成
分のモル比は物質特性、担体材料との関係、使用条件等
を綜合的に配慮し、多くの実験結果にもとずいて設定さ
れる。
The composition of the catalyst is based on the amount of Pd2+, preferably the basic composition (Pd"+2.0~3.oX+o, OJ~
2 within the range of 0.5Y). Among them, the molar ratio of the X component and the X component is determined based on comprehensive consideration of material properties, relationship with the carrier material, usage conditions, etc., and based on the results of many experiments.

まづPd2+ とX成分との比率について図面で説明す
る。図の縦軸はC02/CO(含有COi th(刀2
に酸化した比率)であり横軸はPd” =1に対するX
成分の配合比である。(Yは0.05の配合比の過硫酸
アンモニウム塩 Xが2〜3の範囲で高活性を示す X成分の配合比は、後工程での含浸担体の種類により異
り、た、とえばr −Al2O3質べVット(細孔容積
o、 i〜o、scc/it比表面積20〜400m1
g>では2に近い方がよく、ヤシガラ活性炭(細孔容積
0.6〜x、occ/、y+比表面積900〜1.20
0m/g)では細孔の径や分布状態および若干の還元性
等の因子と、X成分のイオン種、イオン半径等の因子の
相関間係により微妙に影響がおきることが含浸後のイオ
ン担持量の分析で判明しており、とくにCu2+の場合
に触媒組成液の配合比率とイオン担titとの間に歩留
の変移がある9担持体中での最終イオン量が上記組成式
の配合比に合致するよう配合量を調節する必要があり、
この管理が触媒の活性および安定性1:決定するものと
なる。
First, the ratio between Pd2+ and the X component will be explained with reference to the drawings. The vertical axis of the figure is CO2/CO (contained COi th)
The horizontal axis is the ratio of oxidation to Pd” = 1.
This is the blending ratio of the ingredients. (Y is a compounding ratio of 0.05 ammonium persulfate salt Al2O3 material Vt (pore volume o, i~o, scc/it specific surface area 20~400m1
g>, it is better to be close to 2, and coconut shell activated carbon (pore volume 0.6 to x, occ/, y + specific surface area 900 to 1.20
0m/g), the ion loading after impregnation is slightly affected by the correlation between factors such as the pore diameter, distribution state, and slight reducing property, and factors such as the ion species of the X component and the ionic radius. It has been determined by the amount analysis that, especially in the case of Cu2+, there is a change in yield between the blending ratio of the catalyst composition liquid and the ion support.9 The final ion content in the support is the blending ratio of the above composition formula. It is necessary to adjust the blended amount to match the
This control determines the activity and stability of the catalyst.

X成分の配合では、前記したように過硫酸アンモニウム
塩C(NH4)28208 )がすぐれた触媒活性への
寄与をするが、アルカリ塩”k’t+す÷噸も一応の水
準を示す。
In the combination of component X, as mentioned above, the ammonium persulfate salt C(NH4)28208) contributes to excellent catalytic activity, but the alkali salt "k't+su ÷ sham" also shows a certain level.

これ等の過硫酸塩の配合で留意することは、これ等が含
浸工程で若干の分解を伴うことである。
One thing to keep in mind when formulating these persulfates is that they undergo some decomposition during the impregnation process.

このため配合比は確定するものでなく1モル比でPd2
+=1に対し0.01〜0.5の範囲が好ましく。
Therefore, the blending ratio is not fixed, and 1 molar ratio is Pd2
The range of 0.01 to 0.5 is preferable for +=1.

最も望ましくは0.05〜0.IOの範囲である。Most preferably 0.05-0. This is the range of IO.

上記のような組成の配合比にもとづいて触媒組成液が配
合されるが、ここで各成分の濃度の調整がきわめて重要
である。高濃度が必ずしも良好な性能を′表すとは限ら
ず、実験結果によれば組成液中の各イオン濃度は0.0
01〜O1’;l mol / lの範囲で良好な結果
が得られる。
The catalyst composition liquid is blended based on the blending ratio of the composition as described above, and adjustment of the concentration of each component is extremely important here. High concentration does not necessarily indicate good performance, and experimental results show that the concentration of each ion in the composition solution is 0.0
Good results are obtained in the range of 01 to O1'; l mol/l.

組成液の配合は人為的な溶液の攪拌や、高周波バス等に
より、均一配合を促進する方法によってもよいが、望ま
しくは、7〜10日間の熟成時間をとシ、各イオンの分
子運動によシ均−化を達成することである2、 熟成を終えた触媒組成液は、これを担体に含浸させる。
The composition solution may be blended by a method that promotes uniform blending, such as by artificially stirring the solution or using a high-frequency bath, but it is preferable to allow a maturing time of 7 to 10 days so that the molecular movement of each ion 2. The aged catalyst composition liquid is impregnated into a carrier.

担体の種類としては多孔質のセラミックス、窯業鉱物、
アモルファス化合物、活性炭2等より適宜選択されるが
9代表的なものヲあければr、z。
Types of carriers include porous ceramics, ceramic minerals,
They are appropriately selected from amorphous compounds, activated carbon, etc., but the most representative ones are r and z.

a、a系アルミナ、活性アルミナ、非晶質シリカアルミ
ナ、シリカゲル、ケイ藻土、ゼオライト。
a, a-based alumina, activated alumina, amorphous silica alumina, silica gel, diatomaceous earth, zeolite.

活性炭等のものである。It is made of activated carbon, etc.

含浸工程は、単純浸漬でもよいが、できうれば減圧によ
り担体の吸着物を系外に排出して含浸を行うことが、効
率のよい方法である。含浸を終了した担体は、比表面積
(BET法等の測定値)が含浸前より大きく低下しない
ことが必要であり。
The impregnation step may be performed by simple immersion, but it is more efficient to carry out the impregnation by discharging the adsorbate on the carrier out of the system under reduced pressure if possible. It is necessary that the specific surface area (value measured by BET method, etc.) of the carrier after impregnation does not decrease significantly compared to before impregnation.

できうればむしろ含浸前より土建ることが好ましい。担
体の細孔内面の触媒の形成は、触媒組成液のイオン濃度
により左方されるが、この状7原は触媒形成後の比表面
積の測定イ直からも判定できる。
If possible, it is preferable to build the soil before impregnation. The formation of the catalyst on the inner surface of the pores of the carrier is influenced by the ion concentration of the catalyst composition liquid, and this condition can also be determined from the measurement of the specific surface area after the catalyst is formed.

含浸を終えた触媒担持担体は1次いで最終の乾燥工程に
入るが、触媒活性の向上のためには、 COガスとの有
効接触面積を可能な限り大きく保持することが必要で、
このため担持含有水分を十分に除去しなければならない
After the impregnation, the catalyst-supported carrier undergoes the first and final drying process, but in order to improve the catalyst activity, it is necessary to maintain the effective contact area with CO gas as large as possible.
For this reason, it is necessary to sufficiently remove the moisture contained in the carrier.

担体の材質が、セラミックス、r−Al□Os”!fc
は活性炭等の種類忙よりその含水率はそれぞれ異るが、
とくに大きな比表面積をもつ活性炭のようなもので畦、
水切り直後30〜4 Q wt%またはそれ以上の含水
分がある。
The material of the carrier is ceramics, r-Al□Os”!fc
Although the moisture content differs depending on the type of activated carbon,
In particular, something like activated carbon with a large specific surface area can be used to create ridges.
Immediately after draining, there is a moisture content of 30 to 4 Q wt% or more.

乾燥を早めるために加熱方式による場合は、高温度加熱
や急激な温度変化がないように注意する必要があり、望
ましくけ常温での風乾方式によるか、または25〜60
℃好ましくは30〜45℃で相対湿度70〜30%好ま
しくは60〜40%のよう゛な加熱方法により良好な結
果が得られる。
When using a heating method to speed up drying, care must be taken to avoid high temperature heating and sudden temperature changes.
Good results can be obtained by heating at a temperature of preferably 30-45°C and a relative humidity of 70-30%, preferably 60-40%.

乾燥終了時の担体中の残留水分は20−10wt%であ
ることが好ましい。
It is preferable that the residual moisture in the carrier at the end of drying is 20-10 wt%.

製造終了後の触媒は、大気□中の湿分と平衡状態となる
ため、貯蔵は密閉または相対湿度60%以下での常温保
管によることが長期に亘る触媒性能を保持する上で有効
な方法である。
After production, the catalyst is in equilibrium with the moisture in the atmosphere, so storing it in a sealed container or storing it at room temperature at a relative humidity of 60% or less is an effective way to maintain catalyst performance over a long period of time. be.

剖媒製造の全工程および保管時を含めて、触媒再発生金
へイオンたとえばZa、Fe、当FNilCo、Mo、
V等のイオンの混入が起きないよう管理することは当然
のことながら重要なことである。
During the entire process of producing the autocatalyst and during storage, ions such as Za, Fe, FNilCo, Mo,
Needless to say, it is important to control the mixing of ions such as V to prevent them from being mixed in.

上記したような本発明の触媒は、常温でガス体に含有す
る一酸化炭素の除去についてきわめてすぐれた性能を示
す。すなわちたばこ紫煙のような湿分や多量の有機ガス
、エアロゾル状物などと一酸化炭素が共存し、しかも流
速の大きいガスに使用した場合でも、少量の触媒使用量
で一酸化炭素を選択的に高率除去しつる性能を備えてい
る。また長期に亘る耐久性と経済的に安価であると云う
特徴をもっている。
The catalyst of the present invention as described above exhibits extremely excellent performance in removing carbon monoxide contained in a gaseous body at room temperature. In other words, even when carbon monoxide coexists with moisture such as cigarette smoke, a large amount of organic gas, and aerosols, and even when the gas has a high flow rate, it is possible to selectively remove carbon monoxide with a small amount of catalyst. It has a high rate of removal and removal performance. It also has the characteristics of long-term durability and economical cost.

以下実施例により1本発明の触媒とその効果について説
明する。
The catalyst of the present invention and its effects will be explained below with reference to Examples.

例  1 (1)  本発明の触媒として各イオン液一度0.05
mol/it”f:、用い、  Pd : Cu : 
(NH4) 820g = 1 :2二0.5の組成で
配合し、41成液を常温で7日間熟成した後、比表面積
約20m/ゾのr −Al 203ベレツト(粒径2〜
3 W )に減圧含浸し次いで常温湿度50%の条件で
24時間風乾して触媒を得た。
Example 1 (1) 0.05 ml of each ionic liquid as the catalyst of the present invention
mol/it"f:, used, Pd: Cu:
(NH4) 820g = 1:220.5, and after aging the 41 solution at room temperature for 7 days, r-Al 203 Berets (particle size 2~
3 W) under reduced pressure, and then air-dried for 24 hours at room temperature and humidity of 50% to obtain a catalyst.

触媒5Iを内径14mm長さ約20onのガラス管内に
約80罪の長さで充填し、一端よりCO濃度1.860
 ppm含有の空気を14.5℃で、流速250d/雛
で25分間通過させた。毎分および5分毎にCO9度を
測定すると、残留CO濃度は平均して674 ppmで
あり平均除去率は63.7%であった。担体、触媒に変
色変質はなく、以後の試験により活性を持続することが
分った。
Catalyst 5I was filled in a glass tube with an inner diameter of 14 mm and a length of about 20 ounces to a length of about 80 mm, and the CO concentration was 1.860 from one end.
Air containing ppm was passed through at 14.5°C for 25 minutes at a flow rate of 250 d/chick. When CO9 degrees were measured every minute and every 5 minutes, the residual CO concentration was on average 674 ppm and the average removal rate was 63.7%. There was no discoloration or deterioration of the carrier or catalyst, and subsequent tests revealed that the activity continued.

【2)対比例の触媒として(A)PdC12単味、 (
B)PdC12+ 2CuC12、(Q PdC1z 
+ 2CuC12+ KNO3,APdC12+ 2C
uC12+ N)(nNO3,(E) pact2+ 
2CuC1z−1−AgNO3,の組成液を各イオンi
l1度0.05 mol/〆の液により配合し、その後
の工程は(1)と同様の方法によりr  Al2O3に
含浸した触媒を碍た。(1)と1耐−条件で009度1
860 ppm含有空気による測定を行った。
[2] As a comparative catalyst, (A) PdC12 alone, (
B) PdC12+ 2CuC12, (Q PdC1z
+ 2CuC12+ KNO3, APdC12+ 2C
uC12+ N)(nNO3, (E) pact2+
2CuC1z-1-AgNO3, each ion i
The mixture was mixed with a solution of l1 degree and 0.05 mol/filter, and the subsequent steps were conducted in the same manner as in (1) to prepare the catalyst impregnated with rAl2O3. (1) and 1 resistance - 009 degrees 1 under conditions
Measurements were made using air containing 860 ppm.

囚、 (81,(C)、(ト)各触媒はfL通開始後1
〜5分間ではCO残use 500〜800 pI)m
であったが、いづれも5分間で変色し黒色金属パラジウ
ムが生成し失活した。(6)触媒は、黒色呈色がマダラ
に生成し、約20分で失活した。
(81, (C), (G) Each catalyst is 1 after the start of fL communication.
For ~5 minutes, CO remains (use 500-800 pI) m
However, in all cases, the color changed within 5 minutes, and black metallic palladium was produced and deactivated. (6) The catalyst developed a black coloration and was deactivated in about 20 minutes.

表1 残留CO#度(ppmつの時間別測定値mixガ
ス温度15℃、流1250g4/分、  CO,濃度=
1860ppm■については残留COの平均濃度=57
4ppm。
Table 1 Residual CO # degree (ppm) Time-wise measurement mix gas temperature 15℃, flow 1250g4/min, CO, concentration =
For 1860 ppm ■, the average concentration of residual CO = 57
4ppm.

平均除去率=63.7% 例  2 例1の(1)の組成のCu2+をLa””(LaCl、
使用)KTt換してPd −1−2La 40.5 (
NH4)2820B  の組成とし、(1)と同様の方
法で、r−Al2O3を担体とする触媒59を用いCO
!1度1900 ppm含有ノ空気につきそのCO尿去
率を測定した結果は次表の通りで、  Cu2+ 配合
組成と略同等の成積と耐久性を示した。
Average removal rate = 63.7% Example 2 Cu2+ with the composition (1) of Example 1 was converted to La"" (LaCl,
Used) KTt was replaced with Pd-1-2La 40.5 (
NH4)2820B, and in the same manner as in (1), CO was
! The results of measuring the CO urinary removal rate in air containing 1,900 ppm at a time are shown in the following table, and showed approximately the same buildup and durability as the Cu2+ blending composition.

表2  (CO1900ppm、 / q気)例 3 PdC12o、 l mol / l、 CuCl20
.2mol / JLLaC13Q、2 mol / 
lの溶液を蒸溜水金用いて胴震した。担体として食品添
加用ヤシガラ活性炭(二村化学(掬製CW−35OA)
を、5ooiの三角フラスコ2本にそれぞれ60g秤量
装入した。別に上記した溶液を、(A)PdCI□浴W
 60 nl + CuCl 2烙液63 me ト、
 (H) PdC1□溶液60 wd + LaC13
浴’H61,8ゴになるように滴定用ビユレットにより
正罐に配合し、十分に振とうして均一にし熟成したもの
を用意する。これに過流酸アンモニウムの飽和浴液を(
5)溶液、(B)溶液にそnぞれ30d宛添加し、5分
間激しく振とうした後、上記したヤシガラ活性炭を装入
した三角フラスコに注下する。十分触媒組成液がゆきわ
たり、更に上部に余剰液があることを確認した後、流水
インジェクターを使用し三角フラスコ内を減圧する。2
〜3分間で活性炭に吸着されていたガスが盛に放出し始
るが同時に触媒組成のイオンの含浸が行われる。この時
減圧を強めていくと次に過流酸アンモニウムの分解が起
る。減圧をゆるめ突沸が起きないようにして反応が徐々
に行われるようにコントロールする。
Table 2 (CO1900ppm, /q air) Example 3 PdC12o, l mol/l, CuCl20
.. 2 mol / JLLaC13Q, 2 mol /
1 solution was shaken using distilled water. Coconut shell activated carbon for food additives (Futamura Chemical Co., Ltd. (Kimu CW-35OA)) as a carrier
60 g of each was weighed and charged into two 5 oi Erlenmeyer flasks. Separately, the above solution was added to (A) PdCI□ bath W
60 nl + CuCl 2 hot liquid 63 me,
(H) PdC1□ solution 60 wd + LaC13
Blend in a can with a titration billet so that the solution is 1.8 g, shake thoroughly to make it homogeneous, and prepare a matured product. Add a saturated ammonium persulfate bath solution to this (
5) Add 30 d of each to the solution and (B) solution, shake vigorously for 5 minutes, and then pour into the Erlenmeyer flask containing the coconut shell activated carbon described above. After confirming that the catalyst composition liquid has spread sufficiently and that there is excess liquid at the top, the pressure inside the Erlenmeyer flask is reduced using a running water injector. 2
In ~3 minutes, the gas adsorbed on the activated carbon begins to be released in large quantities, and at the same time, impregnation of ions of the catalyst composition takes place. At this time, when the reduced pressure is increased, decomposition of ammonium persulfate occurs. Control the reaction so that it occurs gradually by loosening the vacuum and preventing bumping.

約15分間で含浸操作を終了し、さ浸活性炭を吸引濾過
等で十分に水切りを行う。30〜40’Cの温度範囲で
約3時間風乾する。この時少量の試料を採取し、@昇水
分量が20 wt%以下であることを催lする。以上の
工場により活性炭に担持した本発明による触媒を完成し
た。
The impregnation operation is completed in about 15 minutes, and the soaked activated carbon is thoroughly drained by suction filtration or the like. Air dry at a temperature range of 30-40'C for about 3 hours. At this time, collect a small amount of sample and make sure that the amount of elevated water is 20 wt% or less. A catalyst according to the present invention supported on activated carbon was completed in the above factory.

得られた担体がヤシガラ炭(粒130〜5oメツシー>
の触媒(Nal、f’h2)t−用いて、たばこ紫煙の
一酸化炭素除去率測定を行った。
The obtained carrier is coconut husk charcoal (grain 130-50)
The carbon monoxide removal rate of cigarette smoke was measured using the catalyst (Nal, f'h2)t-.

測定条件:1回のバフ35d/25じ、1分間1回(5
8秒休止) 9回のパフの甲第1回目および第9 回目のパフ分ガスを除き第2回目〜 第8回目パフまでの各パフ毎のガス のCO損度金測定した。
Measurement conditions: 1 time buff 35d/25d, 1 time 1 minute (5
8 seconds pause) The CO loss of the gas for each puff from the 2nd to the 8th puff was measured, excluding the gas for the 1st and 9th puffs.

測定器−検知管、ガスチック1 :J使用 供試タバコ−[バイラ−fトJ 煙採取−109+mシリンダーによる ;咬引 触媒刀うム二使用触媒着2001ダこれ全内径8−のガ
ラス管中にカラムを形成し、、d 媒光嘆ノー長さ7朋 紫煙採取:手引方式の変動を配慮し、上記側?こ条件に
よりたばこ3本分の紫煙をガ スパックに補薬し、混合同一化しC0 濃度を測足し、[ブランクガスJと する。ブランクガスは吸引ピッチを 少し速めCO=約7%とじt2これ は実際の基準紫煙(CO=5〜6%) より00m度が太きい。
Measuring instrument - Detection tube, gastic 1: J used test cigarette - [Bayler f to J Smoke collection - 109+m cylinder; Catalyst 2001 using a bite catalyst knife This was in a glass tube with a total inner diameter of 8 - Form a column, d, medium length no length 7, purple smoke collection: taking into account the variations in the manual method, the above side? Under these conditions, purple smoke from three cigarettes was added to the gas pack, mixed and homogenized, the C0 concentration was measured, and it was designated as blank gas J. For the blank gas, the suction pitch is slightly increased and the CO is approximately 7%.t2 This is 00m degrees thicker than the actual standard purple smoke (CO = 5 to 6%).

触媒テストニガスパックに捕粟した紫煙を上記測定条件
の吸引法と同一条件で、!!!I!媒カラム全カラムせ
、CO除去率を測定 した結果を表3に示す。
Catalyst test The purple smoke captured in the gas pack was measured under the same conditions as the suction method described above! ! ! I! Table 3 shows the results of measuring the CO removal rate for all the media columns.

表3  COO去測定結果 例  4 a酸銀(AgzSO4)の飽和溶液(約α6%濃度中0
、02mol / A’ ) 110m1t−用いて実
施例3と同(シに活性炭IO,!/に減圧脱気下で約5
分間の含浸・とおこ1つた。摂イオン全含浸させた活性
炭は一旦吸引直通器をつかって瀘過し十分な息切!7t
″おこ;宝う。仄にPdCl20.1 mol / j
i m液20dと飽前記の活性炭に7ψ圧下含浸を通こ
す。約1o分間程度で含浸処理を總了し、水切後シリカ
ゲルを入れたデシケータ内で約12時間室温乾燥をおこ
なった。此の触媒によりサンプル0.5gを採取し触媒
(隘3)200iJを正確に採取し、実施例3と同様に
タバコ紫煙の一酸化炭素除去率測定した結果を表4に示
す。
Table 3 Example of COO removal measurement results 4 Saturated solution of a-acid silver (AgzSO4) (approximately
, 02 mol/A') 110 ml/A'
It took one minute of impregnation. Once the activated carbon is fully impregnated with ions, it is filtered using a suction device and is thoroughly breathed! 7t
"Oko; Treasure. PdCl20.1 mol/j
20 d of the im solution and the activated carbon prepared above were impregnated under a pressure of 7ψ. The impregnation treatment was completed in about 10 minutes, and after draining, the sample was dried at room temperature for about 12 hours in a desiccator containing silica gel. Using this catalyst, 0.5 g of a sample was taken, and 200 iJ of the catalyst (number 3) was accurately taken, and the carbon monoxide removal rate of tobacco purple smoke was measured in the same manner as in Example 3. The results are shown in Table 4.

表4  co除去測定結果 例  5 (1) PdCl20.1mol / !!、 YCI
、−6H200,2mol 、/1、  Ce (80
4)2 a 4H20Q、 2mol / 71  の
各、B液を調製した。例3に用いた活性炭全使用し1.
(5)Pd : Y : (NH4)8208= 1 
: 2 : 0.5.(B)Pd:Ce : (NH4
)8208 = l : 2 : 0.5 、 (C)
 Pd : Y :に2820B= 1 : 2 : 
o、 5および(D) Pd : Ce : K28z
Os+  =1 : 2 : 0.5の組成液を夫々減
圧下で含浸させ、一旦水切りを行なったのち常温で風乾
し1独媒を調製し念。なおCe  溶液を使用する場合
はCe 溶液を先ず含浸させ、一度水切を行なったのち
Pd + (PH4)820Bの液を含浸させた。
Table 4 Example of CO removal measurement results 5 (1) PdCl20.1mol/! ! , YCI
, -6H200,2mol,/1, Ce (80
4) 2a4H20Q, 2mol/71 each, and solution B were prepared. All of the activated carbon used in Example 3 was used.1.
(5) Pd: Y: (NH4)8208=1
: 2 : 0.5. (B) Pd:Ce: (NH4
)8208 = l: 2: 0.5, (C)
Pd:Y:2820B=1:2:
o, 5 and (D) Pd: Ce: K28z
A composition solution of Os+ = 1: 2: 0.5 was impregnated under reduced pressure, and after draining once, it was air-dried at room temperature to prepare a single solvent. Note that when a Ce 2 solution was used, the Ce 2 solution was first impregnated, and after draining once, the Pd + (PH4) 820B solution was impregnated.

(2)上記の各軸・渫に例3と同様の試験方法でたばこ
紫煙中のCO除除去令名スト哄した結果(COの平埼除
去率)は次の通りである。
(2) The results of removing CO from tobacco smoke using the same test method as in Example 3 on each of the above-mentioned shafts and banks (CO removal rate) are as follows.

(5)組成=24.7%、(至)組成=25.1%。(5) Composition = 24.7%, (To) Composition = 25.1%.

(q組成=15.9%、埠組成=16.1%(q composition = 15.9%, bu composition = 16.1%

【図面の簡単な説明】[Brief explanation of drawings]

図面は不発明の嶺媒の性能特性を示すグラフである。 代理人  鴨 居 静 瑠閣i The drawing is a graph showing the performance characteristics of the inventive fluid. Agent Kamo Ishizuka Rukakui

Claims (3)

【特許請求の範囲】[Claims] (1)  パラジウム及びパラジウム塩と、鋼の二価の
塩、銀の一価もしくは二価の塩、稀土類の塩から選ばれ
た少なくとも一種の触媒助剤及び過硫酸のアンモニウム
塩もしくはアルカリ塩から選ばれた少なくとも一種の活
性化助剤からなる一酸化炭素の酸化触媒。
(1) Palladium and palladium salts, at least one catalyst aid selected from divalent salts of steel, monovalent or divalent salts of silver, rare earth salts, and ammonium or alkali salts of persulfuric acid. A carbon monoxide oxidation catalyst comprising at least one selected activation aid.
(2)  配合化がモル比でパラジウムIK対し、触媒
助剤zo−:to、活性化助剤0.01−0.5である
特許請求の範囲第1項記載の一酸化炭素の酸化触媒。
(2) The carbon monoxide oxidation catalyst according to claim 1, wherein the molar ratio of palladium IK to catalyst auxiliary agent zo-:to and activation auxiliary agent is 0.01-0.5.
(3)無機質多孔体に担持してなる特許請求の範囲第一
項記載の一酸化炭素の酸化触媒。
(3) A carbon monoxide oxidation catalyst according to claim 1, which is supported on an inorganic porous material.
JP57090377A 1982-05-27 1982-05-27 Carbon monoxide oxidation catalyst Expired JPS5951852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57090377A JPS5951852B2 (en) 1982-05-27 1982-05-27 Carbon monoxide oxidation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57090377A JPS5951852B2 (en) 1982-05-27 1982-05-27 Carbon monoxide oxidation catalyst

Publications (2)

Publication Number Publication Date
JPS58207947A true JPS58207947A (en) 1983-12-03
JPS5951852B2 JPS5951852B2 (en) 1984-12-17

Family

ID=13996871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57090377A Expired JPS5951852B2 (en) 1982-05-27 1982-05-27 Carbon monoxide oxidation catalyst

Country Status (1)

Country Link
JP (1) JPS5951852B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120566A (en) * 1984-07-10 1986-01-29 日本たばこ産業株式会社 Self-lifesaving device for carbon monoxide
JP2018103102A (en) * 2016-12-26 2018-07-05 太陽化学株式会社 Low-temperature oxidation catalyst
WO2018123787A1 (en) * 2016-12-26 2018-07-05 クラリアント触媒株式会社 Method for manufacturing low-temperature oxidation catalyst

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62121082U (en) * 1986-01-27 1987-07-31

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120566A (en) * 1984-07-10 1986-01-29 日本たばこ産業株式会社 Self-lifesaving device for carbon monoxide
JPH0440058B2 (en) * 1984-07-10 1992-07-01 Nippon Tabako Sangyo Kk
JP2018103102A (en) * 2016-12-26 2018-07-05 太陽化学株式会社 Low-temperature oxidation catalyst
WO2018123787A1 (en) * 2016-12-26 2018-07-05 クラリアント触媒株式会社 Method for manufacturing low-temperature oxidation catalyst
WO2018123786A1 (en) * 2016-12-26 2018-07-05 クラリアント触媒株式会社 Low-temperature oxidation catalyst

Also Published As

Publication number Publication date
JPS5951852B2 (en) 1984-12-17

Similar Documents

Publication Publication Date Title
JP4970252B2 (en) Smoking goods and materials
JPH01148334A (en) Oxidation of carbon monoxide and production of catalyst composition used therein
JP3799945B2 (en) Room temperature purification catalyst and method of using the same
US4940686A (en) Catalyst for oxidation of carbon monoxide
CN110721706A (en) Oxidation catalyst for purifying CO and preparation method and application thereof
JPS58207947A (en) Catalyst for oxidizing carbon monoxide
JP4861018B2 (en) Nitric oxide oxidation catalyst and nitric oxide oxidation method
KR20020035402A (en) Oxidation catalysts for elimination of the ethylene gas
US4521530A (en) Catalyst of palladium, copper and nickel on a substrate
RU2677480C1 (en) Method for obtaining catalyst for oxidation of phosphine
JPS61227842A (en) Removing agent for carbon monoxide
JP3830247B2 (en) Bromine impregnated activated carbon and method for producing the same
CN1203764A (en) Nicotine-filtering medium for cigarette
CN111013583A (en) Preparation method of monolithic catalyst for efficiently decomposing carbon monoxide at room temperature
JPS6322185B2 (en)
JPS63171623A (en) Removing method for nitrogen oxide
JP2000218164A (en) Active carbon catalyst and gas treatment process using the catalyst
JPS6154236A (en) Activated carbon composition
JP2002306581A (en) Deodorant and method of preparation for the same
JPH0222702B2 (en)
JPH07743A (en) Adsorbent and removing method for nitrogen oxide using adsorbent
RU2228902C1 (en) Catalyst preparation process
JPS6028823A (en) Manufacture of carbon monoxide oxidizing catalyst
JP4454054B2 (en) Sulfur compound adsorbent and sulfur compound removal method
JP2007297245A (en) Inorganic composite material comprising gold ultrafine particle and apatite, its production method, and oxidation removal method for removing minute amount carbon monoxide using it