JP3830247B2 - Bromine impregnated activated carbon and method for producing the same - Google Patents

Bromine impregnated activated carbon and method for producing the same Download PDF

Info

Publication number
JP3830247B2
JP3830247B2 JP29744097A JP29744097A JP3830247B2 JP 3830247 B2 JP3830247 B2 JP 3830247B2 JP 29744097 A JP29744097 A JP 29744097A JP 29744097 A JP29744097 A JP 29744097A JP 3830247 B2 JP3830247 B2 JP 3830247B2
Authority
JP
Japan
Prior art keywords
bromine
activated carbon
impregnated
gas
impregnated activated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29744097A
Other languages
Japanese (ja)
Other versions
JPH11128737A (en
Inventor
輝男 福井
小林  隆
剛 吉留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Enviro Chemicals Ltd
Original Assignee
Japan Enviro Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Enviro Chemicals Ltd filed Critical Japan Enviro Chemicals Ltd
Priority to JP29744097A priority Critical patent/JP3830247B2/en
Priority to US09/121,836 priority patent/US6514907B2/en
Priority to SG1998002664A priority patent/SG65087A1/en
Publication of JPH11128737A publication Critical patent/JPH11128737A/en
Application granted granted Critical
Publication of JP3830247B2 publication Critical patent/JP3830247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、臭素添着活性炭及びその製造方法に関し、より詳細には、低濃度で硫化アルキル類を含有する気体中から硫化アルキル類を除去するために使用される臭素添着活性炭及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
下水処理場、し尿処理場、ゴミ処理場などの排ガス又は石油精製、石油化学、紙パルプなどの化学工場、食品工場などの工程ガス又は排ガス中には硫化水素、メルカプタン類、硫化アルキル類などの硫黄化合物が含まれている。
従来から、このようなガス中の硫黄化合物を除去する方法として、例えばアルカリ吸収法、湿式酸化法、オゾン酸化法、活性炭吸着法、燃焼法など種々の方法が知られている。
【0003】
しかし、これらの従来法では多くの硫黄化合物は除去できるが、特定悪臭物質である硫化ジメチル、二硫化ジメチルのような硫化アルキル類は十分満足できるまで除去することができなかった。
これに対して、活性炭吸着法において、一般の活性炭とは別に予め臭素を添着させた臭素添着活性炭を用いた場合には、前者による物理吸着とは異なる機構、つまり硫化ジメチル、二硫化ジメチルを化学吸着することにより除去できることが、例えば、特開昭54−132470号公報、特昭55−20732号公報及び特開昭55−51422号公報などにより提案されている。
【0004】
確かに、臭素を添着させた活性炭を用いた場合には、従来法に比較してより多くの硫化ジメチル、二硫化ジメチル等の特定悪臭物質を除去することができるが、臭素添着活性炭における活性炭の品質が、添着される臭素量等、種々のパラメータに起因して均一でなく、硫化ジメチル、二硫化ジメチルを必ずしも満足できる程度まで除去することができていないというのが現状である。
【0005】
【課題を解決するための手段】
本発明は、上記課題に鑑み鋭意研究を行う過程で、種々の臭素添着活性炭の成分、性状及び物性等を詳細に検討した結果、活性炭中に含まれる不純物、すなわち炭素以外の元素、特に活性炭表面に存在する酸化物の多少が、臭素添着活性炭の吸着性能の低下に影響していることを見い出し、本発明に至った。
【0006】
すなわち、本発明によれば、表面酸化物の含量が酸素として2.5wt%以下であり、臭素が3wt%以上で添着されてなる臭素添着活性炭(分子篩炭を除く)が提供される。
また、原料活性炭を、酸素不存在下で500〜1100℃で熱処理して担体活性炭とした後、該担体活性炭に臭素を添着させる上記臭素添着活性炭の製造方法が提供される。
【0007】
【発明の実施の形態】
本発明の臭素添着活性炭を製造するための原料活性炭は、例えば、石炭、コークス、木炭、ヤシガラ、樹脂、石油残渣などを原料として公知の方法により製造されたもので、その比表面積が100〜2000m2 /g程度のものであれば、いかなるものでもよい。その形状は、たとえば球状、円柱状、破砕状、粉末状、顆粒状、繊維状、ハニカム状などのいずれでもよい。
【0008】
本発明の臭素添着活性炭において、その含量が制限される表面酸化物としては、例えば一酸化炭素、二酸化炭素、アルカリ金属又はアルカリ土類金属の酸化物等の種々の酸化物が挙げられる。酸化物の含量は、臭素未添着の担体活性炭に対して、酸素として、2.5wt%以下が好ましく、より好ましくは2wt%以下、さらに好ましくは1.5wt%以下である。なお、本発明の臭素添着活性炭は、臭素の酸化作用によって、臭素添着時や経時により活性炭を酸化し、その表面酸化物が若干増える傾向があるため、最終的に得られる臭素添着活性炭の表面酸化物の含量を、臭素未添着の担体活性に対する重量で、上記のように制限している。
【0009】
本発明の臭素添着活性炭における臭素の含量は、臭素未添着の担体活性炭に対して約3wt%以上、より好ましくは5wt%以上、さらに好ましくは5wt%以上であって50wt%以下、最も好ましくは5wt%以上であって20wt%以下である。
【0010】
また、本発明の臭素添着活性炭の製造方法においては、最終的に得られる臭素添着活性炭の表面酸化物の含量を上記の範囲にするために、臭素添着前の担体活性炭の表面酸化物の含量を、この担体活性炭に対して、酸素として2.0wt%以下にすることが好ましく、より好ましくは1.5wt%以下、さらに好ましくは1.0wt%以下である。
【0011】
本発明の臭素添着活性炭の製造方法において、臭素添着前の担体活性炭の表面酸化物の含量を酸素として2.0wt%以下とする方法は、原料活性炭を、酸素不存在下で500〜1100℃で熱処理する方法が挙げられる。熱処理方法としては、例えば、高温熱分解法、高温水素還元法等の種々の方法がある。また、酸素不存在下で熱処理する方法のほかにも、例えば、液相還元法等が挙げられる。しかし、効率的に担体活性炭の表面酸化物の含量を制限する方法としては、高温熱分解法、高温水素還元法等が好ましい。
【0012】
高温熱分解法は、例えば、窒素、アルゴンガス等の酸素を含有しない不活性ガス中又は真空下で、原料活性炭を熱処理し、酸化物を熱分解する方法である。この際の熱処理温度は、高温であるほど効率がよいが、使用する原料活性炭によっては、1200℃程度をこえる温度で細孔が閉塞するものもあるので、500〜1100℃程度が適当であり、好ましくは700〜950℃程度である。また、処理時間は、原料活性炭の処理量等により適宜調節することができ、例えば0.1〜10時間程度が適当である。
【0013】
高温水素還元法は、例えば水素含有ガス雰囲気下で、原料活性炭を熱処理し、酸化物を還元する方法である。この際の熱処理温度は400〜1000℃程度が適当であり、好ましくは500〜850℃程度、より好ましくは700℃前後である。処理時間は、例えば0.1〜10時間程度が適当である。
【0014】
液相還元法は、例えば、ヒドラジン等の還元性溶媒中に、常温〜100℃程度の温度範囲で、原料活性炭を浸漬又は攪拌/混合する方法である。
【0015】
このような処理は、同一工程を1回又は2回以上繰り返し行ってもよいし、異なる工程の組み合わせによる多段工程で行ってもよい。
【0016】
また、本発明の臭素添着活性炭における臭素添着は、自体公知の添着法により行うことができる。例えば、臭素ガスを含有したキャリアガスを、所望の処理が施された活性炭に接触させる気相添着法、処理された活性炭を臭素水に浸漬する液相添着法、処理された活性炭に液体臭素等を直接散布して添着する方法等が挙げられる。
【0017】
気相添着法では通常、キャリアガスとして、例えば空気、窒素ガス、炭素ガス等を用い、接触温度を約150℃以下、好ましくは約80℃以下に調節し、活性炭の流動床、移動床、噴霧床等を用いて連続的に気相添着させる。なお、この方法においては、臭素含有ガスを流通させて活性炭に臭素を添着させた後、キャリアガスのみを流通させて、添着されていない臭素ガスを除去することが好ましい。
【0018】
液相添着法では通常、臭素濃度が1〜5%程度の臭素水に所定量の活性炭を1〜10時間程度浸漬するか、または臭素水を活性炭の流動床、移動床、固定床、噴霧床等を用いて流通/接触させて臭素を添着させた後、ろ別、乾燥する。なお、この際の温度は約80℃程度以下が好ましく、さらに好ましいのは約50℃以下である。
【0019】
液体臭素等を散布して添着する方法としては、処理された活性炭を攪拌しながら、直接液体臭素又は臭素水等を散布し、必要により乾燥することにより行われる。その際の接触温度は約50℃程度以下が好ましい。
本発明の臭素添着活性炭を用いて硫化アルキル類、ことに硫化ジメチル、二硫化ジメチルを含有する気体中からこれら硫化アルキル類を吸着する方法は、例えば、固定床、移動床、流動床、スラリー方式、バッチ式の接触攪拌法等の公知の方法により、被処理ガスを臭素添着活性炭と接触させる方法が挙げられる。この際の接触時間は、硫化アルキル類の濃度、使用する臭素添着活性炭の粒度、接触方式等により適宜加減することができるが、例えば約50℃以下の温度で、0.1秒から1分間程度が普通である。
【0020】
以下に、本発明の臭素添着活性炭の調製例及び使用例について説明する。
【0021】
実施例:
活性炭の熱処理
表1に示した各種の原料および形状の活性炭を状炉にて850℃、窒素5リットル/分、30分間、300g仕込の条件で熱処理を行った。熱処理後は窒素ガスで冷却した。
【0022】
臭素添着炭の調製
熱処理した活性炭を、115℃にて3時間、電気乾燥器で乾燥し、デシケーター中で室温まで冷却し、100gを秤取した。
【0023】
次いで、各試料を1リットル容のガラス製三角フラスコに移し、活性炭層を平坦にした上にシリカウール各約3gを置き、その上に試薬特級の臭素10gを滴下し、フラスコを振盪攪拌して蒸発した臭素ガスを活性炭試料に添着し、試料A〜試料Cを調製した。なお、臭素の添着量は、臭素がすべて添着され、フラスコ内が無色透明になってから試料を取出した際の重量増加から算出し、表1に示した。
【0024】
【表1】

Figure 0003830247
【0025】
硫化ジメチルの吸着性能
上記で得られた各臭素添着活性炭(試料A〜試料C)を16〜24meshに破砕整粒し、内径15.6mmのガラスカラムに100mm層厚(19.1ml)で充填し、硫化ジメチル3ppmを含有する相対湿度80%の空気を25℃において40cm/secの流速で流通させた。
【0026】
各活性炭層の入口における硫化ジメチルのガス濃度(C0 )と出口における同ガス濃度(C)とをFPD検出器付ガスクロマトグラフィで経時測定し、各試料の破過率C/C0 が0.05になるまでのガス流通時間(破過時間)を求めた。その結果を表2に示す。
【0027】
【表2】
Figure 0003830247
【0028】
活性炭の表面酸化物の測定
φ20×1000mmの石英カラムに臭素添着炭の試料3gを入れ、試料の前後は十分に乾燥させたガラスウールで固定し、電気状炉にセットした。また石英カラムにはゴム栓で前後に蓋をして窒素を導入するための孔と排出するための孔を空けた。100ml/分の流速で窒素を石英カラムに流しながら、100℃まで加熱昇温し、次いで、出口ガスを2リットルのテトラバックに接続し、400℃/時間の速度で900℃まで昇温加熱した。900℃になってから、さらに30分間900℃で保持した後、テトラバックを外し、捕集したガス量を測定するとともに、捕集されたガスにおけるCOとCO2の総濃度を、水素コンバータ付きのFID検出器付ガスクロマトグラフィーで測定し、表面酸化物の酸素としての含量を算出した。その結果を表3に示す。
【0029】
【表3】
Figure 0003830247
【0030】
比較例:
臭素添着炭の調製
熱処理を行わない未処理の活性炭を、実施例と同様の方法で臭素添着炭とした。その結果を表4に示した。
【0031】
【表4】
Figure 0003830247
【0032】
硫化ジメチルの吸着性能
上記で得られた各臭素添着活性炭(試料A’〜試料C’)について、実施例と同様の方法で破過時間を求めた。その結果を表5に示す。
【0033】
【表5】
Figure 0003830247
【0034】
活性炭の表面酸化物の測定
未処理の活性炭を使用した臭素添着試料の表面酸化物について、実施例と同様の方法により測定した。その結果を表6に示す。
【0035】
【表6】
Figure 0003830247
【0036】
【発明の効果】
本発明の臭素添着活性炭によれば、従来技術によって調製された臭素添着炭においては不十分とされていた硫化アルキル類に対する吸着性能を改善することができるとともに、その吸着性能のバラツキをもなくし、安定した硫化アルキル類の除去性能を発揮させることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bromine-impregnated activated carbon and a method for producing the same, and more particularly to a bromine-impregnated activated carbon used for removing alkyl sulfides from a gas containing alkyl sulfides at a low concentration and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Exhaust gas from sewage treatment plants, human waste treatment plants, garbage treatment plants, etc., chemical refineries such as petroleum refining, petrochemical, paper pulp, etc., and process gases or exhaust gases from food factories, etc. include hydrogen sulfide, mercaptans, alkyl sulfides, etc. Contains sulfur compounds.
Conventionally, various methods such as an alkali absorption method, a wet oxidation method, an ozone oxidation method, an activated carbon adsorption method, and a combustion method are known as methods for removing sulfur compounds in such a gas.
[0003]
However, although many sulfur compounds can be removed by these conventional methods, alkyl sulfides such as dimethyl sulfide and dimethyl disulfide, which are specific malodorous substances, cannot be removed until they are sufficiently satisfactory.
On the other hand, in the activated carbon adsorption method, when bromine-impregnated activated carbon with bromine previously added is used in addition to general activated carbon, a mechanism different from the physical adsorption by the former, that is, dimethyl sulfide and dimethyl disulfide are chemically treated. can be removed by adsorption, for example, JP 54-132470 and JP proposed by like Japanese public Sho 55-20732 and JP 55-51422 JP.
[0004]
Certainly, when activated carbon impregnated with bromine is used, more specific malodorous substances such as dimethyl sulfide and dimethyl disulfide can be removed as compared with the conventional method. The current situation is that the quality is not uniform due to various parameters such as the amount of bromine added, and dimethyl sulfide and dimethyl disulfide cannot be removed to a satisfactory level.
[0005]
[Means for Solving the Problems]
In the process of conducting intensive research in view of the above problems, the present invention has studied in detail the components, properties, physical properties, and the like of various bromine-impregnated activated carbons. As a result, impurities contained in the activated carbon, that is, elements other than carbon, particularly the activated carbon surface As a result, it was found that some of the oxides present in the sample affected the decrease in the adsorption performance of the bromine-impregnated activated carbon, resulting in the present invention.
[0006]
That is, according to the present invention, the content of surface oxides is not more than 2.5 wt% as oxygen, bromine impregnated activated carbon which bromine is being added wearing 3 wt% or more (excluding the molecular sieve carbon) is provided.
Moreover, the raw material activated carbon is heat-treated at 500 to 1100 ° C. in the absence of oxygen to form a supported activated carbon, and then the brominated sorbed activated carbon is produced by adding bromine to the supported activated carbon.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The raw material activated carbon for producing the bromine-impregnated activated carbon of the present invention is manufactured by a known method using, for example, coal, coke, charcoal, coconut husk, resin, petroleum residue, etc., and its specific surface area is 100 to 2000 m. Any material of about 2 / g may be used. The shape may be any of, for example, a spherical shape, a cylindrical shape, a crushed shape, a powder shape, a granular shape, a fiber shape, and a honeycomb shape.
[0008]
In the bromine-impregnated activated carbon of the present invention, examples of the surface oxide whose content is limited include various oxides such as carbon monoxide, carbon dioxide, alkali metal or alkaline earth metal oxides. The content of the oxide is preferably 2.5 wt% or less, more preferably 2 wt% or less, and further preferably 1.5 wt% or less as oxygen with respect to the carrier activated carbon not doped with bromine. The bromine-impregnated activated carbon of the present invention oxidizes the activated carbon with bromine by oxidation or over time due to the oxidizing action of bromine, and the surface oxide tends to slightly increase. The content of the product is limited as described above by the weight relative to the carrier activity which is not brominated.
[0009]
The bromine content in the bromine-impregnated activated carbon of the present invention is about 3 wt% or more, more preferably 5 wt% or more, still more preferably 5 wt% or more and 50 wt% or less, most preferably 5 wt% with respect to the carrier activated carbon not doped with bromine. % Or more and 20 wt% or less.
[0010]
In addition, in the method for producing bromine-impregnated activated carbon of the present invention, in order to make the content of surface oxide of the bromine-impregnated activated carbon finally obtained within the above range, the content of surface oxide of the carrier activated carbon before bromine-impregnation is adjusted. The oxygen content of the carrier activated carbon is preferably 2.0 wt% or less, more preferably 1.5 wt% or less, and even more preferably 1.0 wt% or less.
[0011]
In the method for producing bromine-impregnated activated carbon of the present invention, the method of setting the surface oxide content of the carrier activated carbon before bromine addition to 2.0 wt% or less as oxygen is that the raw material activated carbon is 500 to 1100 ° C. in the absence of oxygen. The method of heat-processing is mentioned. Examples of the heat treatment method include various methods such as a high temperature pyrolysis method and a high temperature hydrogen reduction method. In addition to the method of heat treatment in the absence of oxygen, for example, a liquid phase reduction method and the like can be mentioned. However, as a method for efficiently limiting the surface oxide content of the supported activated carbon, a high temperature pyrolysis method, a high temperature hydrogen reduction method, or the like is preferable.
[0012]
The high temperature pyrolysis method is a method in which raw material activated carbon is heat-treated in an inert gas not containing oxygen such as nitrogen or argon gas or under vacuum to thermally decompose the oxide. The heat treatment temperature at this time is more efficient as the temperature is higher, but depending on the raw material activated carbon used, there are those in which the pores are blocked at a temperature exceeding about 1200 ° C., so about 500 to 1100 ° C. is appropriate, Preferably it is about 700-950 degreeC. Further, the treatment time can be appropriately adjusted depending on the amount of raw material activated carbon, etc., and for example, about 0.1 to 10 hours is appropriate.
[0013]
The high-temperature hydrogen reduction method is a method in which, for example, a raw material activated carbon is heat-treated in a hydrogen-containing gas atmosphere to reduce oxides. The heat treatment temperature at this time is suitably about 400 to 1000 ° C., preferably about 500 to 850 ° C., more preferably around 700 ° C. The treatment time is suitably about 0.1 to 10 hours, for example.
[0014]
The liquid phase reduction method is a method of immersing or stirring / mixing raw material activated carbon in a reducing solvent such as hydrazine in a temperature range of about room temperature to about 100 ° C.
[0015]
Such a treatment may be performed once or twice or more times, or may be performed in a multi-step process by a combination of different processes.
[0016]
Further, bromine addition in the bromine-impregnated activated carbon of the present invention can be carried out by an addition method known per se. For example, a gas phase deposition method in which a carrier gas containing bromine gas is brought into contact with activated carbon that has been subjected to a desired treatment, a liquid phase deposition method in which the treated activated carbon is immersed in bromine water, a liquid bromine in the treated activated carbon, etc. And a method of directly spraying and attaching.
[0017]
In the vapor deposition method, usually, for example, air, nitrogen gas, carbon gas, or the like is used as a carrier gas, and the contact temperature is adjusted to about 150 ° C. or lower, preferably about 80 ° C. or lower. Vapor deposition is performed continuously using a floor or the like. In this method, it is preferable that after adding bromine-containing gas and adding bromine to the activated carbon, only carrier gas is passed to remove unattached bromine gas.
[0018]
In the liquid phase addition method, a predetermined amount of activated carbon is usually immersed in bromine water having a bromine concentration of about 1 to 5% for about 1 to 10 hours, or bromine water is immersed in a fluidized bed, moving bed, fixed bed, or spray bed of activated carbon. The bromine is impregnated by being distributed / contacted using the like, and then filtered and dried. In this case, the temperature is preferably about 80 ° C. or less, and more preferably about 50 ° C. or less.
[0019]
As a method of spraying and attaching liquid bromine or the like, it is carried out by spraying liquid bromine or bromine water directly while stirring the treated activated carbon, and drying it if necessary. The contact temperature at that time is preferably about 50 ° C. or less.
Bromine-impregnated activated carbon of alkyl sulfides with the present invention, in particular dimethyl sulfide, two of these alkyl sulfides dimethyl sulfide from gaseous containing Ru intake Chakusu method, for example, fixed bed, moving bed, fluidized bed, A method of bringing the gas to be treated into contact with the bromine-impregnated activated carbon by a known method such as a slurry method or a batch-type contact stirring method may be mentioned. The contact time at this time can be appropriately adjusted depending on the concentration of alkyl sulfides, the particle size of the bromine-impregnated activated carbon used, the contact method, etc. For example, at a temperature of about 50 ° C. or less, about 0.1 second to 1 minute. Is normal.
[0020]
Below, the preparation example and use example of the bromine impregnation activated carbon of this invention are demonstrated.
[0021]
Example:
850 ° C. The various ingredients and the shape of the activated carbon shown in heat treatment Table 1 of the activated carbon in the tube-like furnace, nitrogen 5 l / min, 30 min, heat treatment was performed under the conditions of 300g charged. After the heat treatment, it was cooled with nitrogen gas.
[0022]
Preparation of bromine-impregnated carbon The heat-treated activated carbon was dried with an electric dryer at 115C for 3 hours, cooled to room temperature in a desiccator, and 100 g was weighed.
[0023]
Next, each sample was transferred to a 1 liter glass Erlenmeyer flask, and the activated carbon layer was flattened, and about 3 g of silica wool was placed thereon. On top of that, 10 g of reagent-grade bromine was dropped, and the flask was shaken and stirred. The evaporated bromine gas was attached to the activated carbon sample to prepare Sample A to Sample C. The amount of bromine added was calculated from the weight increase when the sample was taken out after all bromine was added and the inside of the flask became colorless and transparent, and is shown in Table 1.
[0024]
[Table 1]
Figure 0003830247
[0025]
Adsorption performance of dimethyl sulfide Each bromine-impregnated activated carbon (sample A to sample C) obtained above was crushed and sized to 16 to 24 mesh, and a 100 mm layer thickness (19.1 ml) was placed on a glass column having an inner diameter of 15.6 mm. ), And air having a relative humidity of 80% and containing 3 ppm of dimethyl sulfide was circulated at 25 ° C. at a flow rate of 40 cm / sec.
[0026]
The gas concentration (C 0 ) of dimethyl sulfide at the inlet of each activated carbon layer and the gas concentration (C) at the outlet were measured over time by gas chromatography with an FPD detector, and the breakthrough rate C / C 0 of each sample was 0. The gas circulation time (breakthrough time) until 05 was obtained. The results are shown in Table 2.
[0027]
[Table 2]
Figure 0003830247
[0028]
The sample was placed 3g of bromine impregnated charcoal quartz column measuring ø20 × 1000 mm of the surface oxides of activated carbon, before and after the sample was fixed with glass wool was sufficiently dried and set in an electric tube-like furnace. In addition, the quartz column was covered with a rubber stopper before and after, and a hole for introducing nitrogen and a hole for discharging were formed. While flowing nitrogen through the quartz column at a flow rate of 100 ml / min, the temperature was raised to 100 ° C., and then the outlet gas was connected to a 2-liter tetrabac and heated to 900 ° C. at a rate of 400 ° C./hour. . After reaching 900 ° C., hold at 900 ° C. for another 30 minutes, then remove the tetraback, measure the amount of gas collected, and add the total concentration of CO and CO 2 in the collected gas with a hydrogen converter. The content of surface oxide as oxygen was calculated by gas chromatography with FID detector. The results are shown in Table 3.
[0029]
[Table 3]
Figure 0003830247
[0030]
Comparative example:
Preparation of bromine-impregnated carbon Untreated activated carbon not subjected to heat treatment was converted to bromine-impregnated carbon in the same manner as in the examples. The results are shown in Table 4.
[0031]
[Table 4]
Figure 0003830247
[0032]
Adsorption performance of dimethyl sulfide For each bromine-impregnated activated carbon (sample A ′ to sample C ′) obtained above, breakthrough time was determined in the same manner as in the example. The results are shown in Table 5.
[0033]
[Table 5]
Figure 0003830247
[0034]
Measurement of surface oxide of activated carbon The surface oxide of a bromine-impregnated sample using untreated activated carbon was measured by the same method as in the examples. The results are shown in Table 6.
[0035]
[Table 6]
Figure 0003830247
[0036]
【The invention's effect】
According to the bromine-impregnated activated carbon of the present invention, it is possible to improve the adsorption performance for alkyl sulfides, which has been considered insufficient in bromine-impregnated coal prepared by the prior art, and to eliminate variations in the adsorption performance, Stable removal performance of alkyl sulfides can be exhibited.

Claims (3)

表面酸化物の含量が酸素として2.5wt%以下であり、臭素が3wt%以上で添着されてなる臭素添着活性炭(分子篩炭を除く)を用いて硫化アルキル類を吸着する方法。The content of surface oxides is not more than 2.5 wt% as oxygen, Ru intake Chakusu the alkyl sulfides using bromine impregnated activated carbon which bromine is being impregnated with 3 wt% or more (excluding the molecular sieve carbon) method. 表面酸化物の含量が酸素として2.5wt%以下であり、臭素が3wt%以上で添着されてなる、硫化アルキル類の吸着用の臭素添着活性炭(分子篩炭を除く)。The content of surface oxides is not more than 2.5 wt% as oxygen, bromine, which are impregnated with 3 wt% or more, (excluding the molecular sieve carbon) bromine-impregnated activated carbon of the absorption wear alkyl sulfides. 表面酸化物の含量が酸素として2.5wt%以下であり、臭素が3wt%以上で添着されてなる臭素添着活性炭(分子篩炭を除く)からなる硫化アルキル類の吸着剤The content of surface oxides is not more than 2.5 wt% as oxygen, adsorbents bromine, which are impregnated with 3 wt% or more bromine-impregnated activated carbon (molecules except sieve charcoal) consists alkyl sulfides.
JP29744097A 1997-07-25 1997-10-29 Bromine impregnated activated carbon and method for producing the same Expired - Fee Related JP3830247B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29744097A JP3830247B2 (en) 1997-10-29 1997-10-29 Bromine impregnated activated carbon and method for producing the same
US09/121,836 US6514907B2 (en) 1997-07-25 1998-07-24 Bromine-impregnated activated carbon and process for preparing the same
SG1998002664A SG65087A1 (en) 1997-07-25 1998-07-24 Bromine-impregnated activated carbon and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29744097A JP3830247B2 (en) 1997-10-29 1997-10-29 Bromine impregnated activated carbon and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11128737A JPH11128737A (en) 1999-05-18
JP3830247B2 true JP3830247B2 (en) 2006-10-04

Family

ID=17846555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29744097A Expired - Fee Related JP3830247B2 (en) 1997-07-25 1997-10-29 Bromine impregnated activated carbon and method for producing the same

Country Status (1)

Country Link
JP (1) JP3830247B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172064A (en) * 2013-04-12 2013-06-26 宁夏大学 Low-ash coal-based activated carbon quick activation production technology

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095927A (en) * 2000-07-21 2002-04-02 Nikko Plant:Kk Deodorizing method
CN100340683C (en) * 2002-05-06 2007-10-03 吸附技术公司 Sorbents and methods for the removal of mercury from combustion gases
JP5069838B2 (en) * 2003-05-14 2012-11-07 株式会社キャタラー Method for producing activated carbon for deodorizer and activated carbon for deodorizer
UA109399C2 (en) 2009-04-01 2015-08-25 THERMALLY ACTIVATED COAL RESISTANT TO SELF-IGNITION
US8198210B2 (en) * 2010-05-27 2012-06-12 Corning Incorporated Halogenated activated carbon materials for high energy density ultracapacitors
WO2015072263A1 (en) * 2013-11-13 2015-05-21 日本エンバイロケミカルズ株式会社 Adsorbent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103172064A (en) * 2013-04-12 2013-06-26 宁夏大学 Low-ash coal-based activated carbon quick activation production technology

Also Published As

Publication number Publication date
JPH11128737A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
US6514907B2 (en) Bromine-impregnated activated carbon and process for preparing the same
KR100186680B1 (en) Absorbent for removal of trace oxygen from inert gases
EP1341719B1 (en) Activated carbon for odor control and method for making same
JPH09239265A (en) Mercury adsorbent
JPH01231920A (en) Removal of silver in hydrocarbon
WO2010039990A1 (en) Removal of heavy metals from hydrocarbon gases
JPH11510730A (en) Method for selective oxidation
US3778387A (en) Activated carbon with antioxidant properties and a method of preparing the same
JP3830247B2 (en) Bromine impregnated activated carbon and method for producing the same
Matatovmeytal et al. Optimal temperatures for catalytic regeneration of activated carbon
JP3830234B2 (en) Bromine impregnated activated carbon
EP0145539A2 (en) Mercury adsorbent carbons and carbon molecular sieves
JPH04219308A (en) Production of formed active coke for desulfurization and denitration having high denitration performance
FR2521448A1 (en) PROCESS FOR THE HYDRODESULFURIZATION OF NATURAL GAS CONTAINING ORGANIC SULFUR AND OXYGEN COMPOUNDS
JPS6322184B2 (en)
JPH07155608A (en) Production of high capacity carbon material
US6362127B1 (en) Synthesis of a carbon-based catalyst from sludge
JP3730987B2 (en) Bromine impregnated activated carbon and method for producing the same
JPS6359732B2 (en)
JPH10501174A (en) Air purification in enclosed space
JPH0233416B2 (en)
JPS6010776B2 (en) Ethylene removal agent
JPH0780056A (en) Deodorizing method
JPS58122042A (en) Molded active coke for desulfurization and denitration and its production
JPS5932169B2 (en) Adsorbent and adsorption method for hydrogen sulfide-containing gas

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050516

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060711

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140721

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees