WO2015072263A1 - Adsorbent - Google Patents

Adsorbent Download PDF

Info

Publication number
WO2015072263A1
WO2015072263A1 PCT/JP2014/077298 JP2014077298W WO2015072263A1 WO 2015072263 A1 WO2015072263 A1 WO 2015072263A1 JP 2014077298 W JP2014077298 W JP 2014077298W WO 2015072263 A1 WO2015072263 A1 WO 2015072263A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
activated carbon
porous carrier
peroxosulfate
mass
Prior art date
Application number
PCT/JP2014/077298
Other languages
French (fr)
Japanese (ja)
Inventor
田中 敦
荒谷 渉
泰徳 國本
Original Assignee
日本エンバイロケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本エンバイロケミカルズ株式会社 filed Critical 日本エンバイロケミカルズ株式会社
Publication of WO2015072263A1 publication Critical patent/WO2015072263A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/045Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing sulfur, e.g. sulfates, thiosulfates, gypsum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/014Deodorant compositions containing sorbent material, e.g. activated carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/608Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708

Definitions

  • the present invention relates to an adsorbent excellent in the adsorption performance of neutral odor substances and aldehyde odor substances even without containing bromine.
  • odor pollution include pollution caused by exhaust gas.
  • Odor substances contained in the exhaust gas include acidic odor substances, neutral odor substances, alkaline odor substances, and the like.
  • adsorbents made by attaching chemicals (chemical substances) corresponding to the respective odorous substances are used.
  • a neutral odor substance mainly includes methyl sulfide, and activated carbon formed by adding bromine to the adsorption of this methyl sulfide is known (Patent Document 1).
  • This bromine-impregnated activated carbon has very excellent methyl sulfide adsorption performance.
  • bromine is cumbersome and difficult to handle.
  • bromine is becoming difficult to obtain due to a decrease in production.
  • Patent Documents 2 to 4 As a new adsorbent that does not contain bromine that can adsorb and remove neutral odorous substances, adsorbents that use halogen compounds or metals as adjunct components instead of bromine have been studied (Patent Documents 2 to 4).
  • JP 2005-089291 JP JP 2006-088023 A Japanese Unexamined Patent Publication No. 9-155149 JP-A-9-262273
  • any of the adsorbents containing the halogen compounds and metals as described above is not satisfactory because of its low ability to adsorb neutral odor substances.
  • An object of the present invention is to provide a novel adsorbent that does not contain bromine and has an excellent adsorption performance for neutral odorous substances, and a method for adsorbing odorous substances using the adsorbent.
  • the present inventors have found that the above object can be achieved by using an adsorbent obtained by attaching a specific component to a porous carrier as an alternative component of bromine, The present invention has been completed.
  • the present invention relates to an adsorbent described below and an odor substance adsorbing method using the adsorbent.
  • An adsorbent obtained by attaching peroxosulfate to a porous carrier.
  • the adsorbent according to Item 1 wherein the peroxosulfate is at least one selected from the group consisting of potassium peroxomonosulfate, a double salt thereof, potassium peroxodisulfate, sodium peroxodisulfate, and ammonium peroxodisulfate.
  • a method for adsorbing an odor substance comprising bringing a gas containing a neutral odor substance and / or an aldehyde odor substance into contact with an adsorbent obtained by attaching peroxosulfate to a porous carrier.
  • the present invention includes an invention of an adsorbent, an invention of a method of producing the adsorbent, an invention of an adsorption method of the odorous substance using the adsorbent, an invention of a method of attaching peroxosulfate to a porous carrier, and
  • any of the inventions of use of a porous carrier impregnated with peroxosulfate for adsorption (to the odorous substance) is included.
  • “attachment” means that a chemical such as peroxosulfate is supported on a porous carrier.
  • Adsorbent The adsorbent of the present invention is characterized in that peroxosulfate is attached to a porous carrier.
  • the adsorbent of the present invention is excellent in adsorption performance of neutral odorous substances even if bromine is not contained in the adsorbent because a specific component called peroxosulfate is attached to the porous carrier. Furthermore, the adsorbent of the present invention is also excellent in the adsorption performance of aldehyde odor substances.
  • the shape and average particle size of the adsorbent of the present invention are the same as the shape and average particle size of the porous carrier described later.
  • Porous carrier The adsorbent of the present invention comprises a porous carrier.
  • the porous carrier is not particularly limited, and generally known carriers can be widely used.
  • activated carbon activated clay, zeolite, silica, alumina (including activated alumina), ceramic, clay mineral, calcium carbonate and the like can be mentioned.
  • a preferred porous carrier is activated carbon.
  • the reason why activated carbon is preferred as the porous carrier is that the activated carbon has a cluttered pore structure unlike the pore structure of inorganic porous carriers such as zeolite and alumina, so the gas component is not selective. This is presumed to be adsorbed uniformly (uniformly).
  • cation exchange base exchange
  • peroxosulfate as an attachment component.
  • the porous carrier can be used alone or in combination of two or more.
  • the activated carbon raw material is not particularly limited as long as it is a carbon source that is usually used as an activated carbon raw material.
  • examples thereof include various synthetic resins such as resins, polyurethane resins, polyester resins, acrylic resins and polyamide resins, synthetic rubbers such as polybutylene, polybutadiene and polychloroprene, and other synthetic woods and synthetic pulps.
  • coconut shells are preferably used from the viewpoint that a neutral odor substance or an aldehyde odor substance is easily adsorbed in a gas
  • Examples of the carbonization or activation method of the activated carbon material include known activated carbon production methods such as a fixed bed method, a moving bed method, a fluidized bed method, and a rotary kiln method.
  • Carbonization of activated carbon raw materials includes inert gas such as nitrogen gas, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, combustion exhaust gas, and other gases mainly composed of these inert gases.
  • the method of baking using gas is mentioned.
  • the temperature condition for carbonization is usually 500 to 900 ° C., preferably 600 to 800 ° C.
  • activation (or activation) method of the activated carbon raw material gas activation method using water vapor, carbon dioxide, carbon monoxide, oxygen, hydrogen chloride, ammonia, combustion gas, etc., calcium chloride, calcium sulfide, phosphoric acid, sulfuric acid, A chemical activation method for activating activated carbon raw materials in the presence of zinc chloride or the like can be mentioned.
  • steam activation is preferable.
  • the temperature condition for activation is usually 750 to 1200 ° C., preferably 800 to 1100 ° C.
  • the inorganic matter (ash content) in carbon may be washed and deashed with dilute hydrochloric acid or an alkaline aqueous solution, and further purified by repeated washing with water, followed by drying and sieving.
  • activated carbon also referred to as “activated carbon before peroxosulfate is impregnated” or “original coal”.
  • commercially available products include granular white WH2c20 / 48 (manufactured by Nippon Enviro Chemicals Co., Ltd.).
  • the activated carbon is preferably heat-treated activated carbon.
  • the heat-treated (heat-treated) activated carbon is either (1) surface oxides or surface functional groups present on the surface of activated carbon, (2) (in the case where the activated carbon raw material is activated and then washed and decalcified with dilute hydrochloric acid or an alkaline aqueous solution, ) The dilute hydrochloric acid, alkaline aqueous solution, etc. are suitably removed.
  • the adsorbent using the heat-treated activated carbon is a peroxosulfate that contributes to the adsorption of neutral odorous substances and / or aldehyde-based odorous substances compared to the adsorbent using the non-heat treated activated carbon. Since the amount is large, the adsorption performance of the odorous substance is particularly excellent as a result.
  • the said heat processing is also called modification
  • the heat treatment of the activated carbon can be appropriately performed after activating the activated carbon raw material.
  • the heat treatment of the activated carbon is preferably performed after the activated carbon is washed and decalcified with dilute hydrochloric acid or an alkaline aqueous solution.
  • the temperature during the heat treatment is preferably 850 to 950 ° C.
  • the surface oxide, surface functional group, dilute hydrochloric acid, alkaline aqueous solution, etc. are suitably removed (also referred to as desorbing or flying) without deteriorating the activated carbon. Can do.
  • the time for the heat treatment is not particularly limited, and can be appropriately set depending on the amount of the adsorbent (or activated carbon).
  • the heat treatment time is preferably 30 minutes or more, more preferably 30 to 60 minutes.
  • the pressure during the heat treatment is not particularly limited.
  • the atmosphere during the heat treatment is preferably an inert gas atmosphere.
  • the atmosphere during the heat treatment is an inert gas
  • the surface oxide, surface functional group, dilute hydrochloric acid, alkaline aqueous solution, and the like can be more suitably and stably removed.
  • the inert gas include nitrogen gas, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, and combustion exhaust gas.
  • the apparatus for heat treatment is not particularly limited, but heat treatment using a rotary kiln (cylindrical rotary furnace) is preferable.
  • the shape of the porous carrier is not particularly limited.
  • it may be a powder, a crushed shape, a fiber shape, a cylindrical shape, a spherical shape, a honeycomb shape, or the like.
  • the average particle diameter, BET specific surface area, pore volume, and average pore diameter of the porous carrier are not particularly limited.
  • the BET specific surface area is preferably 1000 m 2 / g or more
  • the pore volume is preferably 0.4 mL / g or more
  • the average pore diameter is preferably 1.7 nm or more.
  • Peroxosulfate The adsorbent of the present invention can be obtained by attaching peroxosulfate to a porous carrier.
  • peroxosulfate examples include peroxomonosulfate and peroxodisulfate.
  • peroxosulfates at least one selected from the group consisting of potassium peroxomonosulfate, its double salt (double salt of potassium peroxomonosulfate), potassium peroxodisulfate, sodium peroxodisulfate and ammonium peroxodisulfate is preferable. More preferred is at least one selected from the group consisting of potassium peroxomonosulfate and double salts thereof.
  • At least one selected from the group consisting of potassium peroxomonosulfate and its double salt has excellent neutral odorous substance and aldehyde odorous substance adsorption removal performance and does not fall under the PRTR system designated chemical substance. So it is easy to handle.
  • double salt double salt of potassium peroxomonosulfate
  • double salt with potassium hydrogen sulfate KHSO 4
  • potassium sulfate K 2 SO 4
  • the amount of peroxosulfate added is preferably 2 to 10 parts by mass with respect to 100 parts by mass (based on the dry product) of the porous carrier.
  • the amount of peroxosulfate added is within the above range, a neutral odor substance or an aldehyde odor substance can be adsorbed more efficiently.
  • the amount of peroxosulfate added is too large, the peroxosulfate fills the pores of the porous carrier, which may make it difficult for the odorous substance to reach the reaction site in the adsorbent.
  • peroxosulfate a commercially available product can be used.
  • a double salt of potassium peroxomonosulfate Duxon Oxone, Evonik Caroat, etc. can be used.
  • peroxosulfate can be used 1 type or in combination of 2 or more types.
  • the adsorbent of the present invention can be added with a known additive to the carrier within a range that does not adversely affect the effects of the present invention, depending on the purpose and application.
  • Known additives include non-volatile acids and salts thereof.
  • nonvolatile acids and salts thereof can further improve the stability and heat resistance of the adsorbent.
  • non-volatile acid examples include organic acids and inorganic acids.
  • organic acid and its salt examples include polyvalent carboxylic acid, oxalic acid, malonic acid, tartaric acid, succinic acid, citric acid, malic acid, glutaric acid and hydroxycarboxylic acid, and salts thereof.
  • polyvalent carboxylic acid examples include fumaric acid and maleic acid.
  • inorganic acids and salts thereof include phosphoric acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid and boric acid, and salts thereof.
  • Preferred non-volatile acid and its salt are at least one selected from the group consisting of phosphoric acid, phosphate, sulfuric acid and sulfate.
  • the non-volatile acid and its salt can be used individually by 1 type, or can mix and use 2 or more types as needed.
  • a method of attaching peroxosulfate to the porous carrier in the present invention a method including a step of bringing a liquid containing peroxosulfate into contact with the porous carrier is preferable.
  • a method of contacting a porous carrier with a liquid containing peroxosulfate preferably a solution in which peroxosulfate is dissolved in a solvent
  • a method of spraying or spraying a liquid containing the peroxosulfate on a porous carrier a method of immersing a porous carrier in a liquid containing the peroxosulfate, Etc.
  • peroxosulfate can be uniformly applied to the entire porous carrier.
  • the temperature of the liquid containing peroxosulfate used is preferably 15 to 30 ° C., and the deposition time is preferably within 1 hour.
  • the solvent constituting the liquid containing peroxosulfate is preferably a solvent that dissolves peroxosulfate.
  • the solvent for dissolving peroxosulfate include water.
  • the amount of peroxosulfate used is preferably set so that the amount of peroxosulfate added is 2 to 10 parts by mass with respect to 100 parts by mass (based on the dry product) of the porous carrier.
  • a liquid containing 2 to 10 parts by mass of peroxosulfate is sprayed on 100 parts by mass of a dry porous carrier.
  • an adsorbent having a peroxosulfate loading amount of 2 to 10 parts by mass with respect to 100 parts by mass of the porous carrier (on a dry product basis) is obtained.
  • the porous carrier is activated carbon
  • the peroxosulfate is added (for example, after (1) activating the activated carbon raw material, (2) washing the activated carbon with dilute hydrochloric acid or an alkaline aqueous solution. After deashing, etc., the activated carbon is preferably heat-treated.
  • Each heat treatment condition (temperature, time, atmosphere, apparatus, etc.) is as in each heat treatment condition described in the above-mentioned section of the porous carrier.
  • the adsorption method of the present invention is characterized in that a gas containing a neutral odor substance and / or an aldehyde odor substance is brought into contact with an adsorbent obtained by attaching peroxosulfate to a porous carrier. According to the adsorption method, the adsorbent efficiently adsorbs a neutral odor substance and / or an aldehyde odor substance (at least one selected from the group consisting of a neutral odor substance and an aldehyde odor substance). The odorous substance can be efficiently removed.
  • the mechanism for adsorbing the odorous substance (bad odorous substance) using the adsorbent of the present invention is that the adsorbent oxidizes the odorous substance by the catalytic oxidation action of peroxosulfate in the adsorbent, and the oxidized odor. It is thought to adsorb substances.
  • adsorption method of the present invention for example, including the step of placing the adsorbent of the present invention so that the adsorbent of the present invention comes into contact with a gas containing a neutral odor substance and / or an aldehyde odor substance. Is mentioned.
  • the adsorbent of the present invention efficiently adsorbs a neutral odor substance and / or an aldehyde odor substance. Note that the adsorbent of the present invention is effective against the odorous substance in which one kind or a combination of two or more kinds is used.
  • neutral odor substances include alkyl sulfide odor substances (alkyl sulfides). Specific examples include methyl sulfide, methyl disulfide, methylpropyl disulfide, diethyl sulfide, ethyl disulfide, dibutyl sulfide and the like. Among these, the adsorbent of the present invention is particularly effective for adsorption of methyl sulfide.
  • aldehyde odor substances include, in particular, lower aldehyde odor substances (lower aldehydes).
  • lower aldehyde odor substances include formaldehyde, acetaldehyde, propionaldehyde, acrolein, n-butyraldehyde, isobutyraldehyde, 3-methyl-butyraldehyde, crotonaldehyde, and the like.
  • the adsorbent of the present invention is particularly effective for adsorption of at least one selected from the group consisting of formaldehyde and acetaldehyde.
  • Examples of the gas containing a neutral odor substance and / or an aldehyde odor substance include air.
  • the concentration of the neutral odor substance and / or the aldehyde odor substance is not particularly limited.
  • the adsorbent of the present invention can be used by mixing with industrial products.
  • the industrial product includes the present invention.
  • the adsorbent and the odorous substance are brought into contact with each other by bringing a gas containing a neutral odorous substance and / or an aldehyde odorous substance into contact with the above-mentioned industrial product. Can be efficiently removed.
  • Industrial products refer to industrial products and raw materials that have been widely known. Specifically, paints, adhesives, inks, sealants, paper products, binders, resin emulsions, pulp, wood materials, wood products, plastic products, films, wallpaper, building materials (gypsum board, interior materials, ceiling materials, floors) Materials), textile products, filters and the like. These composite materials are also included in industrial products. Examples of the composite material include a composite material of wood and plastic.
  • the industrial product is placed and applied so that the above-mentioned industrial product containing an adsorbent comes into contact with a gas containing a neutral odor substance and / or an aldehyde odor substance. , Including a step of attaching and the like.
  • the odorous substance is also obtained by a process of filling the industrial product in an adsorbing device such as a fixed bed, moving bed or fluidized bed, and aerating a gas containing a neutral odorous substance and / or an aldehyde odorous substance. Can be efficiently adsorbed and removed.
  • an adsorbing device such as a fixed bed, moving bed or fluidized bed, and aerating a gas containing a neutral odorous substance and / or an aldehyde odorous substance. Can be efficiently adsorbed and removed.
  • the adsorbent of the present invention is formed by attaching a specific component called peroxosulfate to a porous carrier, it has excellent adsorption performance for neutral odorous substances even without containing bromine. Furthermore, the adsorbent of the present invention is also excellent in the adsorption performance of aldehyde odor substances.
  • 2 is a graph showing methyl sulfide removal rate (%) over time for each adsorbent obtained in Examples 1 to 4, Comparative Example 1 and Reference Example 1.
  • 2 is a graph showing methyl sulfide breakthrough rate (%) for each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 over time.
  • 2 is a graph showing acetaldehyde removal rate (%) for each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 over time.
  • 3 is a graph showing formaldehyde removal rate (%) for each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 over time.
  • 2 is a graph showing methyl sulfide breakthrough rate (%) for each adsorbent obtained in Examples 5 and 6 over time.
  • Example 1 Dissolve 10 parts by mass of potassium peroxomonosulfate double salt (Oxone, molecular formula: 2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO 4 , manufactured by DuPont Co., Ltd.) in 30 parts by mass of water, and add the impregnation solution (liquid temperature: 20 ° C). Prepared.
  • potassium peroxomonosulfate double salt (Oxone, molecular formula: 2KHSO 5 ⁇ KHSO 4 ⁇ K 2 SO 4 , manufactured by DuPont Co., Ltd.) in 30 parts by mass of water, and add the impregnation solution (liquid temperature: 20 ° C).
  • Example 2 instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution in which 4.4 parts by mass of potassium peroxodisulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 40 parts by mass of water ( Except for using a liquid temperature of 20 ° C., an adsorbent obtained by adding potassium peroxodisulfate to coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 4.4 parts by mass with respect to 100 parts by mass of the porous carrier. The amount of potassium peroxodisulfate used (4.4 parts by mass) was set to be equimol with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
  • Example 3 Instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution (liquid) in which 3.7 parts by mass of ammonium peroxodisulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 30 parts by mass of water Except for using (temperature: 20 ° C.), an adsorbent obtained by adsorbing ammonium peroxodisulfate on coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 3.7 parts by mass with respect to 100 parts by mass of the porous carrier. The amount of ammonium peroxodisulfate used (3.7 parts by mass) was set to be equimoles with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
  • Example 4 instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution in which 3.9 parts by mass of sodium peroxodisulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 30 parts by mass of water ( Except for using liquid temperature: 20 ° C., an adsorbent obtained by adding sodium peroxodisulfate to coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 3.9 parts by mass with respect to 100 parts by mass of the porous carrier. The amount of sodium peroxodisulfate used (3.9 parts by mass) was set to be equimoles with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
  • Example 5 Instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution (liquid temperature: 20 ° C) in which 6 parts by mass of potassium peroxomonosulfate was dissolved in 20 parts by mass of water was used. Except for the use, an adsorbent obtained by adhering potassium peroxomonosulfate double salt to coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 6 parts by mass with respect to 100 parts by mass of the porous carrier.
  • Example 6 First, coconut shell activated carbon having a particle size of 0.850 to 0.300 mm (20 / 48mesh) (granular white birch WH2c20 / 48, manufactured by Nippon Enviro Chemicals Co., Ltd.) was prepared. Next, the coconut shell activated carbon was heat-treated at 900 ° C. for 30 minutes. Thereafter, potassium peroxomonosulfate double salt was added in the same manner as in Example 5 except that the heat-treated coconut shell activated carbon was used instead of the non-heat-treated coconut shell activated carbon used in Example 5. An adsorbent obtained by adhering to shell activated carbon was obtained.
  • the amount of peroxosulfate added to the adsorbent was 6 parts by mass with respect to 100 parts by mass of the porous carrier.
  • the heat treatment was performed using a small rotary kiln and rotating in a nitrogen gas atmosphere at 900 ° C. for 30 minutes at 3 rpm.
  • Comparative Example 1 Coconut shell activated carbon having a particle size of 0.850 to 0.300 mm (20 / 48mesh) (granular white birch WH2c20 / 48, manufactured by Nippon Enviro Chemicals Co., Ltd.) was used as an adsorbent. That is, the adsorbent of Comparative Example 1 is an adsorbent without adhering anything.
  • Reference example 1 100 parts by mass of coconut shell activated carbon having a particle size of 0.850 to 0.300 mm (20 / 48mesh) (granular white birch WH2c20 / 48, manufactured by Nippon Enviro Chemicals) and 1.3 parts by mass of bromine were placed in a glass container. Next, the above bromine was vaporized to obtain an adsorbent obtained by adding bromine to coconut shell activated carbon. The amount of bromine used (1.3 parts by mass) was set to be equimol with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
  • Test example 1 Adsorption performance evaluation for neutral odor substances (static test) Each adsorbent obtained in Examples, Comparative Examples and Reference Examples was sealed in a glass container. Next, methyl sulfide was injected so that the methyl sulfide concentration was 10 ppm. The ambient temperature was normal temperature, and each of the adsorbents was enclosed in the glass container so as to be 0.1 g in terms of a porous carrier (coconut shell activated carbon). Subsequently, the methyl sulfide removal rate (%) for each elapsed time was calculated by measuring the residual methyl sulfide concentration for a certain time. A detector tube (No. 53 made by GASTEC) was used to measure the methyl sulfide concentration.
  • the methyl sulfide removal rate (%) is ⁇ (methyl sulfide concentration before adsorbent encapsulation (ppm))-(residual methyl sulfide concentration after adsorbent encapsulation (ppm)) ⁇ ⁇ (methyl sulfide concentration before adsorbent encapsulation ( ppm)) x 100.
  • the test results are shown in FIG.
  • Test example 2 Adsorption performance evaluation for neutral odor substances (dynamic test) A glass column having an inner diameter of 20 mm was filled with 5.6 ml of each of the obtained adsorbents (Example 1, Example 4, Comparative Example 1 and Reference Example 1), and prepared at 25 ° C., 10 ppm of methyl sulfide, and humidity of 60%. Odor gas (methyl sulfide-containing gas) was vented at a flow rate of 2 L / min. The LV (linear velocity) was 0.11 m / sec and the SV (space velocity) was 22000 / hr.
  • the methyl sulfide concentration (ppm) at the inlet and outlet of the glass column was analyzed by gas chromatography every time a certain time passed, and the breakthrough rate (%) was calculated. Further, based on the measured methyl sulfide concentration, the time (hr) when the breakthrough rate was 5% and 80% and the amount of adsorption (mg / g) per mass were measured or calculated.
  • GC-FID GC-14B, manufactured by Shimadzu Corporation
  • a separation column diameter 3 mm ⁇ length 600 mm, Chromosorb 103
  • C 0 Inlet methyl sulfide concentration (ppm)
  • the adsorbent of Example 1 to which potassium peroxomonosulfate double salt is adsorbed and the adsorbent of Example 4 to which sodium peroxodisulfate is adsorbed have a breakthrough rate.
  • the time and the amount of adsorption at the time of 5% and 80% are respectively large values as compared with the adsorbent of Comparative Example 1 which is non-added. That is, both of the adsorbents of Examples 1 and 4 show superior methyl sulfide adsorption performance as compared with the adsorbent of Comparative Example 1 which is not added.
  • Test example 3 Adsorption performance evaluation for acetaldehyde (static test) Each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 was sealed in a glass container. Next, acetaldehyde was injected so that the acetaldehyde concentration was 10 ppm. The ambient temperature was normal temperature, and each of the adsorbents was enclosed in the glass container so as to be 0.1 g in terms of a porous carrier (coconut shell activated carbon). Subsequently, the acetaldehyde removal rate (%) per time passage was calculated by measuring the residual acetaldehyde concentration per time passage. A detector tube (92 L made by GASTEC) was used to measure the acetaldehyde concentration.
  • Acetaldehyde removal rate (%) is: ⁇ (concentration of acetaldehyde before adsorbing agent (ppm)) ⁇ (residual acetaldehyde concentration after adsorbing agent (ppm)) ⁇ ⁇ (concentration of acetaldehyde (ppm) before adsorbing agent) ⁇ Calculated as 100. The test results are shown in FIG.
  • Test example 4 Evaluation of adsorption performance for formaldehyde (static test) Each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 was sealed in a Tedlar bag. Next, formaldehyde was injected so that the formaldehyde concentration was 12 ppm. The ambient temperature was normal temperature, and each of the adsorbents was enclosed in the glass container so as to be 0.1 g in terms of a porous carrier (coconut shell activated carbon). Subsequently, the formaldehyde removal rate (%) for each lapse of time was calculated by measuring the residual formaldehyde concentration for a certain lapse of time. A detector tube (91L made by GASTEC) was used to measure the formaldehyde concentration.
  • a detector tube 9L made by GASTEC
  • the formaldehyde removal rate (%) is ⁇ (formaldehyde concentration before adsorbent encapsulation (ppm))-(residual formaldehyde concentration after adsorbent encapsulation (ppm)) ⁇ ⁇ (formaldehyde concentration before adsorbent encapsulation (ppm)) ⁇ Calculated as 100.
  • the test results are shown in FIG.
  • Test Example 5 Adsorption performance evaluation for neutral odor substances (dynamic test)
  • Example 4 Comparative Example 1 and Reference Example 1
  • Example 6 the time elapsed as in Test Example 2.
  • the breakthrough rate (%) for each time, the time (hr) when the breakthrough rate was 5% and 80%, and the adsorption amount (mg / g) per mass were measured or calculated.
  • the test results are shown in FIG.
  • the adsorbent when the porous carrier was heat-treated before the potassium peroxomonosulfate double salt was attached to the porous carrier (coconut shell activated carbon) (Examples) 6) shows larger values for the time and the amount of adsorption when the breakthrough rate is 5% and 80%, as compared with the adsorbent in the case where the heat treatment is not performed (Example 5). That is, the adsorbent of Example 6 shows superior methyl sulfide adsorption performance as compared with the adsorbent of Example 5, and the heat treatment before attaching peroxosulfate to the porous carrier is a neutral odor substance. It shows that the adsorption performance is further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention mainly addresses the problem of providing: a novel bromine-free adsorbent which exhibits excellent adsorption performance of a neutral odorous substance; and a method for adsorbing an odorous substance using this adsorbent. Provided, as a means for solving the above-described problem, is an adsorbent which is characterized by being obtained by having a peroxosulfate salt adhered to a porous carrier.

Description

吸着剤Adsorbent
 本発明は、臭素を含まなくても中性臭気物質及びアルデヒド系臭気物質の吸着性能に優れる吸着剤に関する。 The present invention relates to an adsorbent excellent in the adsorption performance of neutral odor substances and aldehyde odor substances even without containing bromine.
 近年の環境社会において、臭気公害対策への関心が高まっている。臭気公害としては、例えば排ガスによる公害が挙げられる。当該排ガスに含まれる臭気物質には、酸性臭気物質、中性臭気物質、アルカリ性臭気物質等が存在する。現在、この各種臭気物質を吸着除去するために、それぞれの臭気物質に対応する薬品(化学物質)を添着させてなる吸着剤が用いられている。 In recent environmental society, interest in odor pollution countermeasures is increasing. Examples of odor pollution include pollution caused by exhaust gas. Odor substances contained in the exhaust gas include acidic odor substances, neutral odor substances, alkaline odor substances, and the like. Currently, in order to adsorb and remove these various odorous substances, adsorbents made by attaching chemicals (chemical substances) corresponding to the respective odorous substances are used.
 例えば、中性臭気物質としては主に硫化メチルが挙げられ、この硫化メチルの吸着には臭素を添着させてなる活性炭が知られている(特許文献1)。この臭素添着活性炭は、非常に優れた硫化メチル吸着性能を有する。 For example, a neutral odor substance mainly includes methyl sulfide, and activated carbon formed by adding bromine to the adsorption of this methyl sulfide is known (Patent Document 1). This bromine-impregnated activated carbon has very excellent methyl sulfide adsorption performance.
 しかしながら、上述の臭素は、取り扱いが煩雑で且つ難しい。また、臭素は、生産量が減少しているため、入手困難な状況になってきている。 However, the above bromine is cumbersome and difficult to handle. In addition, bromine is becoming difficult to obtain due to a decrease in production.
 このような背景から、臭素を含まなくても中性臭気物質を効率的に吸着除去できる新規吸着剤の開発が急務となっている。 From this background, there is an urgent need to develop a new adsorbent that can efficiently adsorb and remove neutral odorous substances without containing bromine.
 中性臭気物質を吸着除去できる臭素を含まない新規吸着剤としては、臭素に代えてハロゲン化合物や金属を添着成分とする吸着剤が検討されている(特許文献2~4)。 As a new adsorbent that does not contain bromine that can adsorb and remove neutral odorous substances, adsorbents that use halogen compounds or metals as adjunct components instead of bromine have been studied (Patent Documents 2 to 4).
特開2005-089291号公報JP 2005-089291 JP 特開2006-088023号公報JP 2006-088023 A 特開平9-155149号公報Japanese Unexamined Patent Publication No. 9-155149 特開平9-262273号公報JP-A-9-262273
 しかしながら、上述のハロゲン化合物や金属を添着成分とする吸着剤は、いずれも中性臭気物質の吸着性能が低く、満足のいくものではない。 However, any of the adsorbents containing the halogen compounds and metals as described above is not satisfactory because of its low ability to adsorb neutral odor substances.
 よって、臭素を含まない新規吸着剤であって、中性臭気物質の吸着性能に優れた吸着剤の開発が望まれている。 Therefore, it is desired to develop a new adsorbent that does not contain bromine and has an excellent ability to adsorb neutral odor substances.
 本発明は、臭素を含まない新規吸着剤であって、中性臭気物質の吸着性能に優れた吸着剤及び当該吸着剤を使用した臭気物質の吸着方法を提供することを目的とする。 An object of the present invention is to provide a novel adsorbent that does not contain bromine and has an excellent adsorption performance for neutral odorous substances, and a method for adsorbing odorous substances using the adsorbent.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、臭素の代替成分として特定の成分を多孔質担体に添着させてなる吸着剤によれば、上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by using an adsorbent obtained by attaching a specific component to a porous carrier as an alternative component of bromine, The present invention has been completed.
 すなわち、本発明は、下記に示す吸着剤及び当該吸着剤を使用した臭気物質の吸着方法に関する。
1. ペルオキソ硫酸塩を多孔質担体に添着させてなることを特徴とする、吸着剤。
2. 前記ペルオキソ硫酸塩が、ペルオキソ一硫酸カリウム、その複塩、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム及びペルオキソ二硫酸アンモニウムからなる群から選ばれた少なくとも1種である、上記項1に記載の吸着剤。
3. 前記多孔質担体が、活性炭である、上記項1又は2に記載の吸着剤。
4. 前記多孔質担体が、熱処理された活性炭である、上記項1~3のいずれかに記載の吸着剤。
5. 中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体を、ペルオキソ硫酸塩を多孔質担体に添着させてなる吸着剤と接触させることを特徴とする、臭気物質の吸着方法。
That is, the present invention relates to an adsorbent described below and an odor substance adsorbing method using the adsorbent.
1. An adsorbent obtained by attaching peroxosulfate to a porous carrier.
2. Item 2. The adsorbent according to Item 1, wherein the peroxosulfate is at least one selected from the group consisting of potassium peroxomonosulfate, a double salt thereof, potassium peroxodisulfate, sodium peroxodisulfate, and ammonium peroxodisulfate.
3. Item 3. The adsorbent according to Item 1 or 2, wherein the porous carrier is activated carbon.
4). Item 4. The adsorbent according to any one of Items 1 to 3, wherein the porous carrier is heat-treated activated carbon.
5. A method for adsorbing an odor substance, comprising bringing a gas containing a neutral odor substance and / or an aldehyde odor substance into contact with an adsorbent obtained by attaching peroxosulfate to a porous carrier.
 以下、本発明の吸着剤及び当該吸着剤を使用した前記臭気物質の吸着方法について説明する。なお、本発明は、吸着剤の発明、当該吸着剤の製造方法の発明、当該吸着剤を使用する前記臭気物質の吸着方法の発明、多孔質担体にペルオキソ硫酸塩を添着させる方法の発明、及び、ペルオキソ硫酸塩が添着された多孔質担体の(前記臭気物質に対する)吸着用としての使用の発明、のいずれも包含する。また、本明細書において、「添着」とは、ペルオキソ硫酸塩等の薬品を多孔質担体に担持することをいう。 Hereinafter, the adsorbent of the present invention and the method for adsorbing the odorous substance using the adsorbent will be described. The present invention includes an invention of an adsorbent, an invention of a method of producing the adsorbent, an invention of an adsorption method of the odorous substance using the adsorbent, an invention of a method of attaching peroxosulfate to a porous carrier, and In addition, any of the inventions of use of a porous carrier impregnated with peroxosulfate for adsorption (to the odorous substance) is included. In the present specification, “attachment” means that a chemical such as peroxosulfate is supported on a porous carrier.
 ≪1.吸着剤≫
 本発明の吸着剤は、ペルオキソ硫酸塩を多孔質担体に添着させてなることを特徴とする。
≪1. Adsorbent≫
The adsorbent of the present invention is characterized in that peroxosulfate is attached to a porous carrier.
 本発明の吸着剤は、多孔質担体にペルオキソ硫酸塩という特定の成分を添着させてなるため、吸着剤中に臭素を含まなくても中性臭気物質の吸着性能に優れる。また、本発明の吸着剤は、さらに、アルデヒド系臭気物質の吸着性能にも優れる。 The adsorbent of the present invention is excellent in adsorption performance of neutral odorous substances even if bromine is not contained in the adsorbent because a specific component called peroxosulfate is attached to the porous carrier. Furthermore, the adsorbent of the present invention is also excellent in the adsorption performance of aldehyde odor substances.
 本発明の吸着剤の形状及び平均粒子径については、後述する多孔質担体の形状及び平均粒子径と、それぞれ同等である。 The shape and average particle size of the adsorbent of the present invention are the same as the shape and average particle size of the porous carrier described later.
 以下、本発明の吸着剤の各成分について説明する。 Hereinafter, each component of the adsorbent of the present invention will be described.
 多孔質担体
 本発明の吸着剤は、多孔質担体を含む。
Porous carrier The adsorbent of the present invention comprises a porous carrier.
 多孔質担体としては、特に限定されず、担体として一般に公知のものを広く使用することができる。例えば、活性炭、活性白土、ゼオライト、シリカ、アルミナ(活性アルミナ含む)、セラミック、粘土鉱物、炭酸カルシウム等が挙げられる。好ましい多孔質担体は、活性炭である。多孔質担体として活性炭が好ましい理由は、活性炭は、ゼオライトやアルミナ等の無機系多孔質担体の細孔構造とは違って雑然とした細孔構造を有しているので、気体成分を非選択的に(一様に)吸着するためと推測される。また、活性炭は、自由に動く陽イオンを有していないため、添着成分であるペルオキソ硫酸塩との陽イオン交換(塩基交換)が発生する虞もない。なお、多孔質担体は、1種又は2種以上を組み合わせて使用することができる。 The porous carrier is not particularly limited, and generally known carriers can be widely used. For example, activated carbon, activated clay, zeolite, silica, alumina (including activated alumina), ceramic, clay mineral, calcium carbonate and the like can be mentioned. A preferred porous carrier is activated carbon. The reason why activated carbon is preferred as the porous carrier is that the activated carbon has a cluttered pore structure unlike the pore structure of inorganic porous carriers such as zeolite and alumina, so the gas component is not selective. This is presumed to be adsorbed uniformly (uniformly). Moreover, since activated carbon does not have a freely moving cation, there is no possibility of cation exchange (base exchange) with peroxosulfate as an attachment component. The porous carrier can be used alone or in combination of two or more.
 活性炭原料としては、通常活性炭原料として用いられる炭素源であれば特に限定されるものではなく、たとえば、木材、木粉、ヤシ殻、パルプ製造時の副産物、バカス、廃糖蜜、泥炭、亜炭、褐炭、瀝青炭、無煙炭、石油蒸留残渣成分、石油ピッチ、コークス、コールタールなどの植物系原料や化石系原料、フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、メラミン樹脂、尿素樹脂、レゾルシノール樹脂、セルロイド、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂などの各種合成樹脂、ポリブチレン、ポリブタジエン、ポリクロロプレンなどの合成ゴム、その他合成木材、合成パルプなどがあげられる。これらの活性炭原料の中では、中性臭気物質やアルデヒド系臭気物質を気相吸着しやすいという観点から、ヤシ殻が好適に使用される。 The activated carbon raw material is not particularly limited as long as it is a carbon source that is usually used as an activated carbon raw material. For example, wood, wood flour, coconut shell, by-product during pulp production, bacas, molasses, peat, lignite, lignite , Bituminous coal, anthracite, petroleum distillation residue components, petroleum pitch, coke, coal tar and other plant materials and fossil materials, phenol resin, vinyl chloride resin, vinyl acetate resin, melamine resin, urea resin, resorcinol resin, celluloid, epoxy Examples thereof include various synthetic resins such as resins, polyurethane resins, polyester resins, acrylic resins and polyamide resins, synthetic rubbers such as polybutylene, polybutadiene and polychloroprene, and other synthetic woods and synthetic pulps. Among these activated carbon raw materials, coconut shells are preferably used from the viewpoint that a neutral odor substance or an aldehyde odor substance is easily adsorbed in a gas phase.
 活性炭原料の炭化又は賦活化方法としては、たとえば固定床方式、移動床方式、流動床方式、ロータリーキルン方式などのこれまで知られている活性炭の製造方式が挙げられる。 Examples of the carbonization or activation method of the activated carbon material include known activated carbon production methods such as a fixed bed method, a moving bed method, a fluidized bed method, and a rotary kiln method.
 活性炭原料の炭化方法としては、窒素ガス、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガスなどの不活性ガスおよびこれらの不活性ガスを主成分とした他のガスとの混合ガスを使用して焼成する方法が挙げられる。炭化の温度条件としては、通常500~900℃、好ましくは600~800℃である。  Carbonization of activated carbon raw materials includes inert gas such as nitrogen gas, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, combustion exhaust gas, and other gases mainly composed of these inert gases. The method of baking using gas is mentioned. The temperature condition for carbonization is usually 500 to 900 ° C., preferably 600 to 800 ° C.
 活性炭原料の賦活化(又は賦活)方法としては、水蒸気、二酸化炭素、一酸化炭素、酸素、塩化水素、アンモニア、燃焼ガスなどを用いるガス賦活法や、塩化カルシウム、硫化カルシウム、リン酸、硫酸、塩化亜鉛などの存在下に、活性炭原料を賦活する薬品賦活法が挙げられる。賦活の中でも、水蒸気賦活が好ましい。賦活の温度条件としては、通常750~1200℃、好ましくは800~1100℃である。 As the activation (or activation) method of the activated carbon raw material, gas activation method using water vapor, carbon dioxide, carbon monoxide, oxygen, hydrogen chloride, ammonia, combustion gas, etc., calcium chloride, calcium sulfide, phosphoric acid, sulfuric acid, A chemical activation method for activating activated carbon raw materials in the presence of zinc chloride or the like can be mentioned. Among the activations, steam activation is preferable. The temperature condition for activation is usually 750 to 1200 ° C., preferably 800 to 1100 ° C.
 活性炭原料を賦活した後は、必要に応じて、炭素中の無機質(灰分)を希塩酸やアルカリ水溶液などで洗浄脱灰し、さらに水洗を繰り返して精製後、乾燥、篩い分けしてもよい。 After activating the activated carbon raw material, if necessary, the inorganic matter (ash content) in carbon may be washed and deashed with dilute hydrochloric acid or an alkaline aqueous solution, and further purified by repeated washing with water, followed by drying and sieving.
 活性炭(「ペルオキソ硫酸塩を添着させる前の活性炭」又は「元炭」ともいう)は、市販品を使用することもできる。市販品としては、例えば、粒状白鷺WH2c20/48(日本エンバイロケミカルズ株式会社製)などが挙げられる。 Commercially available products can be used as the activated carbon (also referred to as “activated carbon before peroxosulfate is impregnated” or “original coal”). Examples of commercially available products include granular white WH2c20 / 48 (manufactured by Nippon Enviro Chemicals Co., Ltd.).
 多孔質担体として活性炭を使用する場合、前記活性炭は熱処理された活性炭であることが好ましい。熱処理(加熱処理)された活性炭は、(1)活性炭表面に存在する表面酸化物や表面官能基、(2)(前述の活性炭原料を賦活した後に希塩酸やアルカリ水溶液等で洗浄脱灰した場合において)前記希塩酸やアルカリ水溶液、などが好適に除去されている。よって、前記熱処理された活性炭を使用する吸着剤は、前記熱処理されていない活性炭を使用する吸着剤と比較して、中性臭気物質及び/又はアルデヒド系臭気物質の吸着に寄与するペルオキソ硫酸塩の量が多いため、結果として前記臭気物質の吸着性能に特に優れる。なお、前記熱処理は、活性炭(又は活性炭表面)の改質ともいう。 When using activated carbon as the porous carrier, the activated carbon is preferably heat-treated activated carbon. The heat-treated (heat-treated) activated carbon is either (1) surface oxides or surface functional groups present on the surface of activated carbon, (2) (in the case where the activated carbon raw material is activated and then washed and decalcified with dilute hydrochloric acid or an alkaline aqueous solution, ) The dilute hydrochloric acid, alkaline aqueous solution, etc. are suitably removed. Therefore, the adsorbent using the heat-treated activated carbon is a peroxosulfate that contributes to the adsorption of neutral odorous substances and / or aldehyde-based odorous substances compared to the adsorbent using the non-heat treated activated carbon. Since the amount is large, the adsorption performance of the odorous substance is particularly excellent as a result. In addition, the said heat processing is also called modification | reformation of activated carbon (or activated carbon surface).
 前記活性炭の熱処理は、活性炭原料を賦活した後に適宜行うことができる。前記活性炭の熱処理は、活性炭に対して希塩酸やアルカリ水溶液などで洗浄脱灰した後に行うことが好ましい。 The heat treatment of the activated carbon can be appropriately performed after activating the activated carbon raw material. The heat treatment of the activated carbon is preferably performed after the activated carbon is washed and decalcified with dilute hydrochloric acid or an alkaline aqueous solution.
 熱処理の際の温度は、850~950℃が好ましい。当該温度範囲内で活性炭を熱処理することにより、活性炭を劣化させることなく、前記表面酸化物、表面官能基、希塩酸、アルカリ水溶液等を好適に除去する(脱離させる、又は飛ばす、ともいう)ことができる。 The temperature during the heat treatment is preferably 850 to 950 ° C. By heat-treating the activated carbon within the temperature range, the surface oxide, surface functional group, dilute hydrochloric acid, alkaline aqueous solution, etc. are suitably removed (also referred to as desorbing or flying) without deteriorating the activated carbon. Can do.
 熱処理の際の時間は、特に限定されず、吸着剤(又は活性炭)の量により適宜設定することができる。前記熱処理の時間は、30分以上が好ましく、30~60分がより好ましい。熱処理の際の圧力は、特に限定されない。 The time for the heat treatment is not particularly limited, and can be appropriately set depending on the amount of the adsorbent (or activated carbon). The heat treatment time is preferably 30 minutes or more, more preferably 30 to 60 minutes. The pressure during the heat treatment is not particularly limited.
 熱処理の際の雰囲気は、不活性ガス雰囲気が好ましい。熱処理の際の雰囲気が不活性ガスであることによって、前記表面酸化物、表面官能基、希塩酸、アルカリ水溶液等をより好適かつ安定的に除去することができる。不活性ガスとしては、窒素ガス、二酸化炭素、ヘリウム、アルゴン、キセノン、ネオン、一酸化炭素、燃焼排ガス等が挙げられる。 The atmosphere during the heat treatment is preferably an inert gas atmosphere. When the atmosphere during the heat treatment is an inert gas, the surface oxide, surface functional group, dilute hydrochloric acid, alkaline aqueous solution, and the like can be more suitably and stably removed. Examples of the inert gas include nitrogen gas, carbon dioxide, helium, argon, xenon, neon, carbon monoxide, and combustion exhaust gas.
 熱処理する際の装置は、特に限定されないが、ロータリーキルン(円筒状の回転炉)を用いた熱処理が好ましい。 The apparatus for heat treatment is not particularly limited, but heat treatment using a rotary kiln (cylindrical rotary furnace) is preferable.
 多孔質担体の形状は、特に限定されない。例えば、粉末状、破砕状、繊維状あるいは円柱状、球状、ハニカム状等に成型されたものであってもよい。 The shape of the porous carrier is not particularly limited. For example, it may be a powder, a crushed shape, a fiber shape, a cylindrical shape, a spherical shape, a honeycomb shape, or the like.
 多孔質担体の平均粒子径、BET比表面積、細孔容積、平均細孔直径については、それぞれ、特に限定されない。例えば、多孔質担体に関して、BET比表面積は1000m2/g以上が好ましく、細孔容積は0.4mL/g以上が好ましく、平均細孔直径は1.7nm以上であることが好ましい。 The average particle diameter, BET specific surface area, pore volume, and average pore diameter of the porous carrier are not particularly limited. For example, regarding the porous carrier, the BET specific surface area is preferably 1000 m 2 / g or more, the pore volume is preferably 0.4 mL / g or more, and the average pore diameter is preferably 1.7 nm or more.
 ペルオキソ硫酸塩
 本発明の吸着剤は、ペルオキソ硫酸塩を多孔質担体に添着させることで得られる。
Peroxosulfate The adsorbent of the present invention can be obtained by attaching peroxosulfate to a porous carrier.
 ペルオキソ硫酸塩としては、ペルオキソ一硫酸塩、ペルオキソ二硫酸塩等が挙げられる。ペルオキソ硫酸塩の中でも、ペルオキソ一硫酸カリウム、その複塩(ペルオキソ一硫酸カリウムの複塩)、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム及びペルオキソ二硫酸アンモニウムからなる群から選ばれた少なくとも1種が好ましく、ペルオキソ一硫酸カリウム及びその複塩からなる群から選ばれた少なくとも1種がより好ましい。特に、ペルオキソ一硫酸カリウム及びその複塩からなる群から選ばれた少なくとも1種は、優れた中性臭気物質及びアルデヒド系臭気物質の吸着除去性能を有するとともに、PRTR制度の指定化学物質に該当しないので取り扱いが容易である。なお、前記その複塩(ペルオキソ一硫酸カリウムの複塩)としては、硫酸水素カリウム(KHSO4)及び硫酸カリウム(K2SO4)との複塩(triple salt、分子式:2KHSO5・KHSO4・K2SO4)が挙げられる。 Examples of the peroxosulfate include peroxomonosulfate and peroxodisulfate. Among peroxosulfates, at least one selected from the group consisting of potassium peroxomonosulfate, its double salt (double salt of potassium peroxomonosulfate), potassium peroxodisulfate, sodium peroxodisulfate and ammonium peroxodisulfate is preferable. More preferred is at least one selected from the group consisting of potassium peroxomonosulfate and double salts thereof. In particular, at least one selected from the group consisting of potassium peroxomonosulfate and its double salt has excellent neutral odorous substance and aldehyde odorous substance adsorption removal performance and does not fall under the PRTR system designated chemical substance. So it is easy to handle. In addition, as the double salt (double salt of potassium peroxomonosulfate), double salt with potassium hydrogen sulfate (KHSO 4 ) and potassium sulfate (K 2 SO 4 ) (molecular formula: 2KHSO 5 · KHSO 4 · K 2 SO 4 ).
 ペルオキソ硫酸塩の添着量は、多孔質担体100質量部(乾燥品基準)に対して2~10質量部であることが好ましい。ペルオキソ硫酸塩の添加量が上記範囲内であることによって、より効率的に中性臭気物質やアルデヒド系臭気物質を吸着することができる。一方、ペルオキソ硫酸塩の添加量が多すぎると、ペルオキソ硫酸塩が多孔質担体の孔を埋めてしまい、上記臭気物質が吸着剤中の反応サイトに到達しづらくなる虞がある。 The amount of peroxosulfate added is preferably 2 to 10 parts by mass with respect to 100 parts by mass (based on the dry product) of the porous carrier. When the amount of peroxosulfate added is within the above range, a neutral odor substance or an aldehyde odor substance can be adsorbed more efficiently. On the other hand, if the amount of peroxosulfate added is too large, the peroxosulfate fills the pores of the porous carrier, which may make it difficult for the odorous substance to reach the reaction site in the adsorbent.
 ペルオキソ硫酸塩は、市販品を使用することができる。例えば、ペルオキソ一硫酸カリウムの複塩としては、デュポン株式会社製Oxone、エボニック株式会社製Caroat等を使用することができる。なお、ペルオキソ硫酸塩は、1種又は2種以上を組み合わせて使用することができる。 As the peroxosulfate, a commercially available product can be used. For example, as a double salt of potassium peroxomonosulfate, Duxon Oxone, Evonik Caroat, etc. can be used. In addition, peroxosulfate can be used 1 type or in combination of 2 or more types.
 その他の成分
 本発明の吸着剤は、その目的、用途等に応じて、本発明の効果に悪影響を与えない範囲で、公知の添加剤を前記担体に添着することもできる。公知の添加剤としては、不揮発性の酸及びその塩が挙げられる。
Other Components The adsorbent of the present invention can be added with a known additive to the carrier within a range that does not adversely affect the effects of the present invention, depending on the purpose and application. Known additives include non-volatile acids and salts thereof.
 不揮発性の酸及びその塩の添着は、吸着剤の安定性や耐熱性をより一層向上させることができる。前記不揮発性の酸としては、有機酸、無機酸等が挙げられる。 The addition of nonvolatile acids and salts thereof can further improve the stability and heat resistance of the adsorbent. Examples of the non-volatile acid include organic acids and inorganic acids.
 有機酸及びその塩としては、具体的には、多価カルボン酸、シュウ酸、マロン酸、酒石酸、コハク酸、クエン酸、リンゴ酸、グルタル酸及びヒドロキシカルボン酸等、並びにそれらの塩が挙げられる。前記多価カルボン酸としては、フマル酸、マレイン酸等が挙げられる。 Specific examples of the organic acid and its salt include polyvalent carboxylic acid, oxalic acid, malonic acid, tartaric acid, succinic acid, citric acid, malic acid, glutaric acid and hydroxycarboxylic acid, and salts thereof. . Examples of the polyvalent carboxylic acid include fumaric acid and maleic acid.
 無機酸及びその塩としては、具体的には、リン酸、硫酸、硝酸、フッ化水素酸、塩酸、臭化水素酸、ヨウ化水素酸及びホウ酸等、並びにそれらの塩が挙げられる。 Specific examples of inorganic acids and salts thereof include phosphoric acid, sulfuric acid, nitric acid, hydrofluoric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid and boric acid, and salts thereof.
 好ましい不揮発性の酸及びその塩は、リン酸、リン酸塩、硫酸及び硫酸塩からなる群から選ばれた少なくとも1種である。なお、不揮発性の酸及びその塩は、1種を単独で使用でき、又は必要に応じて2種以上を混合して使用することができる。 Preferred non-volatile acid and its salt are at least one selected from the group consisting of phosphoric acid, phosphate, sulfuric acid and sulfate. In addition, the non-volatile acid and its salt can be used individually by 1 type, or can mix and use 2 or more types as needed.
 製造方法(添着方法)
 本発明におけるペルオキソ硫酸塩を多孔質担体に添着させる方法としては、ペルオキソ硫酸塩を含む液を、多孔質担体に接触させる工程を含む方法が好ましい。多孔質担体に、ペルオキソ硫酸塩を含む液(好ましくは、ペルオキソ硫酸塩が溶媒に溶解している溶液)を接触させる方法としては、
(a) 前記ペルオキソ硫酸塩を含む液を多孔質担体に噴霧又は散布する方法、
(b) 前記ペルオキソ硫酸塩を含む液中に、多孔質担体を浸漬する方法、
等が挙げられる。前記(a)又は(b)の方法は、多孔質担体全体に偏りなくペルオキソ硫酸塩を添着させることができる。なお、使用するペルオキソ硫酸塩を含む液の温度は15~30℃が好ましく、添着時間は1時間以内が好ましい。
Manufacturing method (attachment method)
As a method of attaching peroxosulfate to the porous carrier in the present invention, a method including a step of bringing a liquid containing peroxosulfate into contact with the porous carrier is preferable. As a method of contacting a porous carrier with a liquid containing peroxosulfate (preferably a solution in which peroxosulfate is dissolved in a solvent),
(a) a method of spraying or spraying a liquid containing the peroxosulfate on a porous carrier;
(b) a method of immersing a porous carrier in a liquid containing the peroxosulfate,
Etc. In the method (a) or (b), peroxosulfate can be uniformly applied to the entire porous carrier. The temperature of the liquid containing peroxosulfate used is preferably 15 to 30 ° C., and the deposition time is preferably within 1 hour.
 前記(a)又は(b)の方法において、ペルオキソ硫酸塩を含む液を構成する溶媒(以下、単に「溶媒」ともいう)は、ペルオキソ硫酸塩を溶解する溶媒が好ましい。ペルオキソ硫酸塩を溶解する溶媒としては、例えば水等が挙げられる。 In the above method (a) or (b), the solvent constituting the liquid containing peroxosulfate (hereinafter also simply referred to as “solvent”) is preferably a solvent that dissolves peroxosulfate. Examples of the solvent for dissolving peroxosulfate include water.
 ペルオキソ硫酸塩の使用量は、ペルオキソ硫酸塩の添着量が多孔質担体100質量部(乾燥品基準)に対して2~10質量部となるように設定することが好ましい。例えば、上述の(a)の方法でペルオキソ硫酸塩が添着された多孔質担体を製造する場合、2~10質量部のペルオキソ硫酸塩を含む液を、100質量部の乾燥多孔質担体に噴霧又は散布することにより、ペルオキソ硫酸塩の添着量が多孔質担体100質量部(乾燥品基準)に対して2~10質量部である吸着剤が得られる。 The amount of peroxosulfate used is preferably set so that the amount of peroxosulfate added is 2 to 10 parts by mass with respect to 100 parts by mass (based on the dry product) of the porous carrier. For example, when producing a porous carrier to which peroxosulfate is impregnated by the method (a) described above, a liquid containing 2 to 10 parts by mass of peroxosulfate is sprayed on 100 parts by mass of a dry porous carrier. By spraying, an adsorbent having a peroxosulfate loading amount of 2 to 10 parts by mass with respect to 100 parts by mass of the porous carrier (on a dry product basis) is obtained.
 なお、上述の通り、多孔質担体が活性炭である場合、前記ペルオキソ硫酸塩を添着させる前(例えば、(1)活性炭原料を賦活した後、(2)活性炭に対して希塩酸やアルカリ水溶液などで洗浄脱灰した後、等)に、前記活性炭を熱処理することが好ましい。熱処理の各条件(温度、時間、雰囲気、装置等)については、上述の多孔質担体の項に記載された熱処理の各条件の通りである。 As described above, when the porous carrier is activated carbon, before the peroxosulfate is added (for example, after (1) activating the activated carbon raw material, (2) washing the activated carbon with dilute hydrochloric acid or an alkaline aqueous solution. After deashing, etc., the activated carbon is preferably heat-treated. Each heat treatment condition (temperature, time, atmosphere, apparatus, etc.) is as in each heat treatment condition described in the above-mentioned section of the porous carrier.
 ≪2.吸着剤を使用した臭気物質の吸着方法≫
 本発明の吸着方法は、中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体を、ペルオキソ硫酸塩を多孔質担体に添着させてなる吸着剤と接触させることを特徴とする。上記吸着方法によれば、上記吸着剤が中性臭気物質及び/又はアルデヒド系臭気物質(中性臭気物質及びアルデヒド系臭気物質からなる群から選ばれた少なくとも1種)を効率良く吸着するので、上記臭気物質を効率的に除去することができる。
≪2. Adsorption method of odorous substances using adsorbents≫
The adsorption method of the present invention is characterized in that a gas containing a neutral odor substance and / or an aldehyde odor substance is brought into contact with an adsorbent obtained by attaching peroxosulfate to a porous carrier. According to the adsorption method, the adsorbent efficiently adsorbs a neutral odor substance and / or an aldehyde odor substance (at least one selected from the group consisting of a neutral odor substance and an aldehyde odor substance). The odorous substance can be efficiently removed.
 本発明の吸着剤を用いた上記臭気物質(悪臭物質)を吸着するメカニズムは、上記吸着剤が、吸着剤中のペルオキソ硫酸塩の触媒酸化作用によって上記臭気物質を酸化し、当該酸化された臭気物質を吸着するものと考えられている。 The mechanism for adsorbing the odorous substance (bad odorous substance) using the adsorbent of the present invention is that the adsorbent oxidizes the odorous substance by the catalytic oxidation action of peroxosulfate in the adsorbent, and the oxidized odor. It is thought to adsorb substances.
 本発明の吸着方法に関して、例えば、本発明の吸着剤が中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体と接触するように、前記本発明の吸着剤を載置する工程を含むことが挙げられる。 Regarding the adsorption method of the present invention, for example, including the step of placing the adsorbent of the present invention so that the adsorbent of the present invention comes into contact with a gas containing a neutral odor substance and / or an aldehyde odor substance. Is mentioned.
 臭気物質
 本発明の吸着剤は、中性臭気物質及び/又はアルデヒド系臭気物質を効率良く吸着する。なお、本発明の吸着剤は、1種又は2種以上を組み合わせた上記臭気物質に対して有効である。
Odor Substance The adsorbent of the present invention efficiently adsorbs a neutral odor substance and / or an aldehyde odor substance. Note that the adsorbent of the present invention is effective against the odorous substance in which one kind or a combination of two or more kinds is used.
 中性臭気物質としては、特に、硫化アルキル系臭気物質(硫化アルキル類)が挙げられる。具体的には、硫化メチル、二硫化メチル、二硫化メチルプロピル、硫化ジエチル、二硫化エチル、硫化ジブチル等を挙げることができる。なかでも、本発明の吸着剤は、硫化メチルの吸着に特に有効である。 Examples of neutral odor substances include alkyl sulfide odor substances (alkyl sulfides). Specific examples include methyl sulfide, methyl disulfide, methylpropyl disulfide, diethyl sulfide, ethyl disulfide, dibutyl sulfide and the like. Among these, the adsorbent of the present invention is particularly effective for adsorption of methyl sulfide.
 アルデヒド系臭気物質(アルデヒド類)としては、特に、低級アルデヒド系臭気物質(低級アルデヒド類)が挙げられる。具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、n-ブチルアルデヒド、イソブチルアルデヒド、3-メチル-ブチルアルデヒド、クロトンアルデヒド等を挙げることができる。なかでも、本発明の吸着剤は、ホルムアルデヒド及びアセトアルデヒドからなる群から選ばれた少なくとも1種の吸着に特に有効である。 Examples of aldehyde odor substances (aldehydes) include, in particular, lower aldehyde odor substances (lower aldehydes). Specific examples include formaldehyde, acetaldehyde, propionaldehyde, acrolein, n-butyraldehyde, isobutyraldehyde, 3-methyl-butyraldehyde, crotonaldehyde, and the like. Among these, the adsorbent of the present invention is particularly effective for adsorption of at least one selected from the group consisting of formaldehyde and acetaldehyde.
 中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体としては、例えば空気が挙げられる。前記中性臭気物質及び/又はアルデヒド系臭気物質の濃度は、特に限定されない。 Examples of the gas containing a neutral odor substance and / or an aldehyde odor substance include air. The concentration of the neutral odor substance and / or the aldehyde odor substance is not particularly limited.
 工業製品への適用
 本発明の吸着剤は、工業製品に配合して使用することができる。当該工業製品は、本発明を包含する。本発明の吸着方法は、中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体を、上述の工業製品と接触させることにより、前記吸着剤と前記臭気物質が接触し、その結果上記臭気物質を効率的に除去することができる。
Application to industrial products The adsorbent of the present invention can be used by mixing with industrial products. The industrial product includes the present invention. In the adsorption method of the present invention, the adsorbent and the odorous substance are brought into contact with each other by bringing a gas containing a neutral odorous substance and / or an aldehyde odorous substance into contact with the above-mentioned industrial product. Can be efficiently removed.
 工業製品とは、従来より広く知られている工業製品及び工業原料を指す。具体的には、塗料、接着剤、インキ、シーリング剤、紙製品、バインダー、樹脂エマルション、パルプ、木質材料、木質製品、プラスチック製品、フィルム、壁紙、建材(石膏ボード、内装材、天井材、床材等)、繊維製品、フィルター等が挙げられる。また、これらの複合材料も工業製品に含まれる。複合材料としては、例えば、木材とプラスチックとの複合材料等が挙げられる。 Industrial products refer to industrial products and raw materials that have been widely known. Specifically, paints, adhesives, inks, sealants, paper products, binders, resin emulsions, pulp, wood materials, wood products, plastic products, films, wallpaper, building materials (gypsum board, interior materials, ceiling materials, floors) Materials), textile products, filters and the like. These composite materials are also included in industrial products. Examples of the composite material include a composite material of wood and plastic.
 本発明の吸着方法に関して、例えば、吸着剤を配合してなる上述の工業製品が中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体と接触するように、前記工業製品を載置、塗布、貼着等をする工程を含むことが挙げられる。 With regard to the adsorption method of the present invention, for example, the industrial product is placed and applied so that the above-mentioned industrial product containing an adsorbent comes into contact with a gas containing a neutral odor substance and / or an aldehyde odor substance. , Including a step of attaching and the like.
 また、固定床、移動床あるいは流動床などの吸着装置に前記工業製品を充填し、これに中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体を通気処理する工程によっても、上記臭気物質を効率良く吸着除去することができる。 The odorous substance is also obtained by a process of filling the industrial product in an adsorbing device such as a fixed bed, moving bed or fluidized bed, and aerating a gas containing a neutral odorous substance and / or an aldehyde odorous substance. Can be efficiently adsorbed and removed.
 本発明の吸着剤は、多孔質担体にペルオキソ硫酸塩という特定の成分を添着させてなるため、臭素を含まなくても中性臭気物質の吸着性能に優れる。また、本発明の吸着剤は、さらに、アルデヒド系臭気物質の吸着性能にも優れる。 Since the adsorbent of the present invention is formed by attaching a specific component called peroxosulfate to a porous carrier, it has excellent adsorption performance for neutral odorous substances even without containing bromine. Furthermore, the adsorbent of the present invention is also excellent in the adsorption performance of aldehyde odor substances.
実施例1~4、比較例1及び参考例1で得られた各吸着剤に対する時間経過毎の硫化メチル除去率(%)を示すグラフである。2 is a graph showing methyl sulfide removal rate (%) over time for each adsorbent obtained in Examples 1 to 4, Comparative Example 1 and Reference Example 1. 実施例1、4、比較例1及び参考例1で得られた各吸着剤に対する時間経過毎の硫化メチル破過率(%)を示すグラフである。2 is a graph showing methyl sulfide breakthrough rate (%) for each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 over time. 実施例1、4、比較例1及び参考例1で得られた各吸着剤に対する時間経過毎のアセトアルデヒド除去率(%)を示すグラフである。2 is a graph showing acetaldehyde removal rate (%) for each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 over time. 実施例1、4、比較例1及び参考例1で得られた各吸着剤に対する時間経過毎のホルムアルデヒド除去率(%)を示すグラフである。3 is a graph showing formaldehyde removal rate (%) for each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 over time. 実施例5及び6で得られた各吸着剤に対する時間経過毎の硫化メチル破過率(%)を示すグラフである。2 is a graph showing methyl sulfide breakthrough rate (%) for each adsorbent obtained in Examples 5 and 6 over time.
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例の態様に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the embodiments.
 実施例1
 ペルオキソ一硫酸カリウム複塩(Oxone、分子式:2KHSO5・KHSO4・K2SO4、デュポン株式会社製)10質量部を水30質量部に溶解して、添着溶液(液温:20℃)を調製した。次に、粒径が0.850~0.300mm(20/48mesh)のヤシ殻活性炭(粒状白鷺WH2c20/48、日本エンバイロケミカルズ株式会社製)100質量部が入った小型糖衣機を回転させながら、上記添着溶液を上記ヤシ殻活性炭に対して均一に噴霧することにより(添着時間20分)、ペルオキソ一硫酸カリウム複塩をヤシ殻活性炭に添着させてなる吸着剤を得た。前記吸着剤におけるペルオキソ硫酸塩の添着量は、多孔質担体100質量部に対して10質量部であった。
Example 1
Dissolve 10 parts by mass of potassium peroxomonosulfate double salt (Oxone, molecular formula: 2KHSO 5 · KHSO 4 · K 2 SO 4 , manufactured by DuPont Co., Ltd.) in 30 parts by mass of water, and add the impregnation solution (liquid temperature: 20 ° C). Prepared. Next, while rotating a small sugar coating machine containing 100 parts by mass of coconut shell activated carbon (granular white birch WH2c20 / 48, manufactured by Nippon Enviro Chemicals Co., Ltd.) having a particle size of 0.850-0.300mm (20 / 48mesh) Was uniformly sprayed onto the coconut shell activated carbon (attachment time: 20 minutes) to obtain an adsorbent obtained by attaching potassium peroxomonosulfate double salt to the coconut shell activated carbon. The amount of peroxosulfate added to the adsorbent was 10 parts by mass with respect to 100 parts by mass of the porous carrier.
 実施例2
 ペルオキソ一硫酸カリウム複塩10質量部を水30質量部に溶解した添着溶液に代えて、ペルオキソ二硫酸カリウム(和光純薬工業株式会社製)4.4質量部を水40質量部に溶解した添着溶液(液温:20℃)を使用する以外は、実施例1と同様にして、ペルオキソ二硫酸カリウムをヤシ殻活性炭に添着させてなる吸着剤を得た。前記吸着剤におけるペルオキソ硫酸塩の添着量は、多孔質担体100質量部に対して4.4質量部であった。
なお、ペルオキソ二硫酸カリウムの使用量(4.4質量部)は、実施例1におけるペルオキソ一硫酸カリウム複塩10質量部と等molとなるように設定した。
Example 2
Instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution in which 4.4 parts by mass of potassium peroxodisulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 40 parts by mass of water ( Except for using a liquid temperature of 20 ° C., an adsorbent obtained by adding potassium peroxodisulfate to coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 4.4 parts by mass with respect to 100 parts by mass of the porous carrier.
The amount of potassium peroxodisulfate used (4.4 parts by mass) was set to be equimol with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
 実施例3
 ペルオキソ一硫酸カリウム複塩10質量部を水30質量部に溶解した添着溶液に代えて、ペルオキソ二硫酸アンモニウム(和光純薬工業株式会社製)3.7質量部を水30質量部に溶解した添着溶液(液温:20℃)を使用する以外は、実施例1と同様にして、ペルオキソ二硫酸アンモニウムをヤシ殻活性炭に添着させてなる吸着剤を得た。前記吸着剤におけるペルオキソ硫酸塩の添着量は、多孔質担体100質量部に対して3.7質量部であった。
なお、ペルオキソ二硫酸アンモニウムの使用量(3.7質量部)は、実施例1におけるペルオキソ一硫酸カリウム複塩10質量部と等molとなるように設定した。
Example 3
Instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution (liquid) in which 3.7 parts by mass of ammonium peroxodisulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 30 parts by mass of water Except for using (temperature: 20 ° C.), an adsorbent obtained by adsorbing ammonium peroxodisulfate on coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 3.7 parts by mass with respect to 100 parts by mass of the porous carrier.
The amount of ammonium peroxodisulfate used (3.7 parts by mass) was set to be equimoles with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
 実施例4
 ペルオキソ一硫酸カリウム複塩10質量部を水30質量部に溶解した添着溶液に代えて、ペルオキソ二硫酸ナトリウム(和光純薬工業株式会社製)3.9質量部を水30質量部に溶解した添着溶液(液温:20℃)を使用する以外は、実施例1と同様にして、ペルオキソ二硫酸ナトリウムをヤシ殻活性炭に添着させてなる吸着剤を得た。前記吸着剤におけるペルオキソ硫酸塩の添着量は、多孔質担体100質量部に対して3.9質量部であった。
なお、ペルオキソ二硫酸ナトリウムの使用量(3.9質量部)は、実施例1におけるペルオキソ一硫酸カリウム複塩10質量部と等molとなるように設定した。
Example 4
Instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution in which 3.9 parts by mass of sodium peroxodisulfate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 30 parts by mass of water ( Except for using liquid temperature: 20 ° C., an adsorbent obtained by adding sodium peroxodisulfate to coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 3.9 parts by mass with respect to 100 parts by mass of the porous carrier.
The amount of sodium peroxodisulfate used (3.9 parts by mass) was set to be equimoles with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
 実施例5
 ペルオキソ一硫酸カリウム複塩10質量部を水30質量部に溶解した添着溶液に代えて、ペルオキソ一硫酸カリウム複塩6質量部を水20質量部に溶解した添着溶液(液温:20℃)を使用する以外は、実施例1と同様にして、ペルオキソ一硫酸カリウム複塩をヤシ殻活性炭に添着させてなる吸着剤を得た。前記吸着剤におけるペルオキソ硫酸塩の添着量は、多孔質担体100質量部に対して6質量部であった。
Example 5
Instead of an addition solution in which 10 parts by mass of potassium peroxomonosulfate was dissolved in 30 parts by mass of water, an addition solution (liquid temperature: 20 ° C) in which 6 parts by mass of potassium peroxomonosulfate was dissolved in 20 parts by mass of water was used. Except for the use, an adsorbent obtained by adhering potassium peroxomonosulfate double salt to coconut shell activated carbon was obtained in the same manner as in Example 1. The amount of peroxosulfate added to the adsorbent was 6 parts by mass with respect to 100 parts by mass of the porous carrier.
 実施例6
 まず、粒径が0.850~0.300mm(20/48mesh)のヤシ殻活性炭(粒状白鷺WH2c20/48、日本エンバイロケミカルズ株式会社製)を用意した。次いで、前記ヤシ殻活性炭に対して、900℃30分の熱処理を行った。その後については、実施例5で使用した熱処理されていないヤシ殻活性炭に代えて、前記熱処理されたヤシ殻活性炭を使用する以外は、実施例5と同様にして、ペルオキソ一硫酸カリウム複塩をヤシ殻活性炭に添着させてなる吸着剤を得た。前記吸着剤におけるペルオキソ硫酸塩の添着量は、多孔質担体100質量部に対して6質量部であった。
なお、前記熱処理は、小型のロータリーキルンを用い、窒素ガス雰囲気中で900℃30分、3rpmで回転させながら行った。
Example 6
First, coconut shell activated carbon having a particle size of 0.850 to 0.300 mm (20 / 48mesh) (granular white birch WH2c20 / 48, manufactured by Nippon Enviro Chemicals Co., Ltd.) was prepared. Next, the coconut shell activated carbon was heat-treated at 900 ° C. for 30 minutes. Thereafter, potassium peroxomonosulfate double salt was added in the same manner as in Example 5 except that the heat-treated coconut shell activated carbon was used instead of the non-heat-treated coconut shell activated carbon used in Example 5. An adsorbent obtained by adhering to shell activated carbon was obtained. The amount of peroxosulfate added to the adsorbent was 6 parts by mass with respect to 100 parts by mass of the porous carrier.
The heat treatment was performed using a small rotary kiln and rotating in a nitrogen gas atmosphere at 900 ° C. for 30 minutes at 3 rpm.
 比較例1
 粒径が0.850~0.300mm(20/48mesh)のヤシ殻活性炭(粒状白鷺WH2c20/48、日本エンバイロケミカルズ株式会社製)を吸着剤とした。即ち、比較例1の吸着剤は、何も添着されていない無添着の吸着剤である。
Comparative Example 1
Coconut shell activated carbon having a particle size of 0.850 to 0.300 mm (20 / 48mesh) (granular white birch WH2c20 / 48, manufactured by Nippon Enviro Chemicals Co., Ltd.) was used as an adsorbent. That is, the adsorbent of Comparative Example 1 is an adsorbent without adhering anything.
 参考例1
 粒径が0.850~0.300mm(20/48mesh)のヤシ殻活性炭(粒状白鷺WH2c20/48、日本エンバイロケミカルズ株式会社製)100質量部と臭素1.3質量部をガラス容器内に入れた。次に、上記臭素を気化させることにより、臭素をヤシ殻活性炭に添着させてなる吸着剤を得た。なお、臭素の使用量(1.3質量部)は、実施例1におけるペルオキソ一硫酸カリウム複塩10質量部と等molとなるように設定した。
Reference example 1
100 parts by mass of coconut shell activated carbon having a particle size of 0.850 to 0.300 mm (20 / 48mesh) (granular white birch WH2c20 / 48, manufactured by Nippon Enviro Chemicals) and 1.3 parts by mass of bromine were placed in a glass container. Next, the above bromine was vaporized to obtain an adsorbent obtained by adding bromine to coconut shell activated carbon. The amount of bromine used (1.3 parts by mass) was set to be equimol with 10 parts by mass of potassium peroxomonosulfate double salt in Example 1.
 試験例1:中性臭気物質に対する吸着性能評価(静的試験)
 ガラス容器内に、実施例、比較例及び参考例で得られた各吸着剤を封入した。次に硫化メチル濃度が10ppmとなるように硫化メチルを注入した。なお、雰囲気温度は常温で、上記各吸着剤は、多孔質担体(ヤシ殻活性炭)換算で0.1gとなるように、上記ガラス容器内に封入した。次いで、一定時間経過毎の残存硫化メチル濃度を測定することにより、時間経過毎の硫化メチル除去率(%)を算出した。硫化メチル濃度の測定は、検知管(GASTEC製 No53)を使用した。硫化メチル除去率(%)は、{(吸着剤封入前の硫化メチル濃度(ppm))-(吸着剤封入後の残存硫化メチル濃度(ppm))}÷(吸着剤封入前の硫化メチル濃度(ppm))×100で算出される。試験結果を図1に示す。
Test example 1: Adsorption performance evaluation for neutral odor substances (static test)
Each adsorbent obtained in Examples, Comparative Examples and Reference Examples was sealed in a glass container. Next, methyl sulfide was injected so that the methyl sulfide concentration was 10 ppm. The ambient temperature was normal temperature, and each of the adsorbents was enclosed in the glass container so as to be 0.1 g in terms of a porous carrier (coconut shell activated carbon). Subsequently, the methyl sulfide removal rate (%) for each elapsed time was calculated by measuring the residual methyl sulfide concentration for a certain time. A detector tube (No. 53 made by GASTEC) was used to measure the methyl sulfide concentration. The methyl sulfide removal rate (%) is {(methyl sulfide concentration before adsorbent encapsulation (ppm))-(residual methyl sulfide concentration after adsorbent encapsulation (ppm))} ÷ (methyl sulfide concentration before adsorbent encapsulation ( ppm)) x 100. The test results are shown in FIG.
<考察>
 図1から明らかなように、ペルオキソ硫酸塩を多孔質担体に添着させて得られた実施例1~4の吸着剤は、無添着である比較例1の吸着剤と比較して、硫化メチルの吸着性能に優れている。
<Discussion>
As is clear from FIG. 1, the adsorbents of Examples 1 to 4 obtained by impregnating peroxosulfate with a porous carrier were more resistant to methyl sulfide than the adsorbent of Comparative Example 1 which was not added. Excellent adsorption performance.
 試験例2:中性臭気物質に対する吸着性能評価(動的試験)
 内径20mmのガラスカラムに、得られた上記各吸着剤(実施例1、実施例4、比較例1及び参考例1)5.6mlを充填し、25℃、硫化メチル10ppm、湿度60%に調製した臭気ガス(硫化メチル含有ガス)を2L/minの流量で通気した。なお、LV(線速度)は0.11m/secとし、SV(空間速度)は22000/hrとした。一定時間経過毎にガラスカラムの入口と出口の硫化メチル濃度(ppm)をガスクロマトグラフィーによって分析し、破過率(%)を算出した。また、上記測定された硫化メチル濃度を基に、破過率が5%時及び80%時における時間(hr)並びに質量当たりの吸着量(mg/g)を測定又は算出した。なお、ガスクロマトグラフィーにおける硫化メチル濃度測定は、GC-FID(GC-14B、(株)島津製作所製)及び分離カラム(直径3mm×長さ600mm, Chromosorb 103)を使用した。
また、上記破過率は、次式により算出した。
破過率(%)=C/C0×100   (= C÷C0×100)
 C0 :入口硫化メチル濃度(ppm)
 C :出口硫化メチル濃度(ppm)
試験結果を図2及び表1に示す。
Test example 2: Adsorption performance evaluation for neutral odor substances (dynamic test)
A glass column having an inner diameter of 20 mm was filled with 5.6 ml of each of the obtained adsorbents (Example 1, Example 4, Comparative Example 1 and Reference Example 1), and prepared at 25 ° C., 10 ppm of methyl sulfide, and humidity of 60%. Odor gas (methyl sulfide-containing gas) was vented at a flow rate of 2 L / min. The LV (linear velocity) was 0.11 m / sec and the SV (space velocity) was 22000 / hr. The methyl sulfide concentration (ppm) at the inlet and outlet of the glass column was analyzed by gas chromatography every time a certain time passed, and the breakthrough rate (%) was calculated. Further, based on the measured methyl sulfide concentration, the time (hr) when the breakthrough rate was 5% and 80% and the amount of adsorption (mg / g) per mass were measured or calculated. For the measurement of methyl sulfide concentration in gas chromatography, GC-FID (GC-14B, manufactured by Shimadzu Corporation) and a separation column (diameter 3 mm × length 600 mm, Chromosorb 103) were used.
The breakthrough rate was calculated by the following formula.
Breakthrough rate (%) = C / C 0 × 100 (= C ÷ C 0 × 100)
C 0 : Inlet methyl sulfide concentration (ppm)
C: Methyl sulfide concentration (ppm)
The test results are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<考察>
 図2及び表1から明らかなように、ペルオキソ一硫酸カリウム複塩を添着させてなる実施例1の吸着剤及びペルオキソ二硫酸ナトリウムを添着させてなる実施例4の吸着剤は、破過率が5%時及び80%時における時間並びに吸着量に関して、無添着である比較例1の吸着剤と比較して、それぞれ大きい値を示す。即ち、上記実施例1及び4の吸着剤は、いずれも、無添着である比較例1の吸着剤と比較して優れた硫化メチル吸着性能を示す。
<Discussion>
As apparent from FIG. 2 and Table 1, the adsorbent of Example 1 to which potassium peroxomonosulfate double salt is adsorbed and the adsorbent of Example 4 to which sodium peroxodisulfate is adsorbed have a breakthrough rate. The time and the amount of adsorption at the time of 5% and 80% are respectively large values as compared with the adsorbent of Comparative Example 1 which is non-added. That is, both of the adsorbents of Examples 1 and 4 show superior methyl sulfide adsorption performance as compared with the adsorbent of Comparative Example 1 which is not added.
 試験例3:アセトアルデヒドに対する吸着性能評価(静的試験)
 ガラス容器内に、実施例1及び4、比較例1並びに参考例1で得られた各吸着剤を封入した。次にアセトアルデヒド濃度が10ppmとなるようにアセトアルデヒドを注入した。なお、雰囲気温度は常温で、上記各吸着剤は、多孔質担体(ヤシ殻活性炭)換算で0.1gとなるように、上記ガラス容器内に封入した。次いで、一定時間経過毎の残存アセトアルデヒド濃度を測定することにより、時間経過毎のアセトアルデヒド除去率(%)を算出した。アセトアルデヒド濃度の測定は、検知管(GASTEC製 92L)を使用した。アセトアルデヒド除去率(%)は、{(吸着剤封入前のアセトアルデヒド濃度(ppm))-(吸着剤封入後の残存アセトアルデヒド濃度(ppm))}÷(吸着剤封入前のアセトアルデヒド濃度(ppm))×100で算出される。試験結果を図3に示す。
Test example 3: Adsorption performance evaluation for acetaldehyde (static test)
Each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 was sealed in a glass container. Next, acetaldehyde was injected so that the acetaldehyde concentration was 10 ppm. The ambient temperature was normal temperature, and each of the adsorbents was enclosed in the glass container so as to be 0.1 g in terms of a porous carrier (coconut shell activated carbon). Subsequently, the acetaldehyde removal rate (%) per time passage was calculated by measuring the residual acetaldehyde concentration per time passage. A detector tube (92 L made by GASTEC) was used to measure the acetaldehyde concentration. Acetaldehyde removal rate (%) is: {(concentration of acetaldehyde before adsorbing agent (ppm)) − (residual acetaldehyde concentration after adsorbing agent (ppm))} ÷ (concentration of acetaldehyde (ppm) before adsorbing agent) × Calculated as 100. The test results are shown in FIG.
<考察>
 図3から明らかなように、ペルオキソ一硫酸カリウム複塩を添着させてなる実施例1の吸着剤及びペルオキソ二硫酸ナトリウムを添着させてなる実施例4の吸着剤は、いずれも、無添着である比較例1の吸着剤及び臭素を添着させてなる参考例1と比較して、アセトアルデヒドの吸着性能に優れている。
<Discussion>
As is clear from FIG. 3, both the adsorbent of Example 1 formed by adding potassium peroxomonosulfate double salt and the adsorbent of Example 4 added by sodium peroxodisulfate are non-attached. Compared with Reference Example 1 in which the adsorbent and bromine of Comparative Example 1 are impregnated, the adsorption performance of acetaldehyde is excellent.
 試験例4:ホルムアルデヒドに対する吸着性能評価(静的試験)
 テドラーバッグ内に、実施例1及び4、比較例1並びに参考例1で得られた各吸着剤を封入した。次にホルムアルデヒド濃度が12ppmとなるようにホルムアルデヒドを注入した。なお、雰囲気温度は常温で、上記各吸着剤は、多孔質担体(ヤシ殻活性炭)換算で0.1gとなるように、上記ガラス容器内に封入した。次いで、一定時間経過毎の残存ホルムアルデヒド濃度を測定することにより、時間経過毎のホルムアルデヒド除去率(%)を算出した。ホルムアルデヒド濃度の測定は、検知管(GASTEC製 91L)を使用した。ホルムアルデヒド除去率(%)は、{(吸着剤封入前のホルムアルデヒド濃度(ppm))-(吸着剤封入後の残存ホルムアルデヒド濃度(ppm))}÷(吸着剤封入前のホルムアルデヒド濃度(ppm))×100で算出される。試験結果を図4に示す。
Test example 4: Evaluation of adsorption performance for formaldehyde (static test)
Each adsorbent obtained in Examples 1 and 4, Comparative Example 1 and Reference Example 1 was sealed in a Tedlar bag. Next, formaldehyde was injected so that the formaldehyde concentration was 12 ppm. The ambient temperature was normal temperature, and each of the adsorbents was enclosed in the glass container so as to be 0.1 g in terms of a porous carrier (coconut shell activated carbon). Subsequently, the formaldehyde removal rate (%) for each lapse of time was calculated by measuring the residual formaldehyde concentration for a certain lapse of time. A detector tube (91L made by GASTEC) was used to measure the formaldehyde concentration. The formaldehyde removal rate (%) is {(formaldehyde concentration before adsorbent encapsulation (ppm))-(residual formaldehyde concentration after adsorbent encapsulation (ppm))} ÷ (formaldehyde concentration before adsorbent encapsulation (ppm)) × Calculated as 100. The test results are shown in FIG.
<考察>
 図4から明らかなように、ペルオキソ一硫酸カリウム複塩を添着させてなる実施例1の吸着剤及びペルオキソ二硫酸ナトリウムを添着させてなる実施例4の吸着剤は、いずれも、無添着である比較例1の吸着剤及び臭素を添着させてなる参考例1と比較して、ホルムアルデヒドの吸着性能に優れている。
<Discussion>
As is clear from FIG. 4, the adsorbent of Example 1 formed by adding potassium peroxomonosulfate double salt and the adsorbent of Example 4 formed by adding sodium peroxodisulfate are both non-attached. Compared to Reference Example 1 in which the adsorbent and bromine of Comparative Example 1 are impregnated, the adsorption performance of formaldehyde is excellent.
 試験例5:中性臭気物質に対する吸着性能評価(動的試験)
 実施例1、実施例4、比較例1及び参考例1の各吸着剤に代えて、実施例5及び実施例6の各吸着剤を使用する以外は、試験例2と同様にして、時間経過毎の破過率(%)、並びに破過率が5%時及び80%時における時間(hr)並びに質量当たりの吸着量(mg/g)を測定又は算出した。試験結果を図5及び表2に示す。
Test Example 5: Adsorption performance evaluation for neutral odor substances (dynamic test)
In place of the adsorbents of Example 1, Example 4, Comparative Example 1 and Reference Example 1, instead of using the adsorbents of Example 5 and Example 6, the time elapsed as in Test Example 2. The breakthrough rate (%) for each time, the time (hr) when the breakthrough rate was 5% and 80%, and the adsorption amount (mg / g) per mass were measured or calculated. The test results are shown in FIG.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図5及び表2からも明らかように、ペルオキソ一硫酸カリウム複塩を多孔質担体(ヤシ殻活性炭)に添着させる前に前記多孔質担体に対して熱処理が行われた場合の吸着剤(実施例6)は、破過率が5%時及び80%時における時間並びに吸着量に関して、前記熱処理が行われていない場合の吸着剤(実施例5)と比較して、それぞれ大きい値を示す。即ち、実施例6の吸着剤は、実施例5の吸着剤と比較して優れた硫化メチル吸着性能を示しており、ペルオキソ硫酸塩を多孔質担体に添着させる前の熱処理は中性臭気物質の吸着性能をさらに向上させることを示す。 As is clear from FIG. 5 and Table 2, the adsorbent when the porous carrier was heat-treated before the potassium peroxomonosulfate double salt was attached to the porous carrier (coconut shell activated carbon) (Examples) 6) shows larger values for the time and the amount of adsorption when the breakthrough rate is 5% and 80%, as compared with the adsorbent in the case where the heat treatment is not performed (Example 5). That is, the adsorbent of Example 6 shows superior methyl sulfide adsorption performance as compared with the adsorbent of Example 5, and the heat treatment before attaching peroxosulfate to the porous carrier is a neutral odor substance. It shows that the adsorption performance is further improved.

Claims (5)

  1.  ペルオキソ硫酸塩を多孔質担体に添着させてなることを特徴とする、吸着剤。 An adsorbent characterized in that peroxosulfate is attached to a porous carrier.
  2.  前記ペルオキソ硫酸塩が、ペルオキソ一硫酸カリウム、その複塩、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム及びペルオキソ二硫酸アンモニウムからなる群から選ばれた少なくとも1種である、請求項1に記載の吸着剤。 The adsorbent according to claim 1, wherein the peroxosulfate is at least one selected from the group consisting of potassium peroxomonosulfate, a double salt thereof, potassium peroxodisulfate, sodium peroxodisulfate, and ammonium peroxodisulfate.
  3.  前記多孔質担体が、活性炭である、請求項1又は2に記載の吸着剤。 The adsorbent according to claim 1 or 2, wherein the porous carrier is activated carbon.
  4.  前記多孔質担体が、熱処理された活性炭である、請求項1~3のいずれかに記載の吸着剤。 The adsorbent according to any one of claims 1 to 3, wherein the porous carrier is a heat-treated activated carbon.
  5.  中性臭気物質及び/又はアルデヒド系臭気物質を含有する気体を、ペルオキソ硫酸塩を多孔質担体に添着させてなる吸着剤と接触させることを特徴とする、臭気物質の吸着方法。 A method for adsorbing odorous substances, comprising bringing a gas containing a neutral odorous substance and / or an aldehyde odorous substance into contact with an adsorbent obtained by attaching peroxosulfate to a porous carrier.
PCT/JP2014/077298 2013-11-13 2014-10-14 Adsorbent WO2015072263A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013235172 2013-11-13
JP2013-235172 2013-11-13

Publications (1)

Publication Number Publication Date
WO2015072263A1 true WO2015072263A1 (en) 2015-05-21

Family

ID=53057205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077298 WO2015072263A1 (en) 2013-11-13 2014-10-14 Adsorbent

Country Status (2)

Country Link
TW (1) TW201526983A (en)
WO (1) WO2015072263A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI585060B (en) * 2016-02-24 2017-06-01 于嘉順 Phosphate absorbent material and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277455A (en) * 1988-12-29 1990-11-14 Lion Corp Deodoratn composition and deodorizing sheet
JPH09262273A (en) * 1996-01-22 1997-10-07 Kuraray Chem Corp Adsorbing remover of sulfur compound
JPH11128737A (en) * 1997-10-29 1999-05-18 Takeda Chem Ind Ltd Bromine-bearing activated carbon and production of bromine-bearing activated carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277455A (en) * 1988-12-29 1990-11-14 Lion Corp Deodoratn composition and deodorizing sheet
JPH09262273A (en) * 1996-01-22 1997-10-07 Kuraray Chem Corp Adsorbing remover of sulfur compound
JPH11128737A (en) * 1997-10-29 1999-05-18 Takeda Chem Ind Ltd Bromine-bearing activated carbon and production of bromine-bearing activated carbon

Also Published As

Publication number Publication date
TW201526983A (en) 2015-07-16

Similar Documents

Publication Publication Date Title
TWI826408B (en) A catalyst for catalyzing formaldehyde oxidation and the preparation and use of the same
EP1838435B1 (en) Method for the preparation of agglomerates of precipitated insoluble amorphous metal silicates
US4831011A (en) Carbon-based adsorbent and process for production thereof
US7759288B2 (en) Co-formed base-treated aluminas for water and CO2 removal
JPH04501701A (en) Removal of mercury from fluids by contact with activated zeolite A
WO2021106364A1 (en) Molecular polar substance-adsorbing charcoal
CN104841369A (en) Air filter element for cellular network active carbon filter and preparation method thereof
JP6851834B2 (en) Aldehyde adsorbent
JP2009056449A (en) Lower aldehyde adsorbent
KR20080027334A (en) Adsorbent and process for producing the same
JP5420434B2 (en) Composite gas adsorbent, composite gas adsorbent composition, and adsorption filter using the same
WO2015072263A1 (en) Adsorbent
Quang et al. Preparation of polyethylenimine impregnated mesoporous precipitated silica for CO2 capture
WO2016031474A1 (en) Adsorbent
JP2006272078A (en) Absorbent for aldehydes, its manufacturing method and method for removing aldehyde in gas using adsorbent
KR101648551B1 (en) A porous absorbent using micro-capsulated absorbing material and a manufacturing method of it
TWI265149B (en) Process for removing water from gaseous substance
JP6584410B2 (en) Improved adsorption of acid gases
JP2000084406A (en) Adsorbent for lower aldehydes
JPH01236941A (en) Gaseous ammonia adsorbent
JP2015024405A (en) Acidic gas adsorbent and remover and adsorption and removing filter using the same
JP2022116822A (en) Adsorbent and method for producing the same
JP2007014857A (en) Adsorbent and its production method
JP2017177047A (en) Adsorbent for metal removal
JP2023057487A (en) Amine compound-carried activated carbon and method of producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP