JPH0440058B2 - - Google Patents

Info

Publication number
JPH0440058B2
JPH0440058B2 JP59141406A JP14140684A JPH0440058B2 JP H0440058 B2 JPH0440058 B2 JP H0440058B2 JP 59141406 A JP59141406 A JP 59141406A JP 14140684 A JP14140684 A JP 14140684A JP H0440058 B2 JPH0440058 B2 JP H0440058B2
Authority
JP
Japan
Prior art keywords
catalyst
mask
carrier
supported
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59141406A
Other languages
Japanese (ja)
Other versions
JPS6120566A (en
Inventor
Hajime Matsushita
Shigeo Ishiguro
Hiroshi Ichise
Shigenobu Mizusaki
Shigeo Ichise
Kenichiro Sugimori
Masaru Yamamoto
Ikuo Horii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Original Assignee
Japan Tobacco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc filed Critical Japan Tobacco Inc
Priority to JP59141406A priority Critical patent/JPS6120566A/en
Publication of JPS6120566A publication Critical patent/JPS6120566A/en
Publication of JPH0440058B2 publication Critical patent/JPH0440058B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Respiratory Apparatuses And Protective Means (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 本考案は一酸化炭素用自己救命器に関する。[Detailed description of the invention] The present invention relates to a self-lifesaving device for carbon monoxide.

〔産業上の利用分野〕[Industrial application field]

一般に、炭素や含炭素化合物の不完全燃焼によ
つて発生する一酸化炭素(以下単にCOという)
は、血液中のヘモグロビンと強固に結合してCO
ヘモグロビンを形成し血液の酸素吸収及び運搬の
役割を著しく阻害するため、頭痛、めまいなどの
急性中毒症状をひき起す。又、血中のCOヘモグ
ロビン濃度が約40%以上に達すると人の場合死に
至ることが知られている。
Generally, carbon monoxide (hereinafter simply referred to as CO) is generated by incomplete combustion of carbon or carbon-containing compounds.
binds tightly to hemoglobin in the blood and releases CO
It forms hemoglobin and significantly inhibits the absorption and transport of oxygen in the blood, causing acute poisoning symptoms such as headache and dizziness. Furthermore, it is known that when the CO hemoglobin concentration in the blood reaches approximately 40% or more, death occurs in humans.

従来、一酸化炭素用自己救命器(以下単にCO
マスクという)はビルや炭鉱、鉱山などの抗内に
おいて、火災、爆発事故などによりCOガスが発
生存在している場所を突破、脱出するときに使用
されるもので、炭鉱、鉱山等においては石灰鉱山
保安規則により抗内で作業する全鉱員がその携行
を義務づけられている。
Conventionally, carbon monoxide self-life saving equipment (hereinafter simply CO
Masks are used to break through and escape from areas where CO gas is generated due to fires, explosions, etc. in buildings, coal mines, mines, etc. According to mine safety regulations, all miners working in mines are required to carry one.

〔従来の技術〕[Conventional technology]

このCOマスクはCO除去性能が優れていること
は勿論、通常の作業時や、更には緊急避難時の行
動に支障がないように可能な限り小型軽量である
と同時に、口中の火傷を防ぐため使用中に発生す
るCOの酸化熱などによる吸気の温度上昇の小さ
いものが切望されている。
This CO mask not only has excellent CO removal performance, but also is as small and lightweight as possible so that it does not interfere with activities during normal work or even during emergency evacuation, and at the same time, it is designed to prevent burns in the mouth. There is a strong need for something that will minimize the rise in intake air temperature due to heat of oxidation of CO generated during use.

従来市販のCOマスクにはCO除去剤として二酸
化マンガンと酸化銅の複合物を主体とした、いわ
ゆるホプカリツト系複合酸化物触媒が用いられて
いる(特公昭50−29599号公報参照)。このホプカ
リツト系触媒は空気中の水分を吸着することによ
り、そのCO酸化活性を著しく低下させる欠点を
有するので、その活性を長期間持続させるために
は常時乾燥状態に維持させておく必要がある。
Conventionally, commercially available CO masks use a so-called hopcalite-based composite oxide catalyst, which is mainly a composite of manganese dioxide and copper oxide, as a CO removal agent (see Japanese Patent Publication No. 50-29599). This hopcalite catalyst has the disadvantage that its CO oxidation activity is significantly reduced by adsorbing moisture in the air, so in order to maintain its activity for a long period of time, it must be kept in a dry state at all times.

このためCOマスクのガス吸収缶には完全に乾
燥脱水したホプカリツト触媒と共に吸湿剤を充填
し、COマスク全体を頑強な金属製容器に密閉状
態で格納して大気を遮断した状態にして携行しな
ければならない。
For this reason, the gas absorption canister of the CO mask must be filled with a moisture absorbent along with a completely dried and dehydrated hopcalite catalyst, and the entire CO mask must be sealed in a strong metal container and carried in a state where it is blocked from the atmosphere. Must be.

このような従来市販されているCOマスク本体
はその重量が600g以上となり、気密容器の重さ
を加えると約1.1Kgにも達する。更に従来のホプ
カリツト触媒と吸湿剤とを充填したCOマスクは
使用時において、水分とCOを含む空気がマスク
本体を通過する際、吸湿剤への水分の吸収熱と
COのホプカリツト触媒上での酸化に伴なう反応
熱によつて吸気の温度が100℃程度にまで上昇し、
口中が火傷するという事故を起すことがあり、使
用上の問題点として指摘されている。
The weight of conventional CO masks on the market is over 600g, and when the weight of the airtight container is added, it reaches approximately 1.1kg. Furthermore, when using a conventional CO mask filled with a hopcalite catalyst and a moisture absorbent, when air containing moisture and CO passes through the mask body, the heat absorbed by the moisture into the moisture absorbent and
The temperature of the intake air rises to about 100℃ due to the heat of reaction accompanying the oxidation of CO on the hopcalite catalyst.
This has been pointed out as a problem when using it, as it can cause burns to the inside of the mouth.

そこで、かかる問題点を改善するためのマスク
が特開昭47−40892号公報において提案されてい
るが、このマスクの構造もCOの酸化触媒として
ホプカリツト触媒を使用するものであるため、比
較的大きなスペースの吸湿剤収容室や吸気温度の
上昇を抑制するための熱交換用金属殻収容室を具
備すると共に、吸気弁及び排気弁を設けた吸気口
及び排気口の2個の口片を有するものであり、構
造が複雑で容積や重量も大きなものとなる欠点が
ある。このようなホプカリツト触媒を充填した
COマスクはその重量の点や吸気の温度上昇の点
などを考慮すると必ずしも十分な性能を有してい
ると云い難い。
Therefore, a mask has been proposed in Japanese Patent Application Laid-open No. 47-40892 to improve this problem, but since the structure of this mask also uses a hopcalite catalyst as a CO oxidation catalyst, it has a relatively large size. It is equipped with a moisture absorbent storage chamber in the space and a metal shell storage chamber for heat exchange to suppress the rise in intake air temperature, and has two openings, an intake port and an exhaust port, each having an intake valve and an exhaust valve. However, the structure is complicated and the volume and weight are large. Filled with such a hopcalite catalyst
It is difficult to say that CO masks necessarily have sufficient performance considering their weight and temperature rise of intake air.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来のCOマスクのかかる問題点に着
目してなされたもので、COの除去効果がすぐれ
ていると共に小型軽量で吸気の温度上昇の小さい
COマスクを提供することを目的として種々研究
を行なつた結果、COの酸化活性の高い触媒とし
てパラジウム塩と銅塩の両者を主体とする触媒を
担体に担持させてCOマスク内に装填することに
より、吸湿剤を使用することなく、むしろ吸気及
び呼気中の水分を利用することにより触媒反応を
より促進してCOの除去効果を高めると共に、CO
の酸化反応熱の冷却をも効果的に達成し得ること
を見出し本発明に至つたものである。
The present invention was developed by focusing on the problems of conventional CO masks.It has an excellent CO removal effect, is small and lightweight, and has a small temperature rise in intake air.
As a result of various research aimed at providing a CO mask, we found that a catalyst with high CO oxidation activity, consisting mainly of both palladium salts and copper salts, was supported on a carrier and loaded into the CO mask. By utilizing the moisture in the inhaled and exhaled air without using a moisture absorbent, the catalytic reaction is further promoted and the CO removal effect is increased.
The inventors have discovered that the heat of the oxidation reaction can be effectively cooled, leading to the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は少なくもパラジウム塩と銅
塩とを含む触媒を担体に担持して装填し、吸気孔
と排気孔とを同一としたことを特徴とする一酸化
炭素用自己救命器である。
That is, the present invention is a carbon monoxide self-saving device characterized in that a catalyst containing at least a palladium salt and a copper salt is supported and loaded on a carrier, and the intake hole and the exhaust hole are the same.

本発明に用いられるCO酸化触媒としてのパラ
ジウム塩及び銅塩としては、夫々の塩化物、硝酸
塩、硫酸塩又はこれらの混合塩等を使用すること
ができ、又、銅塩については2価の銅塩のみなら
ず1価の銅塩も使用することができる。また、上
記の触媒成分に第3触媒成分としてバナジン酸ア
ンモニウム(NH4VO3)、バナジン酸ナトリウム
(NaVO3)、5酸化バナジウム(V2O5)などのバ
ナジウム化合物を添加することによつてCOの酸
化活性を更に向上させることができる。
As palladium salts and copper salts as CO oxidation catalysts used in the present invention, respective chlorides, nitrates, sulfates, or mixed salts thereof can be used, and for copper salts, divalent copper Not only salts but also monovalent copper salts can be used. Furthermore, by adding a vanadium compound such as ammonium vanadate (NH 4 VO 3 ), sodium vanadate (NaVO 3 ), vanadium pentoxide (V 2 O 5 ) to the above catalyst component as a third catalyst component, CO oxidation activity can be further improved.

次に上記のCO酸化触媒を担持させるための担
体としては、γ−アルミナ、シリカ、シリカアル
ミナ、活性炭、シリカとアルミナとの複塩である
酸性白土、ベントナイトあるいは活性炭とこれら
の無機酸化物との混合組成物などの多孔質担体
で、B・E・T測定法による比表面積が100〜
1500m2/gを有するものが好適に使用される。
Next, as a carrier for supporting the above-mentioned CO oxidation catalyst, γ-alumina, silica, silica-alumina, activated carbon, acid clay which is a double salt of silica and alumina, bentonite, or a combination of activated carbon and these inorganic oxides are used. A porous carrier such as a mixed composition with a specific surface area of 100 to 100 by the B・E・T measurement method.
Those having a surface area of 1500 m 2 /g are preferably used.

これらの担体に対するパラジウム塩の担持量は
パラジウム換算で0.3〜1.5%(本明細書において
%は特記しない限り重量%を表わす。)で十分目
的を達し得るが、0.3%未満ではCO酸化活性が不
十分となる。又、銅塩の担持量は銅換算で2〜6
%、好ましくは4〜5%がよく、2%未満及び6
%超過の場合はCO酸化活性の持続性が低下する
傾向がみられる。
The amount of palladium salt supported on these carriers is 0.3 to 1.5% in terms of palladium (in this specification, % is expressed by weight unless otherwise specified), which is enough to achieve the purpose, but if it is less than 0.3%, the CO oxidation activity is insufficient. It will be enough. In addition, the supported amount of copper salt is 2 to 6 in terms of copper.
%, preferably 4-5%, less than 2% and 6%
%, there is a tendency for the sustainability of CO oxidation activity to decrease.

又、バナジウム化合物の担体に対する添加量は
1〜3%でCO酸化活性を一層向上させることが
できる。
Further, the CO oxidation activity can be further improved by adding the vanadium compound to the carrier in an amount of 1 to 3%.

次に担体への触媒成分の担持方法としては、担
体粉末を造粒して8〜14メツシユ程度の粒状体に
成形し、これをパラジウム塩及び銅塩の両者を含
有する水溶液中に浸漬した後、ロータリーエバポ
レータ等の蒸発器を用いて溶液を加熱濃縮し、過
剰の水分を蒸発させて担体上に触媒成分を析出さ
せる方法が最も簡便な方法として適用できる。
Next, as a method for supporting the catalyst component on the carrier, the carrier powder is granulated and formed into a granular material of about 8 to 14 meshes, which is immersed in an aqueous solution containing both palladium salt and copper salt. The simplest method can be applied by heating and concentrating the solution using an evaporator such as a rotary evaporator, evaporating excess water, and depositing the catalyst component on the carrier.

又、バナジウム化合物はパラジウム塩や銅塩と
同時に担持させてもよく、又、予めバナジウム化
合物のみを上記の浸漬法を用いて担体に担持させ
た後、パラジウム塩と銅塩を同様にして担持させ
る方法も適用することができる。
Further, the vanadium compound may be supported at the same time as the palladium salt and the copper salt, or the vanadium compound alone may be supported on the carrier using the above-described dipping method, and then the palladium salt and the copper salt may be supported in the same manner. Methods can also be applied.

触媒を担持させた担体の粒度はCOマスクの通
気抵抗の点から、上記のように8〜14メツシユ程
度とすることが望ましいが、担体としては必ずし
も粒状である必要はなく、無機質材料あるいは耐
熱性のプラスチツク材料などから作られた、いわ
ゆるハニカム状成形体や、無数の連通孔を有する
海綿状セラミツク体等を担体として使用し、これ
らに前記の触媒を浸漬法等により担体させて使用
することもできる。
The particle size of the carrier supporting the catalyst is preferably about 8 to 14 mesh as mentioned above from the point of view of the ventilation resistance of the CO mask, but the carrier does not necessarily have to be granular and may be made of inorganic material or heat-resistant material. It is also possible to use a so-called honeycomb-shaped molded body made from a plastic material, etc., or a spongy ceramic body having countless communicating holes as a carrier, and use the above-mentioned catalyst as a carrier by a dipping method or the like. can.

第1図は本発明のCOマスクの構造の一例を示
し、上部に口当部2を設け、底部に吸排気口3を
設けた缶体1内に隔離板4を介して粒状の上記担
体に担持させたCO酸化触媒5を装填してなるも
のである。なお、6は除塵フイルタである。
FIG. 1 shows an example of the structure of the CO mask of the present invention, in which the above-mentioned granular carrier is placed in a can body 1 having a mouthpiece 2 at the top and an intake/exhaust port 3 at the bottom through a separator 4. It is loaded with a supported CO oxidation catalyst 5. Note that 6 is a dust removal filter.

〔作用〕[Effect]

次に本発明のCOマスクの作用について説明す
る。
Next, the action of the CO mask of the present invention will be explained.

すなわち、本発明のCOマスクに装填されるパ
ラジウム塩と銅塩の混合触媒は、COの酸化反応
において水分の存在を必要とするので、従来のホ
プカリツト触媒において望ましくないとされる水
分の存在が逆に有効に作用する。従つてホプカリ
ツト触媒のような常時乾燥状態に維持しておく必
要はなく、通常10〜25%程度の水分が含有された
状態に保持される。よつて本発明のCOマスクに
COと水分を含んだ空気が通過し、触媒上で酸化
反応が起り発熱しても触媒中の水分の気化潜熱で
その発熱をある程度軽減することができる。更
に、通過空気も比熱の大きい水分を含んでいるの
で熱容量が乾燥空気の場合に比べて大きく、従つ
て反応熱による通過空気の温度上昇も抑制され
る。
In other words, the mixed catalyst of palladium salt and copper salt loaded in the CO mask of the present invention requires the presence of water in the CO oxidation reaction, so the presence of water, which is considered undesirable in conventional hopkaline catalysts, is reversed. It works effectively. Therefore, unlike hopcalite catalysts, it is not necessary to keep them in a dry state all the time, and they are usually kept in a state containing about 10 to 25% moisture. Therefore, the CO mask of the present invention
When air containing CO and moisture passes through the catalyst, an oxidation reaction occurs on the catalyst and generates heat, but the latent heat of vaporization of the moisture in the catalyst can reduce the heat generation to some extent. Furthermore, since the passing air also contains moisture with a high specific heat, its heat capacity is larger than that of dry air, and therefore the temperature rise of the passing air due to reaction heat is also suppressed.

又、本発明に用いられるCO酸化触媒はホプカ
リツト触媒と異なり耐湿性を有し乾燥剤の充填を
必要としないので、COマスクの構造も従来のCO
マスクのように排気口を吸気口と別個に設ける必
要がなく、第1図に示すように吸気と呼気の口当
部を同一として、吸気と呼気を同一の触媒層内を
通過せしめることが可能となる。このような構造
にすることで湿つた呼気により触媒に適当な水分
を与え、触媒によるCOの酸化反応をより促進す
ると共にCOの酸化反応熱により昇温した触媒層
の冷却にも効果的に作用するものである。
Furthermore, unlike the hopcalite catalyst, the CO oxidation catalyst used in the present invention is moisture resistant and does not require the filling of a desiccant agent, so the structure of the CO mask is similar to that of the conventional CO oxidation catalyst.
There is no need to separate the exhaust port from the intake port as in a mask, and as shown in Figure 1, the intake and exhalation ports can be made the same, allowing the intake and exhalation to pass through the same catalyst layer. becomes. With this structure, moist exhaled air provides appropriate moisture to the catalyst, further promoting the oxidation reaction of CO by the catalyst, and also effectively cooling the catalyst layer whose temperature has risen due to the heat of the oxidation reaction of CO. It is something to do.

〔実施例〕〔Example〕

次に本発明を実施例に基づき具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

先ず、以下に示す種々の方法により本発明の
COマスクに装填された担体に担持したCO酸化触
媒を調製した。
First, the method of the present invention is carried out by various methods shown below.
A CO oxidation catalyst supported on a carrier loaded in a CO mask was prepared.

調製例 (1) パラジウム換算で7g、銅換算で44gを含む水
溶液1.5を塩化パラジウムと塩化第二銅を用い
て調製した。この水溶液に、活性炭とベントナイ
トを混合重量比1:1で混合し、8〜14メツシユ
の大きさに造粒した担体1Kgを時々撹拌しながら
浸漬した。浸漬5時間後にこの全てを120℃で通
風乾燥器内に入れ、時々撹拌しながら水分を蒸発
させた。通風乾燥器内に収納後10時間後に担体に
担持した触媒を乾燥器から取り出し触媒(A)を得
た。
Preparation Example (1) An aqueous solution containing 7 g in terms of palladium and 44 g in terms of copper was prepared using palladium chloride and cupric chloride. In this aqueous solution, 1 kg of carrier prepared by mixing activated carbon and bentonite at a mixing weight ratio of 1:1 and granulating the mixture to a size of 8 to 14 meshes was immersed with occasional stirring. After 5 hours of immersion, the entire mixture was placed in a ventilation dryer at 120°C to evaporate water with occasional stirring. After 10 hours of storage in the ventilation dryer, the catalyst supported on the carrier was taken out from the dryer to obtain a catalyst (A).

調製例 (2) パラジウム換算で7g、銅換算で44gを含有す
る水溶液1.3を塩化パラジウムと塩化第二銅を
用いて調製し、この水溶液に8〜14メツシユの大
きさに造粒したγ−アルミナ1Kgを浸漬した。浸
漬5時間後、250℃の通風乾燥器内に入れ、時々
撹拌しながら水分を蒸発させ、乾燥器に収容12時
間後にγ−アルミナ担体に担持した触媒を乾燥器
内から取り出し触媒(B)を得た。
Preparation Example (2) 1.3 of an aqueous solution containing 7 g in terms of palladium and 44 g in terms of copper was prepared using palladium chloride and cupric chloride, and γ-alumina granulated to a size of 8 to 14 meshes was added to this aqueous solution. 1Kg was immersed. After 5 hours of immersion, the mixture was placed in a ventilation dryer at 250°C to evaporate water with occasional stirring, and placed in the dryer for 12 hours. The catalyst supported on the γ-alumina carrier was removed from the dryer and the catalyst (B) was removed. Obtained.

調製例 (3) 調製例(2)で使用したと同様のγ−アルミナ担体
に予め浸漬法によりNH4VO3を1.3%担持させ、
更にこれを500℃で2時間加熱し、V2O5として
1.0%担持したγ−アルミナを作製した。この担
体1Kgに調製例(1)と同様の方法でパラジウムとし
て0.7%、銅として4.4%の担持量になるように塩
化パラジウムと塩化第二銅を担持した触媒(C)を得
た。
Preparation Example (3) A γ-alumina carrier similar to that used in Preparation Example (2) was preliminarily loaded with 1.3% NH 4 VO 3 by a dipping method.
This was further heated at 500℃ for 2 hours and converted into V 2 O 5 .
γ-alumina supported at 1.0% was prepared. A catalyst (C) was obtained in which palladium chloride and cupric chloride were supported on 1 kg of this carrier in the same manner as in Preparation Example (1) so that the supported amounts were 0.7% as palladium and 4.4% as copper.

調製例 (4) NH4VO3の0.1mol/水溶液500mlに、市販の
コーデイエライト質のハニカム体(径100mmφ、
高さ3535mm、重量115g、セル数112セル/inch2
の表面に予め10%のアルミナゾルをコーテイング
してγ−アルミナ層を形成させた担体を浸漬し、
2時間後ハニカム体を取り出し150℃で乾燥した。
この浸漬、乾燥を3回繰返したのち、ハニカム体
を更に500℃で2時間加熱し、ハニカム体表面に
V2O5を析出させた。この場合の担体に対するV2
O5担持量は約1.2%であつた。このように前処理
されたハニカム体を塩化パラジウムを0.05molと
塩化第二銅を0.5mol含有する水溶液500mlに1時
間浸漬した後、150℃で乾燥し、パラジウム担持
量0.46%、銅担持量2.8%の触媒(D)を得た。
Preparation example ( 4 ) Add a commercially available cordierite honeycomb body (diameter 100 mmφ,
Height 3535mm, weight 115g, number of cells 112 cells/inch 2 )
A carrier whose surface had been coated with 10% alumina sol to form a γ-alumina layer was immersed,
After 2 hours, the honeycomb body was taken out and dried at 150°C.
After repeating this immersion and drying three times, the honeycomb body was further heated at 500℃ for 2 hours, and the surface of the honeycomb body was
V 2 O 5 was precipitated. V 2 for the carrier in this case
The amount of O 5 supported was about 1.2%. The honeycomb body pretreated in this way was immersed for 1 hour in 500 ml of an aqueous solution containing 0.05 mol of palladium chloride and 0.5 mol of cupric chloride, and then dried at 150°C, resulting in a supported amount of palladium of 0.46% and a supported amount of copper of 2.8%. % of catalyst (D) was obtained.

次に第1図に示した構造のCOマスクを作製し、
その缶体内に従来使用されているホプカリツト触
媒の8〜14メツシユ造粒体、触媒(A),(B),及び(C)
を夫々160mlを宛別々に装填したCOマスク、及び
触媒(D)を装填したCOマスクについて、吸湿剤を
併用せずにCO除去性能および吸気温度の測定を
行なつた。更に比較例としてホプカリツト触媒
160mlと吸湿剤190mlが装填されている従来市販の
COマスクについても同様の測定を行なつた。な
お、吸気温度の測定については比較例のCOマス
クとCO除去性能のよい触媒(C)について比較した。
Next, a CO mask with the structure shown in Figure 1 was made,
8 to 14 mesh granules of conventionally used hopcalite catalysts, catalysts (A), (B), and (C) are contained in the can.
The CO removal performance and intake air temperature were measured for a CO mask in which 160 ml of each was separately loaded and a CO mask loaded with catalyst (D) without using a moisture absorbent. In addition, as a comparative example, hopcalite catalyst
Conventional commercially available product loaded with 160ml and 190ml of moisture absorbent.
Similar measurements were made for the CO mask. Regarding the measurement of intake air temperature, a comparison was made between a CO mask of a comparative example and a catalyst (C) with good CO removal performance.

又、測定は、CO除去性能についてはJIS規格M
−7611の方法に準拠して行なつた。すなわち、1
%のCOを含む相対湿度95%、温度25℃の空気を
32/分の流量でCOマスク本体に流し、口当部
における吸気中のCO濃度を非分散型赤外分光光
度計を用いて測定した。又、同時にこの条件下で
口当部の吸気温度を測定した。
In addition, the measurement is based on JIS standard M for CO removal performance.
-7611 method. That is, 1
Air at a relative humidity of 95% and a temperature of 25°C containing % CO
CO was flowed into the mask body at a flow rate of 32/min, and the CO concentration in the inhaled air at the mouthpiece was measured using a non-dispersive infrared spectrophotometer. At the same time, the intake air temperature at the mouthpiece was measured under these conditions.

測定結果は第2図に示すとおりであり、乾燥剤
を使用せずホプカリツト触媒のみを装填したCO
マスクのCO除去性能は水分の影響を受けて短時
間で急速に低下して行くのに対し、触媒(A)〜(D)を
装填した本発明のCOマスクの場合は、何れもJIS
規格(吸気中の平均CO濃度200ppm相当以下)を
十分に満足し得るCO除去性能を示した。特に触
媒(C)のようにパラジウム塩と銅塩のほかにバナジ
ウム化合物を添加した触媒は、CO除去性能が著
しくすぐれていた。又、触媒(D)もバナジウム化合
物を添加した例であるが、この場合の吸気中の濃
度が触媒(A)より高い理由は担体に担持された触媒
量が触媒(A)に比し少なかつたことによるものと考
えられる。
The measurement results are shown in Figure 2.
While the CO removal performance of masks rapidly decreases in a short period of time due to the influence of moisture, in the case of the CO masks of the present invention loaded with catalysts (A) to (D), all JIS
It demonstrated CO removal performance that fully satisfies the standards (average CO concentration in intake air equivalent to 200 ppm or less). In particular, catalysts like catalyst (C), in which a vanadium compound was added in addition to palladium salts and copper salts, had significantly superior CO removal performance. Catalyst (D) is also an example in which a vanadium compound is added, but the reason why the concentration in the intake air in this case is higher than that of catalyst (A) is that the amount of catalyst supported on the carrier is smaller than that of catalyst (A). This is thought to be due to the following.

又、吸気温度については、従来市販されている
COマスクの場合100℃以上に上昇するに比べて触
媒(C)を用いた場合60℃を僅かに上廻る程度に止ま
り著しく低い。更に、本実施例に用いた本発明の
COマスクの重量は350〜450gであり、従来市販
されているCOマスクに約600gに比べて著しく軽
量化されることが実証された。
Also, regarding intake air temperature, conventionally commercially available
When using a CO mask, the temperature rises to over 100°C, but when catalyst (C) is used, the temperature rises to only slightly above 60°C, which is extremely low. Furthermore, the present invention used in this example
The weight of the CO mask is 350 to 450 g, which has been demonstrated to be significantly lighter than conventional commercially available CO masks, which weigh approximately 600 g.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明のCOマス
クはCO酸化触媒としてパラジウム塩と銅塩との
両者、並びにCO酸化促進剤として更にバナジウ
ム化合物をこの両者に併用して添加し、担体に担
持させてマスク内に装填させたものであるから、
従来のホプカリツト触媒のように吸湿剤を同時に
装填することなくJIS規格を十分満足し得るCO除
去性能がえられると共に、吸気温度も著しく低下
し、従来のCOマスクを使用した場合の口中の火
傷の危険も完全に防止される。更に本発明のCO
マスクによれば、吸湿剤を収容するスペースや弁
体を取付けた吸気室と排気室を別個に設ける必要
もなく構造が極めて簡易化、小型化され、その重
量も軽量化される等多くの利点が得られる。
As explained in detail above, the CO mask of the present invention contains both a palladium salt and a copper salt as a CO oxidation catalyst, and a vanadium compound as a CO oxidation promoter, which is supported on a carrier. Because it is loaded inside the mask,
Unlike conventional Hopcalitz catalysts, CO removal performance that fully satisfies JIS standards can be obtained without simultaneously loading a moisture absorbent, and the intake air temperature is also significantly lowered, reducing the risk of burns in the mouth when using conventional CO masks. Danger is also completely prevented. Furthermore, the CO of the present invention
According to the mask, there are many advantages such as no need to provide a separate space for accommodating the moisture absorbent or separate intake and exhaust chambers with attached valve bodies, the structure is extremely simple and compact, and the weight is also reduced. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一酸化炭素用自己救命器の概
略縦断面図、第2図は本発明に使用される種々の
触媒と従来の触媒を本発明の自己救命器に夫々装
填した場合の吸気中のCO濃度と吸気温度の経時
変化を示すグラフである。 1……缶体、2……口当部、3……吸排気口、
4……隔離板、5……CO酸化触媒。
FIG. 1 is a schematic vertical cross-sectional view of the self-lifesaving device for carbon monoxide of the present invention, and FIG. 2 is a diagram showing the self-lifesaving device of the present invention loaded with various catalysts used in the present invention and conventional catalysts. It is a graph showing changes in CO concentration in intake air and intake air temperature over time. 1...can body, 2...mouthpiece, 3...intake/exhaust port,
4...Separator, 5...CO oxidation catalyst.

Claims (1)

【特許請求の範囲】 1 少なくもパラジウム塩と銅塩とを含む触媒を
担体に担持して装填し、吸気孔と排気孔とを同一
としたことを特徴とする一酸化炭素用自己救命
器。 2 触媒がパラジウム塩と銅塩とに加えてバナジ
ウム化合物を含むことを特徴とする特許請求の範
囲第1項記載の一酸化炭素用自己救命器。
[Scope of Claims] 1. A self-saving device for carbon monoxide, characterized in that a catalyst containing at least a palladium salt and a copper salt is supported and loaded on a carrier, and the intake hole and the exhaust hole are the same. 2. The self-lifesaving device for carbon monoxide according to claim 1, wherein the catalyst contains a vanadium compound in addition to a palladium salt and a copper salt.
JP59141406A 1984-07-10 1984-07-10 Self-lifesaving device for carbon monoxide Granted JPS6120566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141406A JPS6120566A (en) 1984-07-10 1984-07-10 Self-lifesaving device for carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141406A JPS6120566A (en) 1984-07-10 1984-07-10 Self-lifesaving device for carbon monoxide

Publications (2)

Publication Number Publication Date
JPS6120566A JPS6120566A (en) 1986-01-29
JPH0440058B2 true JPH0440058B2 (en) 1992-07-01

Family

ID=15291262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141406A Granted JPS6120566A (en) 1984-07-10 1984-07-10 Self-lifesaving device for carbon monoxide

Country Status (1)

Country Link
JP (1) JPS6120566A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690101A (en) * 1995-07-14 1997-11-25 Kutta; Helmuth W. Portable air purifier with chemical reaction zone
JP4827516B2 (en) * 2005-12-15 2011-11-30 株式会社キャタラー Carbon monoxide oxidation catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177149A (en) * 1982-04-13 1983-10-17 Toppan Printing Co Ltd Filter for removing carbon monoxide
JPS58207947A (en) * 1982-05-27 1983-12-03 Gosei Kagaku Kenkyusho:Kk Catalyst for oxidizing carbon monoxide
JPS59132943A (en) * 1983-01-19 1984-07-31 Gosei Kagaku Kenkyusho:Kk Oxidation catalyst of carbon monoxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177149A (en) * 1982-04-13 1983-10-17 Toppan Printing Co Ltd Filter for removing carbon monoxide
JPS58207947A (en) * 1982-05-27 1983-12-03 Gosei Kagaku Kenkyusho:Kk Catalyst for oxidizing carbon monoxide
JPS59132943A (en) * 1983-01-19 1984-07-31 Gosei Kagaku Kenkyusho:Kk Oxidation catalyst of carbon monoxide

Also Published As

Publication number Publication date
JPS6120566A (en) 1986-01-29

Similar Documents

Publication Publication Date Title
US4910001A (en) Method for cleaning gas containing toxic component
KR101553720B1 (en) - a method to prepare filter media including filtering agent effective for removal of cyano-containing contaminants having improved compatibility with amine sensitive impregnants and amine sensitive substrates
NL8401676A (en) AIR CLEANER FOR USE IN AIR FILTERS.
US4421533A (en) Method of removing ozone and composition therefor
US4845065A (en) Carbon monoxide oxidizing catalyst
JPH02303539A (en) Production method of carrier catalyser to oxidize co, carrier catalyser and co-oxidation by contacting method
KR100520250B1 (en) A catalysis for purify exhaust
US6855297B2 (en) NOx filter
JPH0440058B2 (en)
US4623637A (en) Process for producing a catalyst for oxidizing carbon monoxide and air filter produced by the process
JP2003507177A (en) Catalytic trap with potassium component and method of use thereof
JPS5926337B2 (en) carbon monoxide remover
JPS63310627A (en) Carbon monoxide remover
JP2010112292A (en) Catalyst for exhaust emission control
JP2743043B2 (en) Adsorption remover for low concentration nitrogen oxides
JPH0466612B2 (en)
JP2822440B2 (en) Oxygen scavenger
WO2010073350A1 (en) Nox absorbent, method for production of the same, and method for removal of nox
JPH0611015Y2 (en) Protective mask
JPS6072977A (en) Oxidizing agent for carbon monoxide
JP3306932B2 (en) Exhaust gas purification method
JP2001129406A (en) Low temperature denitration catalyst
JPS5951852B2 (en) Carbon monoxide oxidation catalyst
JPH11128736A (en) Adsorbent for nitrogen oxide
JP3779459B2 (en) Nitrogen dioxide adsorption / reduction remover and nitrogen dioxide removal method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term