JPS58207719A - Logical circuit easy of inspection - Google Patents

Logical circuit easy of inspection

Info

Publication number
JPS58207719A
JPS58207719A JP57090636A JP9063682A JPS58207719A JP S58207719 A JPS58207719 A JP S58207719A JP 57090636 A JP57090636 A JP 57090636A JP 9063682 A JP9063682 A JP 9063682A JP S58207719 A JPS58207719 A JP S58207719A
Authority
JP
Japan
Prior art keywords
signal
group
exclusive
gate
logic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57090636A
Other languages
Japanese (ja)
Inventor
Teruhiko Yamada
輝彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57090636A priority Critical patent/JPS58207719A/en
Publication of JPS58207719A publication Critical patent/JPS58207719A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To attain ease of failure check with a simple test input, by producing an exclusive logical sum between all of output signal group of exclusive logical sum of plural input signals and control input signals, and an input signal for check. CONSTITUTION:In the exclusive logical sum gate group 11 of a combined logical block 1, an exclusive logical sum output group XC between each input signal xi(i=1-n) of an input signal group X=(x1-x2) and a control input signal C is outputted. In an AND gate group 12, the AND between the signal groups X and Xc is outputted and inputted to an exclusive logical sum gate group 13. In the gate group 13, the exclusive logical sum between the output signal group of the gate group 12 and some logical constants y1 and X and Xc is taken, an output signal Z1 is produced. The check of a failure in logical degeneration of the signal line is done easily by taking an output of the gate group 13 as an observing signal. Further, a signal short-circuit failure between lines is detected by taking the exclusive logical sum between the signal group Xc and an input signal y2 for check at a logical block 2 and outputting an observing signal Z2 for check.

Description

【発明の詳細な説明】 本発明は、回路の論理機能には無関係に作成できる簡単
なテスト入力で故障検査ができる検査容易な論理回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an easily testable logic circuit that can be tested for failures using simple test inputs that can be created regardless of the logic function of the circuit.

近年、集積回路技術の進歩による論理回路の高密度化に
伴い論理素子を接続する信号線間の短絡故障の発生頻度
が急増しているので、イぎ号線間の論理縮退故障に加え
てこの短絡故障をも検査の対象とすることが必要となっ
てきた。回路が複雑。
In recent years, as the density of logic circuits has increased due to advances in integrated circuit technology, the frequency of short-circuit failures between signal lines connecting logic elements has rapidly increased. It has become necessary to include failures as a subject of inspection. The circuit is complicated.

大規模になるとこれらの故障を検査する効率の良いテス
ト入力の作成が非常に困難になるので、故障検査容易な
回路構成を採ることが切望されている。従来より、信号
線の論理縮退故障の検量を容易にする手段は種々考案さ
れてきたが、信゛号線間の短絡故障を容易にする手段に
ついてはあまり考慮されていない。
When the scale becomes large, it becomes extremely difficult to create efficient test inputs for testing these faults, so it is strongly desired to adopt a circuit configuration that facilitates fault testing. Conventionally, various means have been devised to facilitate the calibration of logic stuck-at faults in signal lines, but little consideration has been given to means for facilitating short-circuit faults between signal lines.

本発明の目的は、この状況を鑑み回路の論理機能とは無
関係に作成できる簡単なテスト入力で信号線の単−論理
縮退故障と線間単一短絡故障を併せて検出できる組合せ
論理回路を提供することにある。
In view of this situation, an object of the present invention is to provide a combinational logic circuit that can detect both single-logic stuck-at faults in signal lines and single short-circuit faults between lines with simple test inputs that can be created independently of the logic function of the circuit. It's about doing.

本発明によれば、各入力信号z、(i=1〜竹)$ と制御入力信号Cとの排他的論理和を生成する第1の排
他的論理和ゲート群と、該排他的論理和ゲート群の出力
信号群及び前記入力信号2.〜2の論理積を生成する論
理積ゲート群と%該論理積グート群の出力信号群と論理
定数人力y、の排他的論理和を生成する第2の排他的論
理和ゲート群とから成る組合せ論理回路において、前記
第1の排他的論理和ゲート群の出力1g号群のずべて−
と検査用入力信号1!2との排他的論理和を生成する第
3の排他的論理和ゲート評を付加し、その出力信号を観
測信号として故障検査を容易にした論理回路が得られる
According to the present invention, a first exclusive OR gate group that generates an exclusive OR of each input signal z, (i=1 to bamboo) $ and a control input signal C; the output signals of the group and the input signals 2. A combination consisting of an AND gate group that generates an AND of ~2 and a second exclusive OR gate group that generates an exclusive OR of the output signal group of the AND GUT group and a logic constant y. In the logic circuit, all of the outputs of the first group of exclusive OR gates -
By adding a third exclusive OR gate that generates the exclusive OR of the input signal 1 and the test input signal 1!2, and using the output signal as an observation signal, a logic circuit that facilitates fault testing can be obtained.

以下、本発明の実施例について図面を参照しながら説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明の検査容易な論理回路の構成を示すブ
ロック図であり% 1は排他的論理和ゲート群11.1
3及び論理積ゲート群12より成る組合せ論理ブロック
であり、2は故障検査を容易にするために付加された排
他的論理和を生成する論理ブロックである。
FIG. 1 is a block diagram showing the configuration of an easily testable logic circuit according to the present invention, and %1 is an exclusive OR gate group 11.1.
3 and a group of AND gates 12, and 2 is a logic block that generates an exclusive OR added to facilitate fault testing.

同図において、排他的論理和ゲート群」1では入力信号
群x= (、、、”2y・・・、〜7)の各入力信号X
・(i = 1−%)と’ff1lJ ld1入力信号
Cとの排他的論を 理和トΦCが、論理積ゲート群12では信号群XとXc
 = (ZlΦc、 z2cL:、 ・=、 23ΦC
)の論理積が、又排他的論理和ゲート群13では論理積
ゲート群12の出力信号#、X及びXcの幾つかと論理
定数y1との排他的論理オロがとられ、出力信号Z。
In the same figure, in the exclusive OR gate group 1, each input signal X of the input signal group
・The exclusive logic of (i = 1-%) and 'ff1lJ ld1 input signal C is logically summed ΦC, and in the AND gate group 12, the signal groups X and Xc
= (ZlΦc, z2cL:, ・=, 23ΦC
), and in the exclusive OR gate group 13, the exclusive logical OR of some of the output signals #,

が生成される。論理ブロック2に前記の信号群Xcと検
査用入力信号勤との排他的論理和をとり検査用観測信号
Z2を出力する。
is generated. The logic block 2 calculates the exclusive OR of the signal group Xc and the input signal for inspection, and outputs the observation signal for inspection Z2.

第2図は、第1図の具体的−例を示す回路図である。同
図の組合せ論理ブロック1に、次に示す4人力変数X=
 (Zl 、 $2.〜3.〜4)の組合せ論理を実現
したもの、、て、ある。
FIG. 2 is a circuit diagram showing a specific example of FIG. 1. In the combinational logic block 1 of the same figure, the following four human variables X=
There is something that realizes the combinatorial logic of (Zl, $2.~3.~4).

上記の組合せ論理は次の展開式で表すことができる。The above combinational logic can be expressed by the following expansion formula.

Z、=Oe &+ @ z4e 〜2 + $40z3
・z4ezl・〜3  (1)但し、0・・・論理定数
、・・・・論理積、−・・・論理百足、■・・・排他的
論理和。
Z, =Oe &+ @z4e ~2 + $40z3
・z4ezl・~3 (1) However, 0...logical constant,...logical product, -...logical centipede, ■...exclusive OR.

通常動作時の制御入力信号Cの値を1とすれば、排他的
論理和グー) 111〜114の出方信号がそれぞれ1
1〜i4となるため論理積グー、) 121〜124で
は積項i、・〜4,4・’4 v ”R・〜4及び2.
・2.がそれぞれ生成される。従って、論理定数人力&
+の値を0とすれば、排他的論理和ゲート131〜13
4の接続が上記の式(1)を実現する。尚、上記の展開
式に〜4又はXiだけの項が現れたときには、これも一
つの積項とみなす。
If the value of the control input signal C during normal operation is 1, the output signals of 111 to 114 are each 1
1 to i4, so the logical product is good.) In 121 to 124, the product term i, . . . 4, 4 .'4 v ''R. . . .
・2. are generated respectively. Therefore, the logical constant human power &
If the value of + is 0, exclusive OR gates 131 to 13
4 connections realize the above equation (1). Incidentally, when only the term ˜4 or Xi appears in the above expansion equation, this is also regarded as one product term.

D、 K、 Pradhanの論文、  ” Univ
ersal Te5tSets  for Multi
ple Fault Detection  1nAN
D−EXORArrays、 〃IBEHTrans、
、C−27゜pp−181−187,Feb、1978
に示されるように、排他的論理和ゲート111〜114
の出力信号群の論理積(zlec ) ・(ztΦC)
 ・(jE3Φe)”(Z4■C)を観測信号とするこ
とにより信号線の論理縮退故障の検査を容易にすること
はできるが、信号線間の短絡故障に対しては必ずしも効
率良く検査を行うことはできない。
Paper by D. K. Pradhan, ” Univ.
ersal Te5tSets for Multi
ple Fault Detection 1nAN
D-EXORArrays, 〃IBEHTTrans,
, C-27゜pp-181-187, Feb, 1978
As shown in FIG.
Logical product of output signal group (zlec) ・(ztΦC)
- By using (jE3Φe)"(Z4■C) as the observation signal, it is possible to easily test for logical stuck-at faults in signal lines, but short-circuit faults between signal lines cannot necessarily be tested efficiently. It is not possible.

論理ブロック2Fi、論理縮退故障だけでなく短絡故障
の検査をも効率良くするために付加されたものであり、
排他的論理和ゲート111〜114の出力信号と検査用
入力信号V、との排他的論理オロZz = (Z+ΦG
)Φ(jezΦ6)@($3ΦC)■(〜4 ec )
■v2を生成する排他的論理和ゲート群21〜24より
構成されている。
Logic block 2Fi was added to improve efficiency in testing not only logic stuck-at faults but also short-circuit faults.
The exclusive logic between the output signals of the exclusive OR gates 111 to 114 and the test input signal V is Zz = (Z+ΦG
)Φ(jezΦ6)@($3ΦC)■(~4 ec)
(2) Consists of a group of exclusive OR gates 21 to 24 that generate v2.

第3図は、第2図に例示する構成をもつ4人力変数の組
合せ論理回路における信号勝の単−病理縮退故障と脚間
単一短絡故障の万北テスト入力集合T4を示した図であ
る。但し、線間短絡故障がワイヤードAND又HUBと
して機能するものとし、T’ 、 T2. T’ 、 
T’ 及ヒT’ g  TiCツイテHT、’4   
  4     4     4        4 
     4→T2−+ T” −) T’ →T’ 
−+ T” −+ T’ノl1lj序テ回4     
 4      4      4      4  
    4路に加えるものとする。
FIG. 3 is a diagram showing the Wanbei test input set T4 for a single pathological stuck-at fault and a single short-circuit fault between the legs in a four-man variable combinational logic circuit having the configuration illustrated in FIG. 2. . However, it is assumed that the line-to-line short circuit fault functions as a wired AND or HUB, and T', T2. T',
T' andhi T' g TiC Tweet HT, '4
4 4 4 4
4→T2-+ T"-) T'→T'
-+ T" -+ T'Nol1lj Introduction 4
4 4 4 4
It shall be added to the 4th road.

第4図は、前記手段をとることにL#)テスト入力集合
T4の下で検出可能となった短絡故障の具体例を第2図
の回路を例にした回路図を示すものである。同図におけ
る故障点りは排他的論理和ゲ−)113と114の出力
線間の短絡を例示している。該短絡故障がワイヤードA
NDとして機能する場合には、同図に示すように第3図
のテスト人力′r10を加え出力Z2を観測することに
より故障が検出される。
FIG. 4 shows a circuit diagram using the circuit of FIG. 2 as an example of a specific example of a short-circuit fault that can be detected under test input set T4 by taking the above-mentioned measures. The failure point in the figure is an example of a short circuit between the output lines of the exclusive OR gates 113 and 114. The short circuit fault is wired A
When functioning as an ND, a failure is detected by applying the test force 'r10 of FIG. 3 and observing the output Z2, as shown in the figure.

第4図の故障回路で11、テスト入力集合T4のいずれ
のテスト入力を加えても論理積ゲート121〜124の
出力がすべて正常値をもつか、又は同□ 図に示すように偶数個の論理積ゲートの出力に誤り11
0(正常値は論理1であるが、故障のために論理0にな
ったことを示す)を生じる。出力Z。
In the faulty circuit shown in Fig. 4, whether the outputs of the AND gates 121 to 124 all have normal values regardless of which test input from the test input set T4 is applied, or whether an even number of logic Error 11 in the output of the product gate
0 (indicating that the normal value is a logic 1 but has become a logic 0 due to a failure). Output Z.

の値は前記の式tl)からも明白なように排他的論理オ
tグート群13への入力の中で論理1をもつ入力の数の
偶奇に依存するため、出力Ztの観測では故障の検出が
不可能であった。論理ブロック2は、F記の理由により
出力ZIの観測でに検出できない故障の検出を可能にす
るために付加されたものである。
As is clear from the equation (tl) above, the value of depends on the evenness of the number of inputs with logic 1 among the inputs to the exclusive logic logic group 13, so observation of the output Zt is difficult to detect a fault. was not possible. Logic block 2 is added to enable the detection of a failure that cannot be detected by observing the output ZI for the reason described in F.

同図の短絡故障りは、従来のように排他的論理和ゲート
111〜114の出力信号群の論理積を観測信号とす今
生段では、テスト入力集合T、による検出ができなかっ
たものである。また、本発明の検査容易にする手段をと
れば、従来の手段の目的であった1例えば、外部より信
号zl t ZBを加える入力線の各O縮退故障の検出
も可能である。尚、一般に九入力変数の回路に対する万
能テスト入力集合T?Sは、第3図のT1〜T7に対応
するTA〜′玲と、′r:〜T′41に対応してC= 
i/l = V2=0で入力J*xtv・・・、2ユの
1つだけがOで他のすべてが1である?11固のテスト
入力T告、T恥、・・・、TtL+” 工り成る。
The short-circuit fault in the figure could not be detected using the test input set T in the conventional current stage, which uses the AND of the output signals of the exclusive OR gates 111 to 114 as the observation signal. . Further, by adopting the means for facilitating inspection of the present invention, it is possible to detect each O stuck-at fault in the input line to which the signal zl t ZB is externally applied, which was the objective of the conventional means. In general, there is a universal test input set T? for a circuit with nine input variables. S is TA~'rei corresponding to T1 to T7 in FIG. 3, and C=corresponding to 'r:~T'41.
When i/l = V2 = 0, input J*xtv..., only one of the 2 units is O and all others are 1? 11 Test input T notification, T shame, ..., TtL+" construction.

以上、詳細に説明したように本発明の検査容易な論理回
路は、回路の論理機能には無関係に作成できる簡単なテ
スト入力によって回路に生じる信号線の単−論理縮退故
障と線間単一短絡故障を併せて検出できる。この結果高
品質の故障横置が安価に実行でき、その効果に大なるも
のがおる。
As explained above in detail, the easily testable logic circuit of the present invention is capable of dealing with single-logic stuck-at faults and single shorts between signal lines that occur in the circuit by simple test inputs that can be created regardless of the logic function of the circuit. Failures can also be detected. As a result, high-quality failure horizontal placement can be carried out at low cost, which has great effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の検査容易な論理回路の構成を示すブロ
ック図、第2図は第1図の具体的−例を示す回路図、第
3図は第1図のように構成された4人力組合せ論理回路
に対する万能テスト入力集合の一例を示す図、第4図は
本発明の検査を容易にする手、段により検出可能となっ
た短絡故障の具体例を第2図の回路を例に示す回路図で
ある。 図において。 1・・・組合せ論理ブロック、11・・・排他的論理和
ゲート群、111〜114・・・排他的論理和ゲート、
12・・・論理積ゲート群、121〜124・・・論理
積ゲート、13・・・排他的論理本日ゲート群、131
〜134・・・排他的論理第1ゲート、2・・検査用付
加論理回路、21〜24・・・排他的論理和ゲート、X
・−・入力1g@枇% ”I−”4・・・入力信号、C
・・・制師入力信号、Xc・・・排他的論理和ゲート#
11の出力信号群s  ’Ih−・・論理定数入力s 
 V2・・・検音用入力、ZI。 Z、−・・出力信号%D・・・故障点、をそれぞれ表す
。 ギ 2 図
FIG. 1 is a block diagram showing the configuration of an easily testable logic circuit according to the present invention, FIG. 2 is a circuit diagram showing a specific example of FIG. 1, and FIG. FIG. 4 is a diagram showing an example of a universal test input set for a manual combinational logic circuit. FIG. FIG. In fig. 1... Combinational logic block, 11... Exclusive OR gate group, 111-114... Exclusive OR gate,
12... AND gate group, 121-124... AND gate, 13... Exclusive logic today gate group, 131
~134...Exclusive logic first gate, 2...Additional logic circuit for inspection, 21-24...Exclusive OR gate, X
・-・Input 1g @% ``I-'' 4...Input signal, C
...Controller input signal, Xc...Exclusive OR gate #
11 output signal group s 'Ih-...Logic constant input s
V2...input for pronunciation, ZI. Z, -...Output signal %D...Failure point, respectively. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 各入力信号z、C4=1〜%)と制御大刀信号Cとの排
他的論理和を生成する第1の排他的論理和ゲート群と、
該排他的論理和ゲート群の出方信号群及び前記入力信号
zl〜2%の論理積を生成する論理積ゲート群と、該論
理積ゲート群の出方信号群と論理定数入力y1との排他
的論理和を生成する第2の排他的論理和ゲート群とから
成る組合せ論理回路において、前記第1の排他的論理和
ゲート群の出力信号群のすべてと検査用大刀信号ν、と
の排他的論理和を生成する第3の排他的論理和ゲート群
を付加し、その出方信号を観測信号として故障検査を容
易にしたことを特徴とする論理回路。
a first exclusive OR gate group that generates an exclusive OR of each input signal z (C4 = 1 to %) and a control large sword signal C;
Exclusion of the output signal group of the exclusive OR gate group and the AND gate group that generates the AND of the input signal zl~2%, and the output signal group of the AND gate group and the logical constant input y1 In a combinational logic circuit consisting of a second exclusive OR gate group that generates an exclusive OR gate, all of the output signals of the first exclusive OR gate group and the test signal ν are exclusive A logic circuit characterized in that a third group of exclusive OR gates for generating a logical sum is added, and the output signal thereof is used as an observation signal to facilitate failure testing.
JP57090636A 1982-05-28 1982-05-28 Logical circuit easy of inspection Pending JPS58207719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57090636A JPS58207719A (en) 1982-05-28 1982-05-28 Logical circuit easy of inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57090636A JPS58207719A (en) 1982-05-28 1982-05-28 Logical circuit easy of inspection

Publications (1)

Publication Number Publication Date
JPS58207719A true JPS58207719A (en) 1983-12-03

Family

ID=14003977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57090636A Pending JPS58207719A (en) 1982-05-28 1982-05-28 Logical circuit easy of inspection

Country Status (1)

Country Link
JP (1) JPS58207719A (en)

Similar Documents

Publication Publication Date Title
Abramovici et al. BIST-based delay-fault testing in FPGAs
JP3836884B2 (en) Apparatus and method for providing programmable delay
JPH0560069B2 (en)
JPH0481147B2 (en)
CN116106726B (en) High-efficiency integrated circuit test generation method based on optimized preprocessing technology
JPS58207719A (en) Logical circuit easy of inspection
JPS6199876A (en) Ic tester
JP2009222602A (en) Testing process and testing circuit for differential output circuit
JPH063413A (en) Method and device for inspecting logic signal
Rahaman et al. Easily testable realization of GRM and ESOP networks for detecting stuck-at and bridging faults
Sharma et al. Boundary scan based testing algorithm to detect interconnect faults in printed circuit boards
JP3395773B2 (en) Semiconductor device
JP2773148B2 (en) Circuit design method for testability
JPH01228322A (en) Gate array
JPS6321874B2 (en)
JP2001147254A (en) Device and method for testing semiconductor integrated circuit
JP3104739B2 (en) LSI tester used for LSI failure analysis
JP2972515B2 (en) I / O buffer test circuit
JPH10104313A (en) Semiconductor integrated circuit
JPS58153419A (en) Logical integrated circuit
JPS6138576A (en) Semiconductor integrated circuit
JPS5920872A (en) Logic circuit easy to inspect
JP2684058B2 (en) CMOS type PLA circuit with failure diagnosis function
JPS63255672A (en) Test circuit for circuit block
JPH05312916A (en) Testing circuit