JPS58206317A - Electrode tool for electrolytic complex mirror machining - Google Patents

Electrode tool for electrolytic complex mirror machining

Info

Publication number
JPS58206317A
JPS58206317A JP8932082A JP8932082A JPS58206317A JP S58206317 A JPS58206317 A JP S58206317A JP 8932082 A JP8932082 A JP 8932082A JP 8932082 A JP8932082 A JP 8932082A JP S58206317 A JPS58206317 A JP S58206317A
Authority
JP
Japan
Prior art keywords
abrasive
machining
tool
action
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8932082A
Other languages
Japanese (ja)
Other versions
JPS6242735B2 (en
Inventor
Hidehiko Maehata
英彦 前畑
Hiroshi Kamata
釜田 浩
Akio Komura
明夫 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP8932082A priority Critical patent/JPS58206317A/en
Publication of JPS58206317A publication Critical patent/JPS58206317A/en
Publication of JPS6242735B2 publication Critical patent/JPS6242735B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing

Abstract

PURPOSE:To reduce machining processes by arranging a rough machining abrasive in the center on the electrode side of a disk-like rotary tool combining an electrolytic action and a mechanical grain abrasive action and arranging a finish machining abrasive at the periphery. CONSTITUTION:A rough machining abrasive 11 is abrasive grains with a large grain size stuck to an elastic unwoven fabric with water permeability in the lower center of a disk-like tool electrode 9 and a finish machining abrasive 12 with a small grain size is stuck to the periphery. The mirrow machining of the raw surface of a work metal is reduced to one process by means of the abrasive 11 in the center, the abrasive 12 at the periphery, and the anode melting action of the work metal by electrolysis.

Description

【発明の詳細な説明】 この発明は、亀屓による液加工金1萬の陽極浴出作用と
、機械的な1低粒j祭過作用を複合させることにより、
被加工金属を睨面加工する′銃解襟合碗面加工用電極工
具に関し、加工工程を低減し、被加工金属を効率よく鏡
面に加工することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION This invention combines the anodic bathing action of 10,000 ounces of liquid-processed gold by a turtle and the mechanical overflowing action of 10,000 ounces of gold.
The purpose of this invention is to reduce the number of processing steps and efficiently process the workpiece metal into a mirror surface with respect to an electrode tool for processing the workpiece metal into a mirror surface.

従来の電解複合鏡面加工用電極工具は、第1図および絹
2図に示すように、駆動装置により回転される工具電極
ホルダ+l+が直流電源の陰極に接続され、ホルダ(1
)の下部に円根状回転工具電極(2)が一体にかつ1気
的に接続され、電極(2)には複数本の電解液供給孔(
3)が放射状に透設され、を極(2)の下面に通水性の
弾性不織布に砥粒が付着している研摩材(4)が装着さ
れている。そして、研摩材(4)が直流゛戒諒の陽極に
接tcされた被加工金属(5)に当てがわれ、ホルダi
11の供給路(6)からの’I I’#液(7)が供給
孔(31および研屡椙(4)を通じて被加工金属(5)
の加工面に流出させながら、ホルダ(1)とともにt 
14 +21を回転させることにより、被加工金属(5
)の加工面を短時間に効率よく鏡面加工するものである
As shown in Fig. 1 and Fig. 2, in the conventional electrode tool for electrolytic composite mirror finishing, the tool electrode holder +l+ rotated by a drive device is connected to the cathode of a DC power supply, and the holder (1
A circular root-shaped rotary tool electrode (2) is integrally connected to the lower part of the electrode (2), and the electrode (2) has a plurality of electrolyte supply holes (
3) are radially transparent, and an abrasive material (4) having abrasive grains attached to a water-permeable elastic nonwoven fabric is attached to the lower surface of the pole (2). Then, the abrasive material (4) is applied to the workpiece metal (5) that is in contact with the anode of the DC
The 'I I'# liquid (7) from the supply path (6) of No. 11 passes through the supply hole (31 and the grinding hole (4) to the metal to be processed (5).
t together with the holder (1) while letting it flow onto the machined surface.
By rotating 14 +21, the workpiece metal (5
) can be efficiently mirror-finished in a short time.

この場合、′亀屏d出作用とは粒擦過作用を複合させた
ものであり、砥粒作用は主に面粗さの創成作用の役割り
を持ち、電解作用は王に除去量を決定する役割りを持つ
か、いずれも砥粒作用は電解作用の、電解作用は砥粒作
用の補助作用、すなわち複合効果を持っている。峙番こ
、而粗さの創成については砥粒作用の(次存性が高いが
、ここに使用する研摩Hのはね定数は極めて小さく、通
常用いられるビトリファイドは石の1/10’6度であ
るために、機械精度、主として回転精度の影響を受けに
くいことにより、比較的均一で小さい面粗さを創成する
In this case, the abrasive action is a combination of the grain abrasion action, the abrasive action mainly plays the role of creating surface roughness, and the electrolytic action mainly determines the amount removed. In both cases, the abrasive action is an electrolytic action, and the electrolytic action is an auxiliary action to the abrasive action, that is, they have a combined effect. Regarding the creation of roughness, the abrasive action (sustainability is high), but the repulsion constant of the polishing H used here is extremely small, and the normally used vitrified is 1/10'6 of that of stone. Because of this, it is less susceptible to mechanical precision, mainly rotational precision, creating a relatively uniform and small surface roughness.

ところで、従来のC=工具を用いた加工面の粗さおよび
加工量は、研摩月(4)に含まれる砥粒粒度に大きく依
存し、この砥粒粒度と加工面あらさの関係は、第3図に
示すように、砥粒粒度が大きくすなわち粒径が小さくな
るほど而あらさは小さくなり、また、加工量は粒度が小
さいほど大きい。
By the way, the roughness of the machined surface and the amount of machining using the conventional C=tool largely depend on the grain size of the abrasive grains included in the polishing month (4), and the relationship between the grain size of the abrasive grains and the roughness of the machined surface is expressed by the third As shown in the figure, the larger the abrasive grain size, that is, the smaller the grain size, the smaller the roughness, and the smaller the grain size, the larger the processing amount.

したがって、数〜数μmR7の下地面あらさから0.0
571mRzの鏡面までに仕上げる場合、たとえは≠2
00〜≠300の研摩材で荒710工して0.5μ/?
IR2前後にし、その後、≠600〜≠800で0.1
μm技2の中仕上げし、そして+1000〜+2000
の研摩材で0.05 pndLtの鏡面を得るといった
方法がとられ、加工工程が煩雑である。
Therefore, from several to several μm R7 base surface roughness, 0.0
If you want to finish to a mirror surface of 571mRz, for example, ≠2
Rough 710 machining with 00~≠300 abrasive and 0.5μ/?
IR around 2, then 0.1 at ≠600 to ≠800
Medium finishing of μm technique 2 and +1000~+2000
The method used is to obtain a mirror surface of 0.05 pndLt using an abrasive material of

一方、41図に示す゛電極工具による加工面には、第4
図に示すような加工条痕が印されるが、この条痕の凹凸
があらさである。そして、条痕は鏡面IWか縞まるにし
たがって薄くなり、目視では0.03湖艮l程度で見え
なくなる。このあらさを示す条痕は、はぼ工具成極の直
径に一致していることがらあらさは第1図に示す円板状
工具電怜面の外周部分で決定されることがわかる。
On the other hand, as shown in Fig. 41, there is a fourth
Processing marks as shown in the figure are marked, and the unevenness of these marks is roughness. The streaks become thinner as the mirror surface IW becomes more striped, and are no longer visible to the naked eye after about 0.03 cm. It can be seen that the roughness is determined by the outer circumferential portion of the disc-shaped tool electric surface shown in FIG. 1, since the streaks indicating this roughness correspond to the diameter of the tool polarization.

この発明は、前記の点に留意してな式れたものであり、
電解作用による陽極翻の被加工金属の溶出除去作用と機
械的な砥粒擦過作用を複合させることにより、被加工金
属を鏡面加工する電解複合m 1n+加工用成極工具に
おいて、円板状回転工具型物面側の中央部に荒加工用研
摩材を配設し、該荒加工用研摩材の外周部に仕上加工用
+lit摩材を縁材したことを特徴とする′電解複合鏡
面力り工用電極工具である。
This invention was made with the above points in mind,
A disc-shaped rotary tool is used in the electrolytic composite m1n+ polarization tool for machining, which processes the workpiece metal into a mirror finish by combining the elution and removal action of the workpiece metal of anode rotation by electrolytic action and the mechanical abrasive abrasion action. An electrolytic composite mirror polishing machine characterized in that an abrasive material for rough machining is provided in the center of the mold surface side, and a +lit abrasive material for finishing machining is applied as a rim around the outer periphery of the abrasive material for rough machining. It is an electrode tool for

したがって・工具゛成極面側1の中央部に荒カロエ用の
研摩材、該研摩材の外周部に仕上加工用研摩材が配設さ
れているため、1加工工程において中央部の研摩材にド
地加工、外周部の研摩材に仕上加工をそれぞれ分担式せ
ることかでき、加工工程を低減することができる。
Therefore, since the abrasive material for rough polishing is provided in the center of the tool's polarizing surface side 1 and the abrasive material for finishing is provided on the outer periphery of the abrasive material, the abrasive material in the center part is provided in one machining process. The base processing and the finishing processing on the abrasive material on the outer periphery can be done separately, and the number of processing steps can be reduced.

つきにこの発明をその実施例を示した第5図以下の図面
とともに説明する。
The present invention will now be explained with reference to FIG. 5 and subsequent drawings showing an embodiment thereof.

ます1実施例を示した第5図および46図において、(
8)は駆Il!lI装置により回転され直流電源の陰極
に接続された工具電極ホルダ、(9)はホルダ(8)の
下部に一体にかっ゛電気的に接、読された円板状回転工
具%甑、00は電極(9)に透設された複数個の円形の
′電解液供給孔、(11)は電極(9)の下面の中央部
に配設された荒7JO工用研摩材であり、遣水性の弾性
不織141iに砥粒粒度の小δい砥粒が11着している
。(121は電極(9)の下面に装着され荒加工用研摩
材(11)の外周部に配設された仕上加工用研摩材であ
り、通水性の不織布に砥粒粒度の大きいは粒が付着して
いる。(13)はホルダ(fl)の供給路(141から
供給孔および研摩材+111 、 ++21を通じて被
加工金属の加工面に流出される電解液である。
In FIGS. 5 and 46 showing the first embodiment, (
8) is the best! The tool electrode holder (9) is rotated by an II device and connected to the cathode of a DC power supply, (9) is electrically connected to the lower part of the holder (8), and the read disk-shaped rotary tool %, 00 is A plurality of circular electrolyte supply holes are provided through the electrode (9), and (11) is a rough 7JO abrasive material placed in the center of the lower surface of the electrode (9), which is water-repellent. Eleven abrasive grains with a small abrasive grain size of δ are attached to the elastic nonwoven 141i. (121 is a finishing abrasive material attached to the lower surface of the electrode (9) and arranged on the outer periphery of the roughing abrasive material (11), in which large abrasive grains adhere to the water-permeable nonwoven fabric. (13) is an electrolytic solution flowing out from the supply path (141) of the holder (fl) to the machined surface of the workpiece metal through the supply hole and the abrasive materials +111 and ++21.

そしてたとえば、被加工金属の素地面のあらさが数μm
Hzの場合、電極(9)の中央部の研摩材(11)の砥
粒粒度がす200〜す300で直径φ180祁、外周部
の研摩材u力の砥粒粒度がす600〜す800で外周径
をφ240稿とし、加工電流300〜500A工具送り
速度を300〜500η而inの条件では、加工深さは
8〜15μmで加工面あらさは0.1μmH2の鏡面加
工ができる。
For example, the roughness of the base surface of the metal to be processed is several μm.
In the case of Hz, the abrasive grain size of the abrasive material (11) in the center of the electrode (9) is 200 to 300 mm and the diameter is 180 mm, and the abrasive grain size of the abrasive material in the outer periphery is 600 to 800 mm. Under the conditions that the outer diameter is φ240 and the machining current is 300 to 500 A, and the tool feed rate is 300 to 500 η in, mirror finishing with a machining depth of 8 to 15 μm and a machined surface roughness of 0.1 μmH2 is possible.

さらに、外周部に÷1000〜≠2000の研摩材硅己
設することにより、従来3工程で行r1っていた0、0
5μmHzの鏡面加工を1工程で可能となる。
In addition, by providing an abrasive material of ÷1000 to ≠2000 on the outer periphery, the 0,0
Mirror finishing at 5 μmHz is possible in one process.

−方、電解による被加工金属の陽極浴出作用と機械的な
砥粒擦過作用を複合する′It解傍合鏡面力ロ工法にお
いては、特に0.3μmRz以Fの鏡面創成域では嶋解
条佇と砥粒擦過条eにに適正なバランス条件が必要とさ
れ、電解作用が強すぎるとくもり而を生じ、砥粒粒度が
大きいほど電解作用(主に鑞流)が小さくなる。
- On the other hand, in the 'It-resolved mirror polishing method, which combines the anodic bathing action of the workpiece metal by electrolysis and the mechanical abrasive grain abrasion action, it is difficult to create a mirror surface in the region of creating a mirror surface of 0.3 μmRz or more. Appropriate balance conditions are required between the stand and the abrasive grain rubbing line e, and if the electrolytic action is too strong, clouding will occur, and the larger the abrasive grain size, the smaller the electrolytic action (mainly the flow of the solder).

したがって荒取り加工を必要とする場合は、第7図およ
び第8図に示すように、砥粒粒1現の小さい研摩材(1
5)を円板状回転工具電極(9)の下全面に装着し、砥
粒粒度の大きい研摩材(16)を電極(9)の外周部(
こ付属した円環状の絶縁体(17)の下面に装着する方
法が取られ、この外周部の砥粒粒IWの大きい研歴拐(
16)によるは粒擾過束円tは、中央部の成極(9)か
らの漏れ市流と適正にバランスさせるのが望ましく、ま
たこの漏れ電流は、実験によれば一極(9)の外周4詔
から15〜30m1%の範囲にほぼ直線に近い減少を示
しており絶縁体(1ηの寸法もこの漏れ電流域によって
決定されるのが望ましい。
Therefore, when rough machining is required, as shown in Figures 7 and 8, use a small abrasive material (1
5) is attached to the entire lower surface of the disc-shaped rotary tool electrode (9), and an abrasive material (16) with a large abrasive grain size is attached to the outer periphery of the electrode (9).
This is attached to the bottom surface of the attached annular insulator (17), and the large abrasive grains IW on the outer periphery of the grinding surface (
According to 16), it is desirable to properly balance the particle suspension flux circle t with the leakage current from the central polarization (9), and according to experiments, this leakage current is It shows a nearly linear decrease in the range of 15 to 30 m1% from the outer circumference 4, and it is desirable that the dimension of the insulator (1η) is also determined by this leakage current range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は在米の亀1岐工具の切断正面図、第2図は第1
図の工具の下面図、第3図は砥粒粒度と加工面あらさの
関係図、第4図は加工条痕を示す図、第5図はこの発明
の電極工具の1実施例の切断正面図、第6図は第5図の
工具の下面図、第7図はこの発明の他の実施例の切断正
面図、第8図は第7図の工14の下面図である。 (9)・・・工具心憧、(II・・イエを絵札、tll
l 、 1121 、 (151、(161・・・研摩
材、(13)・・・電解液、(171・・・絶縁体。 第1図 第2図 第4図 第3図 (アm「 化粒鞄慢(#) 第5図 第6図 第7図 第8図
Figure 1 is a cutaway front view of a Kame Ichigi tool in the United States, and Figure 2 is a cut-away front view of a Kame Ichigi tool in the United States.
Figure 3 is a diagram showing the relationship between abrasive grain size and machined surface roughness, Figure 4 is a diagram showing machining marks, and Figure 5 is a cutaway front view of one embodiment of the electrode tool of the present invention. , FIG. 6 is a bottom view of the tool of FIG. 5, FIG. 7 is a cutaway front view of another embodiment of the invention, and FIG. 8 is a bottom view of the tool 14 of FIG. (9)... Tool heart yearning, (II... Ie as a picture card, tll
l, 1121, (151, (161... Abrasive material, (13)... Electrolyte, (171... Insulator. Bag arrogance (#) Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 ■ 亀解作ハ1による陽極性の被加工金属の居出除去作
用と機械的な砥粒掃過作用を信金させることにより、被
加工金属を蔑面加工する電解襟合蜆面加工用電極■貝に
おいて、円板状回転工具電極面側の中央部番こ荒加工用
W[縁材を配設し、該荒加工用研摩材の外周部に仕上加
工用研摩材を配設したことを、¥j徴とする屈解α合鏡
面加工用畦極工具。 ■ 円板状回転工具電極面に荒加工用研摩材を配設し、
前記工具成極の外周に円環状の絶縁体を一体に設け、該
絶縁体の■に仕上方0工川研摩材を配設したことを特徴
とする特許請求の範囲I■1項に記載の螺解−暖合説血
加工用成極工具。
[Scope of Claims] ■ Electrolytic interlocking for surface-machining the workpiece metal by combining the anodic removal action of the workpiece metal and the mechanical abrasive sweeping action by Kameikaisakuha 1. Electrode for machining the shell■ In the shell, the central part of the disk-shaped rotary tool electrode surface side is used for sawing rough machining. A ridge pole tool for bending and α-cohering mirror surface machining, which is characterized by its placement. ■ An abrasive material for rough machining is placed on the electrode surface of the disc-shaped rotating tool.
A ring-shaped insulator is integrally provided on the outer periphery of the tool polarization, and an abrasive material for finishing is provided in the part () of the insulator, as set forth in claim I (1). A polarizing tool for screw-warming process.
JP8932082A 1982-05-25 1982-05-25 Electrode tool for electrolytic complex mirror machining Granted JPS58206317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8932082A JPS58206317A (en) 1982-05-25 1982-05-25 Electrode tool for electrolytic complex mirror machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8932082A JPS58206317A (en) 1982-05-25 1982-05-25 Electrode tool for electrolytic complex mirror machining

Publications (2)

Publication Number Publication Date
JPS58206317A true JPS58206317A (en) 1983-12-01
JPS6242735B2 JPS6242735B2 (en) 1987-09-09

Family

ID=13967371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8932082A Granted JPS58206317A (en) 1982-05-25 1982-05-25 Electrode tool for electrolytic complex mirror machining

Country Status (1)

Country Link
JP (1) JPS58206317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196832A2 (en) * 1985-03-25 1986-10-08 Agency Of Industrial Science And Technology Mirror finish polisher

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196832A2 (en) * 1985-03-25 1986-10-08 Agency Of Industrial Science And Technology Mirror finish polisher

Also Published As

Publication number Publication date
JPS6242735B2 (en) 1987-09-09

Similar Documents

Publication Publication Date Title
EP0221548B1 (en) Cutting tool having concentrically arranged outside and inside abrasive grain layers and method for production thereof
KR900001663B1 (en) Method for grinding the surface of a semiconductor wafer
US5032238A (en) Method of and apparatus for electropolishing and grinding
JPS58206317A (en) Electrode tool for electrolytic complex mirror machining
JP3295896B2 (en) Electrolytic dressing method using adjustable total grinding wheel
JP3191273B2 (en) Grinding wheel and its electrolytic dressing method
JPH0133287B2 (en)
JP2806674B2 (en) Method and apparatus for manufacturing grinding wheel for grinding machine
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JPS6362613A (en) Method of processing aluminum surface
JPS6071122A (en) Electrolytic compound mirror-surface processing method
JPS59156620A (en) Polishing method for electrolytically compounded mirror face
JP2950064B2 (en) Electrolytic dressing type grinding machine
JPH10249714A (en) Polishing device and method, magnetic head and magnetic recording and reproducing device
JPH03202270A (en) Magnetic lapping machine
JPS61111886A (en) Electro grinding stone
JP3274592B2 (en) Electrolytic in-process dressing grinding method and apparatus
JPH066258B2 (en) Method of grinding the surface of a silicon wafer
JP5145857B2 (en) Wafer manufacturing method
JP3260304B2 (en) Truing or dressing method and apparatus for grinding tool
JPH07186031A (en) Spherical surface grinding method and device
JPS59161234A (en) Electrolytic composite mirror polishing method
JPH1158230A (en) Dressing device of grinding tool
JPH06143134A (en) Electrolytic dressing grinding device
JPH05305568A (en) Truing method of grinding wheel