JPS6242735B2 - - Google Patents
Info
- Publication number
- JPS6242735B2 JPS6242735B2 JP57089320A JP8932082A JPS6242735B2 JP S6242735 B2 JPS6242735 B2 JP S6242735B2 JP 57089320 A JP57089320 A JP 57089320A JP 8932082 A JP8932082 A JP 8932082A JP S6242735 B2 JPS6242735 B2 JP S6242735B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- abrasive
- tool
- action
- abrasive material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003082 abrasive agent Substances 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 13
- 238000003754 machining Methods 0.000 claims description 11
- 239000012212 insulator Substances 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 7
- 238000005299 abrasion Methods 0.000 claims description 6
- 238000010828 elution Methods 0.000 claims description 5
- 239000006061 abrasive grain Substances 0.000 description 18
- 238000000034 method Methods 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 7
- 239000011799 hole material Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H5/00—Combined machining
- B23H5/06—Electrochemical machining combined with mechanical working, e.g. grinding or honing
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
この発明は、電解による被加工金属の陽極溶出
作用と、機械的な砥粒擦過作用を複合させること
により、被加工金属を鏡面加工する電解複合鏡面
加工用電極工具に関し、加工工程を低減し、被加
工金属を効率よく鏡面に加工することを目的とす
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode tool for electrolytic composite mirror polishing that processes a workpiece metal to a mirror finish by combining the anodic elution action of the workpiece metal by electrolysis and the mechanical abrasive abrasion action. The purpose of this method is to reduce the number of processing steps and efficiently process the metal to be processed into a mirror surface.
従来の電解複合鏡面加工用電極工具は、第1図
および第2図に示すように、駆動装置により回転
される工具電極ホルダ1が直流電源の陰極に接続
され、ホルダ1の下部に円板状回転工具電極2が
一体にかつ電気的に接続され、電極2には複数本
の電解液供給孔3が放射状に透設され、電極2の
下面に通水性の弾性不織布に砥粒が付着している
研摩材4が装着されている。そして、研摩材4が
直流電源の陽極に接続された被加工金属5に当て
がわれ、ホルダ1の供給路6からの電解液7が供
給孔3および研摩材4を通じて被加工金属5の加
工面に流出させながら、ホルダ1とともに電極2
を回転させることにより、被加工金属5の加工面
を短時間に効率よく鏡面加工するものである。 As shown in FIGS. 1 and 2, the conventional electrode tool for electrolytic composite mirror finishing has a tool electrode holder 1 rotated by a drive device connected to the cathode of a DC power source, and a disk-shaped electrode tool at the bottom of the holder 1. A rotary tool electrode 2 is integrally and electrically connected, a plurality of electrolyte supply holes 3 are provided radially through the electrode 2, and abrasive grains are attached to a water-permeable elastic nonwoven fabric on the lower surface of the electrode 2. The abrasive material 4 is attached. Then, the abrasive material 4 is applied to the workpiece metal 5 connected to the anode of the DC power source, and the electrolytic solution 7 from the supply path 6 of the holder 1 passes through the supply hole 3 and the abrasive material 4 to the machined surface of the workpiece metal 5. The electrode 2 together with the holder 1 is
By rotating the machine, the machined surface of the metal to be machined 5 can be mirror-finished efficiently in a short time.
この場合、電解溶出作用と砥粒擦過作用を複合
させたものであり、砥粒作用は主に面粗さの創成
作用の役割りを持ち、電解作用は主に除去量を決
定する役割りを持つが、いずれも砥粒作用は電解
作用の、電解作用は砥粒作用の補助作用、すなわ
ち複合効果を持つている。特に、面粗さの創成に
ついては砥粒作用の依存性が高いが、ここに使用
する研摩材のばね定数は極めて小さく、通常用い
られるビトリフアイド砥石の1/104程度であるた
めに、機械精度、主として回転精度の影響を受け
にくいことにより、比較的均一で小さい面粗さを
創成する。 In this case, it is a combination of electrolytic elution action and abrasive grain abrasion action, with the abrasive action mainly having the role of creating surface roughness, and the electrolytic action mainly having the role of determining the removal amount. However, in both cases, the abrasive action is an electrolytic action, and the electrolytic action is an auxiliary action to the abrasive action, that is, they have a combined effect. In particular, the creation of surface roughness is highly dependent on the action of the abrasive grain, but the spring constant of the abrasive used here is extremely small, about 1/10 4 of the normally used vitrified grinding wheel, so the mechanical precision , it creates a relatively uniform and small surface roughness mainly because it is less affected by rotational accuracy.
ところで、従来の電極工具を用いた加工面の粗
さおよび加工量は、研摩材4に含まれる砥粒粒度
に大きく依存し、この砥粒粒度と加工面あらさの
関係は、第3図に示すように、砥粒粒度が大きく
すなわち粒径が小さくなるほど面あらさは小さく
なり、また、加工量は粒度が小さいほど大きい。 By the way, the roughness of the machined surface and the amount of processing using a conventional electrode tool largely depend on the grain size of the abrasive grains contained in the abrasive material 4, and the relationship between the grain size of the abrasive grains and the roughness of the machined surface is shown in Fig. 3. As shown, the larger the abrasive grain size, that is, the smaller the grain size, the smaller the surface roughness, and the smaller the grain size, the larger the processing amount.
したがつて、数〜数μmRzの下地面あらさか
ら0.05μmRzの鏡面までに仕上げる場合、たと
えば#200〜#300の研摩材で荒加工して0.5μm
Rz前後にし、その後、#600〜#800で0.1μmRz
の中仕上げし、そして#1000〜#2000の研摩材で
0.05μmRzの鏡面を得るといつた方法がとら
れ、加工工程が煩雑である。 Therefore, when finishing from a surface roughness of a few to several μmRz to a mirror finish of 0.05μmRz, for example, rough processing with #200 to #300 abrasive and finish the surface by 0.5μm.
around Rz, then 0.1 μm Rz at #600 to #800
Medium finish, then use #1000 to #2000 abrasive.
A similar method is used to obtain a mirror surface of 0.05 μmRz, and the processing steps are complicated.
一方、第1図に示す電極工具による加工面に
は、第4図に示すような加工条痕が印されるが、
この条痕の凹凸があらさである。そして、条痕は
鏡面度が高まるにしたがつて薄くなり、目視では
0.03μmRz程度で見えなくなる。このあらさを
示す条痕は、ほぼ工具電極の直径に一致している
ことからあらさは第1図に示す円板状工具電極面
の外周部分で決定されることがわかる。 On the other hand, machining marks as shown in FIG. 4 are marked on the surface machined by the electrode tool shown in FIG.
The unevenness of these striations is the roughness. The streaks become thinner as the specularity increases, and are visible to the naked eye.
It becomes invisible at around 0.03μmRz. Since the streaks indicating this roughness approximately correspond to the diameter of the tool electrode, it can be seen that the roughness is determined by the outer peripheral portion of the disk-shaped tool electrode surface shown in FIG.
そこで、第5図および第6図に示すような電極
工具が考えられる。 Therefore, an electrode tool as shown in FIGS. 5 and 6 can be considered.
第5図および第6図において、8は駆動装置に
より回転され直流電源の陰極に接続された工具電
極ホルダ、9はホルダ8の下部に一体にかつ電気
的に接続された円板状回転工具電極、10は電極
9に透設された複数個の円形の電解液供給孔、1
1は電極9の下面の中央部に配設された荒加工用
研摩材であり、通水性の弾性不織布に砥粒粒度の
小さい砥粒が付着している。12は電極9の下面
に装着され荒加工用研摩材11の外周部に配設さ
れた仕上加工用研摩材であり、通水性の不織布に
砥粒粒度の大きい砥粒が付着している。13はホ
ルダ8の供給路14から供給孔および研摩材1
1,12を通じて被加工金属の加工面に流出され
る電解液である。 In FIGS. 5 and 6, 8 is a tool electrode holder rotated by a drive device and connected to the cathode of a DC power supply, and 9 is a disc-shaped rotating tool electrode that is integrally and electrically connected to the lower part of the holder 8. , 10 is a plurality of circular electrolyte supply holes provided through the electrode 9, 1
Reference numeral 1 denotes an abrasive material for rough machining disposed at the center of the lower surface of the electrode 9, in which abrasive grains having a small abrasive grain size are attached to a water-permeable elastic nonwoven fabric. Reference numeral 12 denotes a finishing abrasive material attached to the lower surface of the electrode 9 and disposed on the outer periphery of the rough machining abrasive material 11, in which abrasive grains with a large abrasive grain size are adhered to a water-permeable nonwoven fabric. 13 is a supply hole and abrasive material 1 from a supply path 14 of the holder 8.
1 and 12, the electrolytic solution flows out onto the processing surface of the metal to be processed.
そしてたとえば、被加工金属の素地面のあらさ
が数μmRzの場合、電極9の中央部の研摩材1
1の砥粒粒度が#200〜#300で直径φ180mm、外
周部の研摩材12の砥粒粒度が#600〜#800で外
周径をφ240mmとし、加工電流300〜500A工具送
り速度を300〜500mm/minの条件では、加工深さ
は8〜15μmで加工面あらさは0.1μmRzの鏡面
加工ができる。 For example, if the roughness of the base surface of the metal to be processed is several μmRz, the abrasive material 1 at the center of the electrode 9
The abrasive grain size of 1 is #200 to #300 and the diameter is φ180 mm, the abrasive grain size of the abrasive material 12 on the outer periphery is #600 to #800 and the outer diameter is φ240 mm, and the machining current is 300 to 500 A, and the tool feed rate is 300 to 500 mm. /min, the machining depth is 8 to 15 μm and the machined surface roughness is 0.1 μm Rz.
さらに、外周部に#1000〜#2000の研摩材を配
設することにより、従来3工程で行なつていた
0.05μmRzの鏡面加工を1工程で可能となる。 Furthermore, by placing a #1000 to #2000 abrasive material on the outer periphery, the process was previously done in three steps.
Mirror finishing of 0.05μmRz is possible in one process.
しかし、電解による被加工金属の陽極溶出作用
と機械的な砥粒擦過作用を複合する電解複合鏡面
加工法においては、特に0.3μmRz以下の鏡面創
成域では電解条件と砥粒擦過作件に適正なバラン
ス条件が必要とされ、電解作用が強すぎるとくも
り面を生じ、砥粒粒度が大きいほど電解作用(主
に電流)が小さくなる。 However, in the electrolytic composite mirror finishing method that combines the anodic elution action of the workpiece metal by electrolysis and the mechanical abrasive abrasion action, especially in the mirror surface creation region of 0.3μmRz or less, the electrolytic conditions and abrasive abrasion work are Balancing conditions are required, too strong electrolytic action will result in a cloudy surface, and the larger the abrasive grain size, the smaller the electrolytic action (mainly current).
この発明は、前記の点に留意してなされたもの
であり、電解作用による陽極性の被加工金属の溶
出除去作用と機械的な砥粒擦過作用を複合させる
ことにより、被加工金属を鏡面加工する電解複合
鏡面加工用電極工具において、円板状回転工具電
極の下全面に荒加工用研摩材を配設し、前記工具
電極の外周に円環状の絶縁体を一体に設け、該絶
縁体の下面に仕上加工用研摩材を配設したことを
特徴とする電解複合鏡面加工用電極工具である。 This invention has been made with the above-mentioned points in mind, and is capable of mirror-finishing the workpiece metal by combining the elution and removal action of the anodic workpiece metal through electrolytic action and the mechanical abrasive abrasion action. In the electrode tool for electrolytic composite mirror finishing, an abrasive material for rough machining is provided on the entire lower surface of the disc-shaped rotary tool electrode, an annular insulator is integrally provided on the outer periphery of the tool electrode, and the insulator is This is an electrode tool for electrolytic composite mirror finishing, which is characterized by having an abrasive material for finishing on the lower surface.
したがつて、この発明によると、工具電極面の
下全面に荒加工用の研摩材、該研摩材の外周部に
仕上加工用研摩材が配設されているため、1加工
工程において中央部の研摩材に下地加工、外周部
の研摩材に仕上加工をそれぞれ分担させることが
でき、加工工程を低減することができるのは勿
論、電極の外周部に設けた円環状の絶縁体の下面
に仕上加工用研摩材が設けられているため、仕上
加工用研摩材による砥粒擦過条件が、中央部の電
極からの漏れ電流と適正にバランスがとれ、電解
作用が強すぎてくもり面が生じることがなく、特
に0.3μmRz以下の鏡面創成域に適用して顕著な
効果を有する。 Therefore, according to the present invention, the abrasive material for rough machining is provided on the entire lower surface of the tool electrode surface, and the abrasive material for finish machining is provided on the outer periphery of the abrasive material, so that the central part is The abrasive material can be used for base processing, and the abrasive material on the outer periphery can be used for finishing processing, which not only reduces the number of processing steps, but also allows finishing on the bottom surface of the annular insulator provided on the outer periphery of the electrode. Since the processing abrasive material is provided, the abrasive grain rubbing conditions by the finishing abrasive material are properly balanced with the leakage current from the central electrode, which prevents the electrolytic action from being too strong and causing a cloudy surface. However, it has a remarkable effect especially when applied to the mirror surface creation region of 0.3 μmRz or less.
つぎに、この発明をその1実施例を示した第7
図および第8図とともに、詳細に説明する。 Next, a seventh embodiment of the present invention will be described.
This will be explained in detail with reference to FIG.
それらの図面において、第5図と同一記号は、
同一のものを示し、異なる点はつぎの点である。 In those drawings, the same symbols as in Fig. 5 are
The same thing is shown, and the difference is as follows.
すなわち、砥粒粒度の小さい研摩材15を円板
状回転工具電極9の下全面に装着し、砥粒粒度の
大きい研摩材16を電極9の外周部に付属した円
環状の絶縁体17の下面に装着した点である。 That is, an abrasive material 15 with a small abrasive grain size is attached to the entire lower surface of the disc-shaped rotary tool electrode 9, and an abrasive material 16 with a large abrasive grain size is attached to the lower surface of an annular insulator 17 attached to the outer periphery of the electrode 9. This is the point where it was installed.
したがつて、外周部の砥粒粒度の大きい研摩材
16による砥粒擦過条件が、中央部の電極9から
の漏れ電流と適正にバランスされる。 Therefore, the abrasive rubbing conditions caused by the abrasive material 16 having a large abrasive grain size in the outer peripheral portion are appropriately balanced with the leakage current from the electrode 9 in the central portion.
なお、この漏れ電流は、実験によれば電極9の
外周端部から15〜30mmの範囲にほぼ直線に近い減
少を示しており、絶縁体17の寸法もこの漏れ電
流域によつて決定されるのが望ましい。 According to experiments, this leakage current shows a nearly linear decrease in a range of 15 to 30 mm from the outer peripheral edge of the electrode 9, and the dimensions of the insulator 17 are also determined by this leakage current range. is desirable.
第1図は従来の電極工具の切断正面図、第2図
は第1図の工具の下面図、第3図は砥粒粒度と加
工面あらさの関係図、第4図は加工条痕を示す
図、第5図はこの発明の前提となる電極工具の切
断正面図、第6図は第5図の工具の下面図、第7
図はこの発明の1実施例の切断正面図、第8図は
第7図の工具の下面図である。
9……工具電極、10……供給孔、15,16
……研摩材、13……電解液、17……絶縁体。
Figure 1 is a cutaway front view of a conventional electrode tool, Figure 2 is a bottom view of the tool in Figure 1, Figure 3 is a diagram showing the relationship between abrasive grain size and machined surface roughness, and Figure 4 shows machining marks. Figure 5 is a cutaway front view of the electrode tool that is the premise of this invention, Figure 6 is a bottom view of the tool in Figure 5, and Figure 7 is
The figure is a cutaway front view of one embodiment of the invention, and FIG. 8 is a bottom view of the tool of FIG. 7. 9... Tool electrode, 10... Supply hole, 15, 16
... Abrasive material, 13 ... Electrolyte, 17 ... Insulator.
Claims (1)
去作用と機械的な砥粒擦過作用を複合させること
により、被加工金属を鏡面加工する電解複合鏡面
加工用電極工具において、円板状回転工具電極の
下全面に荒加工用研摩材を配設し、前記工具電極
の外周に円環状の絶縁体を一体に設け、該絶縁体
の下面に仕上加工用研摩材を配設したことを特徴
とする電解複合鏡面加工用電極工具。1. In an electrode tool for electrolytic composite mirror finishing, which mirrors the workpiece metal by combining the elution and removal action of the anodic workpiece metal by electrolytic action and the mechanical abrasive abrasion action, a disk-shaped rotary tool electrode is used. An abrasive material for rough machining is disposed on the lower surface of the tool electrode, an annular insulator is integrally provided on the outer periphery of the tool electrode, and an abrasive material for finish machining is disposed on the lower surface of the insulator. Electrode tool for electrolytic composite mirror finishing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8932082A JPS58206317A (en) | 1982-05-25 | 1982-05-25 | Electrode tool for electrolytic complex mirror machining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8932082A JPS58206317A (en) | 1982-05-25 | 1982-05-25 | Electrode tool for electrolytic complex mirror machining |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58206317A JPS58206317A (en) | 1983-12-01 |
JPS6242735B2 true JPS6242735B2 (en) | 1987-09-09 |
Family
ID=13967371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8932082A Granted JPS58206317A (en) | 1982-05-25 | 1982-05-25 | Electrode tool for electrolytic complex mirror machining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58206317A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61219526A (en) * | 1985-03-25 | 1986-09-29 | Agency Of Ind Science & Technol | Electrode tool for electrolytic and abrasive grain composite polishing device |
-
1982
- 1982-05-25 JP JP8932082A patent/JPS58206317A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58206317A (en) | 1983-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3909619B2 (en) | Apparatus and method for mirror processing of magnetic disk substrate | |
JPH09103940A (en) | Electrolytic inprocess dressing grinding wheel, electrolytic inprocess dressing grinding method and electrolytic inprocess dressing grinder | |
JP2000326235A (en) | Grinding wheel for elid and surface grinding machine therewith | |
JPS6242735B2 (en) | ||
JP2838314B2 (en) | Electrolytic interval dressing grinding method | |
JP2679509B2 (en) | Cutting wheel and cutting method | |
JPS63283861A (en) | On-machine electric discharge truing/dressing for metal bond grindstone | |
JPH06114732A (en) | Grinding wheel side surface shaping method by on-machine discharge truing method | |
JPH0133287B2 (en) | ||
JPH05318325A (en) | Grinding wheel for grinding work and its electrolytic dressing method | |
JPS61111886A (en) | Electro grinding stone | |
JPH06720A (en) | Electrolytic composite polishing method for outer surface of cylinder work | |
JPH10249625A (en) | Diamond coating end mill and manufacture therefor | |
JP3274592B2 (en) | Electrolytic in-process dressing grinding method and apparatus | |
JPH06155294A (en) | Electrolytic dressing type grinding device | |
JPH0655347A (en) | Electrochemical composite machine | |
JPS6044227A (en) | Method for composite polishing of small-diametered spindle by electrolytic polishing and grinding | |
JPH05305568A (en) | Truing method of grinding wheel | |
JP2000326206A (en) | Electrode support device for elid surface grinding machine and method thereof | |
JPS63109979A (en) | Polishing machine | |
JPH03202270A (en) | Magnetic lapping machine | |
JPS6362613A (en) | Method of processing aluminum surface | |
JPH054116A (en) | Method for polishing electrolytic composite mirror surface | |
JPH08197433A (en) | Composite grinding wheel for cutting | |
JPS6047359B2 (en) | Mirror finishing method using electrolytic composite polishing |