JPS58204334A - Method and apparatus for generating aerosol - Google Patents

Method and apparatus for generating aerosol

Info

Publication number
JPS58204334A
JPS58204334A JP57087741A JP8774182A JPS58204334A JP S58204334 A JPS58204334 A JP S58204334A JP 57087741 A JP57087741 A JP 57087741A JP 8774182 A JP8774182 A JP 8774182A JP S58204334 A JPS58204334 A JP S58204334A
Authority
JP
Japan
Prior art keywords
aerosol
air
gas
port
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57087741A
Other languages
Japanese (ja)
Inventor
Kakuya Uejima
上島 「かく」也
Masayuki Takada
雅之 高田
Takashi Tawara
隆志 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSHITARI KENKYUSHO KK
Original Assignee
OSHITARI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSHITARI KENKYUSHO KK filed Critical OSHITARI KENKYUSHO KK
Priority to JP57087741A priority Critical patent/JPS58204334A/en
Publication of JPS58204334A publication Critical patent/JPS58204334A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To generate an aerosol of desired density, which makes atmospheric dust as a core and has a uniform particle diameter, without giving out a stench, by heating mixed gas of inert gas and a gasified aerosol generating liquid, and thereafter, cooling it in the air. CONSTITUTION:Gaseous CO2 A is supplied into a case 5 from a connecting port 11 having a valve 11a, from an inert gas cylinder 12. Gas A reaches a mixing nozzle 10 through a feed pipe 8, a valve 8a and a flow meter 9. On the other hand, gas A which goes into a tank 6 a dioctyl phthalate through a feed pipe 7 transfers this liquid B by pressure by a necessary quantity to the mixing nozzle 10 through a feed pipe 13, a valve 13a and a flow meter 14, and gasifies it by means of jet. In this state, the gas A and the liquid B are mixed by a necessary mixing ratio, are heated to 300 degrees or above by a heating wire 15a in a heating tube 15, and become high temperature vapor D without being oxidized. The vapor D is discharged into the air through an air port 17 from a nozzle 18, and an aerosol E is generated by a condensing operation which makes atmospheric dust as a core.

Description

【発明の詳細な説明】 本発明は空気フィルタの取付部における空気漏れや、捕
集率の検証試験に使用して好適するディ等 オクチルフタレートのエアロゾル発生方法並に装△ 置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for generating an aerosol of dioctyl phthalate, which are suitable for use in verification tests of air leakage at the mounting portion of an air filter and collection efficiency.

原子力利用施設においては、その設置環境に生じた放射
性粉塵を、高性能空気フィルタを用いて捕捉除去したの
ち外界へ放出するようにして、放射能障害の発生を阻止
することが行われており、また遺伝子の組替え実験施設
のように、研究環境内の空気の放出が生物に多大の影響
を及ぼすおそれのある研究施設においても、同様な処置
がとられている。ところでこの場合空気フィルタの取付
は不良にもとづく空気漏れや、規定値以下の捕集率の空
気フィルタの使用による規定値以上の有害物質の排出は
、取返しのつかない極めて大きな影響を外界に与えるた
め絶対にあってはならない。
At nuclear power facilities, radioactive dust generated in the installation environment is captured and removed using high-performance air filters, and then released to the outside world to prevent radioactive hazards from occurring. Similar measures are also taken at research facilities, such as genetic recombination experimental facilities, where the release of air in the research environment may have a significant impact on living organisms. By the way, in this case, air leaks due to poor installation of the air filter, or emissions of harmful substances in excess of the specified value due to the use of an air filter with a collection rate below the specified value, will have an extremely large and irreversible impact on the outside world. This should never happen.

従って取付けに当っては慎重な作業が要求されると同時
に、工事完了後エアロゾル発生装置を用いて例えば一般
にディオクチルフタレート(DOP)のエアロゾルを空
気フィルタの上流側に加えて、上下流における濃度差か
ら空気漏れや捕集率を求める実地検証試験の実施が要求
されている。しかしその試験結果はエアロゾル発生装置
の性能に影響されるところが極めて大きく、エアロゾル
発生装置が対象とする空気フイ〃りの捕集率の測定のだ
1 めに要求される、一定の粒径のエアロゾルを一定濃度で
安定に供給できる性能をもたない限り、十分な性能の保
証はあり得す、検証試験は有名無実なものとなる。また
年々フィルタの処理空気量も犬となりつつあり、これに
伴い使用される空気フィルタ単位の数も多くなりつつあ
るが、このためには大量のエアロゾルの発生を必要とし
、発生装置も大形とならざるを得ない。しかし−万発生
装置は取付現場に運搬して使用しなければならないため
、小型であって大量のエアロゾルを発生できるものが要
求され、その実現が濃度不足による不適正な検証試験の
実施を防ぐ手段ともなる。
Therefore, careful work is required during installation, and at the same time, after construction is complete, an aerosol generator is generally used to add aerosol, for example, dioctyl phthalate (DOP), to the upstream side of the air filter to generate a concentration difference between the upstream and downstream sides. Field verification tests are required to determine air leakage and collection efficiency. However, the test results are extremely influenced by the performance of the aerosol generator, and the aerosol of a certain particle size, which is required to measure the collection rate of the air field targeted by the aerosol generator, is extremely important. As long as the product does not have the ability to stably supply the product at a constant concentration, there can be no guarantee of sufficient performance, and verification tests will be futile. In addition, the amount of air that filters can process is increasing year by year, and the number of air filter units used is also increasing, but this requires the generation of a large amount of aerosol, and the generation device is also large. I have no choice but to do so. However, since the aerosol generator must be transported to the installation site and used, it is required to be small and capable of generating a large amount of aerosol, and its realization is a means of preventing inappropriate verification tests due to insufficient concentration. It also becomes.

しかし従来用いられているエアロゾル発生装置は、上記
の要求を満足させるものとは云い難い。
However, conventionally used aerosol generators cannot be said to satisfy the above requirements.

例えば従来第1図に示す部分断面図のように1、槽(1
)内のディオクチルフタレート液(2)中に、1〜数本
のノズル(3)によって空気を吹きこみ、槽(1)の上
部に設けた多孔板(4)から、ティオクチルフタレート
(2)を霧状の粒子として噴出させるものがある。
For example, conventionally, as shown in the partial sectional view shown in FIG.
) Air is blown into the dioctyl phthalate liquid (2) in the tank (2) through one to several nozzles (3), and the thioctylphthalate (2) There are some that eject it as atomized particles.

しかしこの方法では空気吹込量1を中におけるエアロゾ
ルの発生量は200〜r′00μgであって少なく、標
準寸法の空気フィルタ単位が10箇以上使用されている
場合の検証試験には不適であって、現状のように100
箇以上の空気フィルり単位が使用される大きな空間をも
つ環境への適用は全く不可能である。またこのように空
気を吹込みその勢いにもとづいて粒子を発生させるもの
では、粒径の分散が大きく例えば高性能空気フィルタの
ように、粒径05μのエアロゾルに対して捕集率が保証
されるものには、十分な性能保証ができにくい欠点があ
る。
However, in this method, the amount of aerosol generated in one air blowing amount is 200 to r'00 μg, which is small, and is not suitable for verification tests when 10 or more air filter units of standard size are used. , 100 as it is now
Application to environments with large spaces where more than one air fill unit is used is simply not possible. In addition, in devices like this that generate particles based on the force of air being blown into the air, the particle size is widely dispersed, such as a high-performance air filter, which guarantees a collection rate for aerosols with a particle size of 05 μm. However, there is a drawback in that it is difficult to guarantee sufficient performance.

また他の装置としてディオクチルフタレート液ヲ加熱し
て蒸気を発生させ、これを冷却して大気塵を核とする凝
縮作用によりエアロゾルを発生する所謂熱発生方式単分
散エアロゾル発生装置は、理論的にはエアルゾルの粒子
径がはソ核粒子濃度に依存し、核粒子の分散への依存度
が少ないことから、加熱温度と冷却温度の差が一定であ
れば、はぼ均一な粒径のエアロゾルを安定に得ることが
できる。また例えば蒸発面積を大とし、加熱温度を高く
すれば大量のエアロゾルを発生でき、処理空気量が多い
場合にも十分処理できる利点がある。
Another type of device is a so-called thermal generation monodisperse aerosol generator, which heats dioctyl phthalate liquid to generate steam, cools it, and generates aerosol through condensation with atmospheric dust as the core. Since the aerosol particle size depends on the core particle concentration and has little dependence on the dispersion of the core particles, if the difference between the heating temperature and the cooling temperature is constant, an aerosol with a uniform particle size can be obtained. can be obtained stably. Further, for example, by increasing the evaporation area and increasing the heating temperature, a large amount of aerosol can be generated, which has the advantage of being able to sufficiently process even when a large amount of air is to be treated.

しかしこの方法によって処理空気量の大きい空気フィル
タに対処できるエアロゾル発生装置を作るうとすると、
装置が大型となって到底可搬形とすることができないば
かりか、加熱のために大量の電力を必要とし、また冷却
のための大量の冷却水、または冷却用の多量の電力を必
要とする難点がある。また大量のディオクチルフタレー
ト液を直接加熱する方法では温度制御が難かしいため、
所望の粒径をもった一定濃度のエアロゾルの発生が難か
しいばかりか、径および濃度の調節が難かしい。
However, if you try to create an aerosol generator that can handle an air filter that processes a large amount of air using this method,
The disadvantage is that not only is the device large and cannot be made portable, but it also requires a large amount of electricity for heating, a large amount of cooling water for cooling, or a large amount of electricity for cooling. There is. In addition, it is difficult to control the temperature using the method of directly heating a large amount of dioctyl phthalate liquid.
Not only is it difficult to generate an aerosol with a desired particle size and a constant concentration, but it is also difficult to control the size and concentration.

これに加えてこの装置の大きな欠点は、ディオクチルフ
タレート液(沸点216℃、5g+++Hg、において
)を200℃前後の高い温度の下に空気中において加熱
するため、ディオクチルフタレート液が酸化して強烈な
異臭を発生し、これが試験された空咳フィルタに強く吸
着される。その結果実使用時この異臭が部屋内に充満し
て大きな不快感を与えることであって、この点のみから
云っても到底検証試験には不適である。このため従来か
ら可搬形であって、要求される一定の粒径なもつエアロ
ゾルを所望の濃度で安定に供給できるエアロゾル発生装
置を得ることができにくい。
In addition to this, a major drawback of this device is that the dioctyl phthalate liquid (at a boiling point of 216°C and 5g+++Hg) is heated in air at a high temperature of around 200°C, which causes the dioctyl phthalate liquid to oxidize and cause severe damage. This produces a foul odor that is strongly absorbed by the dry cough filter tested. As a result, during actual use, this strange odor fills the room and gives a great discomfort, and from this point alone, it is completely unsuitable for verification tests. For this reason, it has been difficult to obtain an aerosol generating device that is portable and capable of stably supplying aerosol having a required constant particle size at a desired concentration.

本発明は以上の要求を満足させうるエアロゾル発生装置
の提供を目的とするものであって、次に図面を用いてそ
の詳細を説明する。
The present invention aims to provide an aerosol generating device that can satisfy the above requirements, and the details thereof will be explained below with reference to the drawings.

本発明は前記した熱発生形と呼ばれる単分散方式のエア
ロゾルの発生原理を応用してなされたもので、その特徴
とするところは次の点にある。即ち本発明においては2
酸化炭素(C02)や窒素(N2)のような不活性ガス
と、例えば噴射ノズルによって作ったガス化したエアロ
ゾル発生液例えばディオクチルフタレート(DOP)ガ
スとの混合ガスを、高温例えば500℃〜350℃の温
度で加熱したのち大気中に放出して冷却することにより
、大気塵を核とする凝縮および自己凝縮作用を生じさせ
て、ディオクチルフタレートのエアロゾルを発生させる
ことを特徴とし、これたよって次のような各種のすぐれ
た効果が得られるようにしたものである。      
      ゛ 即ちその最も大きな効果は、不活性ガス雰囲気中におけ
るディオクチルフタレートガスの加熱によりその酸化を
防止して、従来装置のような強烈な異臭の発生を防止し
うるようにしたものである。
The present invention has been made by applying the above-mentioned principle of generating a monodisperse type aerosol called the heat generation type, and its features are as follows. That is, in the present invention, 2
A mixed gas of an inert gas such as carbon oxide (C02) or nitrogen (N2) and a gasified aerosol generating liquid such as dioctyl phthalate (DOP) gas produced by, for example, an injection nozzle is heated to a high temperature such as 500°C to 350°C. It is characterized by the fact that by heating it at a temperature of °C and then releasing it into the atmosphere and cooling it, it causes condensation and self-condensation with atmospheric dust as the core, and generates an aerosol of dioctyl phthalate. It is designed to provide various excellent effects such as the following.
That is, the most significant effect is that the oxidation of the dioctyl phthalate gas is prevented by heating it in an inert gas atmosphere, thereby preventing the occurrence of the strong odor that occurs in conventional devices.

また第2には不活性ガス雰囲気における加熱方法をとる
ことによって、従来より遥かに高い300℃以上の高温
で連続的に送りこまれる混合ガスを加熱できるようにし
て、小型な装置で大量のエアロゾルを得られるようにし
たことである。また第3には混合ガスの加熱により、従
来のディオクチルフタレート液を槽に入れて加熱する場
合に比して加熱効率を向上させて、加熱電力の低減を図
ったことである。第4には加熱温度に比べて遥かに低い
温度(例えば20℃)の大気中に放出して冷却凝縮する
ようにして、冷却に要する電力を皆無とし装置の小型化
を図ったものである。また第5には混合ガス中における
ディオクチルフタレートガスの割合が小さいときはエア
ロゾルの粒子径は小さく、逆に割合が多い場合には粒子
径が犬とな□ ることがら、ディオクチルフタレートガスと不活性ガス
の流量を調節して混合比を変化することにより、簡単に
所要の均一な粒径をもったエアロゾルを得られるように
したことである。またオ6に&t、’R生エアロゾル粒
子数即ちディオクチルフタレートガスの濃度は混合ガス
の量によって定まることから、所要の粒径のエアロゾル
を得られるように混合比を一定としたまま混合ガスの量
を大とすることによってエアロゾルの発生量を大とし、
また小とすることによってその逆として、濃度を簡単に
調節できるようにし、以上から小型であって要求された
一定粒径をもつ所望の濃度のエアロゾルを安定に供給で
きるディオクチルフタレートのエアロゾル発生装置を提
供できるようにしたものである。
Secondly, by adopting a heating method in an inert gas atmosphere, it is possible to heat the mixed gas that is continuously fed in at a high temperature of 300°C or more, which is much higher than conventional methods, and it is possible to generate a large amount of aerosol with a small device. This was done so that they could be obtained. Thirdly, by heating the mixed gas, the heating efficiency is improved compared to the conventional case where the dioctyl phthalate liquid is placed in a tank and heated, thereby reducing the heating power. Fourth, by releasing the gas into the atmosphere at a temperature far lower than the heating temperature (for example, 20° C.) and cooling and condensing it, the power required for cooling is completely eliminated, thereby reducing the size of the device. Fifth, when the proportion of dioctyl phthalate gas in the mixed gas is small, the particle size of the aerosol is small, and conversely, when the proportion is large, the particle size becomes small. By adjusting the flow rate of the inert gas and changing the mixing ratio, it is possible to easily obtain an aerosol with a desired uniform particle size. In addition, since the number of raw aerosol particles, that is, the concentration of dioctyl phthalate gas, is determined by the amount of mixed gas, in order to obtain aerosol with the desired particle size, the mixing ratio must be kept constant. By increasing the amount, the amount of aerosol generated is increased,
Also, by making it small, the concentration can be easily adjusted, and from the above, the dioctyl phthalate aerosol generator is small and can stably supply aerosol of the desired concentration with the required constant particle size. It has been made possible to provide the following.

次に以上説明した本発明の実施例例ついて説明する。第
2図は本発明発生装置の構成を示す系統図、第5図は使
用例を示す一部断面図であって、第2図において(5)
はケースで次の各部が内蔵される。(6)はディオクチ
ルフタレート液のタンク、(7)は液圧送用の不活性ガ
ス供給管、(7りはその供給パルプ、(8)は濃度等の
調節用不活性ガス供給管、(8α)はその供給パルプ、
(9)は不活性ガスの流量計、が開口された不活性ガス
供給管(7)と、一端が流量計(9)などを介して混合
ノズル(1りに接続された濃度等の調節用不活性ガス供
給管(8)のそれぞれの他端は、ケース(5)外に突出
するように設けたパルプ(11α)を有する接続口(1
1)に接続される。そして使用時こ\に接続される不活
性ガスボンベ(12)から、例えばCO□ガスAが供給
される。(16)はディオクチルフタレート液供給管、
(13りはその供給パルプ、(1りは流量計であって、
供給管(13)$端はタンク(6)内のディオクチルフ
タレート液中に浸漬して開口するように設けられ、他端
は流量計(10などを介して混合ノズル(1りに接続さ
レル。
Next, embodiments of the present invention described above will be described. FIG. 2 is a system diagram showing the configuration of the generator of the present invention, and FIG. 5 is a partial sectional view showing an example of use.
The case contains the following parts: (6) is a tank for dioctyl phthalate liquid, (7) is an inert gas supply pipe for liquid pressure feeding, (7 is its supply pulp, (8) is an inert gas supply pipe for adjusting concentration etc., (8α ) is its feeding pulp,
(9) is an inert gas supply pipe (7) with an inert gas flow meter opened, and one end connected to a mixing nozzle (1) through the flow meter (9) for adjusting concentration, etc. The other end of each inert gas supply pipe (8) is connected to a connection port (1) having a pulp (11α) provided so as to protrude outside the case (5).
1). During use, for example, CO□ gas A is supplied from an inert gas cylinder (12) connected to this. (16) is a dioctyl phthalate liquid supply pipe;
(13 is the supply pulp, (1 is the flow meter,
The end of the supply pipe (13) is immersed in the dioctyl phthalate liquid in the tank (6) and opened, and the other end is connected to the mixing nozzle (1) via a flow meter (10, etc.). .

そして供給管(7)によるCO2ガスへの吹込みにより
、ディオクチルフタレート液Bを所要量だけ混合ノズル
(1りに圧送して噴射によりガス化し、こ\に流量計(
9)を通して供給管(8)により所要量だけ供給される
C02ガスAと、所要の混合比で混合される。
Then, by blowing into the CO2 gas through the supply pipe (7), the required amount of dioctyl phthalate liquid B is forced into the mixing nozzle (1) and gasified by injection.
9) and is mixed with C02 gas A supplied in the required amount by the supply pipe (8) at the required mixing ratio.

(15)は混合ガス加熱管、(i 5g)は例えばその
内周面に螺旋状に設けた電熱線で、図示しない電源によ
り500℃以上の高温で混合ノズル(1o)がら送りこ
まれた混合ガスCを加熱し、酸化されることのないディ
オクチルフタレートの高温蒸気りを作る。(16)はエ
アロゾル発生管、(17)は空気口、(18)は蒸気放
出ノズルであって、高温蒸気りを大気中に放出して冷却
し、そのとき生ずる空気口(17)からの大気塵を核と
する凝縮および自己凝縮作用により、ディオクチルフタ
レートのエアロゾルEを作る。そしてこのエアロゾルは
一端がケース(5)を貫通して接続口(19)を形成す
る、エアロゾル発生管(1りに接続されたエアロゾル供
給管(20)(第6図参照)により、例えば第5図に示
すようにダクト(2り内に設置された、空気フィルタ単
位群(22)の上流側に供給される。従ってディオクチ
ルフタレート液のパルプ(7す(15りおよび流量計(
1りによる調節と、不活性ガスのパルプ(F3IOLL
流量計(9)による調節により1.、混合ガス量および
混合比を調節することによって、所望の均一な粒径から
なる所望の濃度のエアロゾルを得ることができ、妥当な
検証試験の実施を容易とする。
(15) is a mixed gas heating tube, (i 5g) is a heating wire provided spirally on its inner peripheral surface, and the mixed gas is fed through the mixing nozzle (1o) at a high temperature of 500°C or more by a power source (not shown). C to produce high-temperature vapor of dioctyl phthalate that will not be oxidized. (16) is an aerosol generation tube, (17) is an air port, and (18) is a steam release nozzle, which discharges high-temperature steam into the atmosphere and cools it, and the resulting air is released from the air port (17). Aerosol E of dioctyl phthalate is created by condensation and self-condensation with dust as the nucleus. Then, this aerosol is passed through the aerosol supply pipe (20) (see Fig. 6), which is connected to the aerosol generation pipe (1) (see Fig. 6), one end of which passes through the case (5) and forms the connection port (19). As shown in the figure, the dioctyl phthalate liquid pulp is supplied to the upstream side of the air filter unit group (22) installed in the duct (2).
1 adjustment and inert gas pulp (F3IOLL
1. By adjusting with the flow meter (9). By adjusting the amount of mixed gas and the mixing ratio, an aerosol of a desired concentration with a desired uniform particle size can be obtained, facilitating the performance of valid verification tests.

以上本発明を説明したが、大きな粒径なもつエアロゾル
を得ようとすると、それだけ長い成長時間を必要とし、
その間における成環環境の変化を生じ易いため、粒径が
均一でなくなるおそれがある。しかしこの難点は次の手
段によって解決される。
Although the present invention has been explained above, in order to obtain an aerosol with a large particle size, a long growth time is required.
Since the ring-forming environment is likely to change during this period, the particle size may become non-uniform. However, this difficulty can be solved by the following means.

その一つの手段は第2図によって前記した、エアロゾル
発生管(16)を第4図に示す断面図のように2重管と
して外周に帰還管路(26)を設ける。そしてその一端
をエアゾル放出口(2りと連通ずるエアロゾル吸込口(
25)とし、また他端を放出ノズル(1B)の下流側に
開口するエアロゾル帰還口(2りとして、蒸気放出ノズ
ル(18)の設置部側とエアロゾル放出口(2り側の圧
力差により、発生したエアロゾルを外周帰還路(25)
を介して蒸気放出ノズル(18)の前部に帰還する構造
である。即ち蒸気放出ノズル(18)により吐出率れて
生成された1次エアロゾルの一部は、管路(23)内を
通って蒸気放出ノズル(18)の前方の管中央に戻され
る。そしてこの粒子は蒸気放出ノズル(18)により吐
出された蒸気により凝縮成長させられ、管の中央部を流
れて外界へ放出される。またその一部は再び元に戻って
成長され、以下これを繰返して多段操作によって粒子の
成長が行われる。また他の提案は第5図に示す断面図の
ようにエアロゾル発生管(16)の内部に、複数筒の蒸
気放出ノズル(1B)を縦続的に設けたものであって、
先づ第1のノズル(1stL)により大気中の粒子を核
とした1次エアロゾルを作る。そして次のノズル(i 
sb)により前段のノズル(18g)によって作られ、
また成長された粒子を核として更に成長させ、また次の
ノズル(18n)により同様の成長操作を行わせること
によって、粒径な犬とし、エアロゾル粒子の粒径の均一
化を図ったものである。
One means for this is to construct the aerosol generating tube (16) described above with reference to FIG. 2 as a double tube as shown in the cross-sectional view of FIG. 4, and to provide a return conduit (26) on the outer periphery. Then connect one end to the aerosol discharge port (the two communicate with the aerosol suction port).
25), and the other end is an aerosol return port (2) which opens on the downstream side of the discharge nozzle (1B), and due to the pressure difference between the installation part side of the steam discharge nozzle (18) and the aerosol discharge port (2 side), The generated aerosol is sent to the outer circumferential return path (25)
The structure is such that the steam is returned to the front part of the steam discharge nozzle (18) via the steam discharge nozzle (18). That is, a part of the primary aerosol produced by the steam discharge nozzle (18) is returned to the center of the pipe in front of the steam discharge nozzle (18) through the pipe (23). These particles are condensed and grown by the steam discharged from the steam discharge nozzle (18), flow through the center of the tube, and are discharged to the outside world. In addition, a part of the particles returns to the original state and grows, and this process is then repeated to grow particles through a multi-stage operation. Another proposal is to provide a plurality of steam discharge nozzles (1B) in series inside the aerosol generating tube (16) as shown in the cross-sectional view of FIG.
First, the first nozzle (1stL) creates a primary aerosol with particles in the atmosphere as its core. and the next nozzle (i
sb) made by the previous nozzle (18g),
In addition, by further growing the grown particles as a nucleus and performing the same growth operation using the next nozzle (18n), the particle size is made uniform, and the particle size of the aerosol particles is made uniform. .

次に本発明の実験結果について説明する。本発明装置に
よれば空気1を中のエアロゾル濃度として約1gを得る
ことができ、このときの空気放出量を50 tAnin
とすることができた。従って1分間における発生エアロ
ゾル量は50 g/rninである。
Next, experimental results of the present invention will be explained. According to the device of the present invention, it is possible to obtain an aerosol concentration of approximately 1 g from air 1, and the amount of air released at this time is 50 tAnin.
I was able to do this. Therefore, the amount of aerosol generated per minute is 50 g/rnin.

これに対し前記第1図に示した従来市販されている発生
装置では、i、 756/Δ−の吹こみ空気圧において
エアロゾル濃度は5 mFv/l、放出空気量は85 
t/minであって、この場合の発生エアロゾル量はC
L 45 g/minである。これから本発明の発生装
置が著しく高い濃度のディオクチルフタレートのエアロ
ゾルを発生できることがわかる。また試作の結果可搬形
の発生装置を実現できることが確かめられた。
On the other hand, in the conventional commercially available generator shown in FIG. 1, the aerosol concentration is 5 mFv/l and the emitted air amount is 85
t/min, and the amount of aerosol generated in this case is C
L 45 g/min. It can be seen from this that the generator of the present invention is capable of generating an aerosol of significantly higher concentrations of dioctyl phthalate. Moreover, as a result of prototype production, it was confirmed that a portable generator could be realized.

また第6図は本発明発生装置において第3図に示した単
管エアロゾル発生管と、2重管構造のエアロゾル発生管
を用いて粒径0.3μ(中位径)を目標として発生させ
たエアロゾルの粒径分布を、対数確率紙にプロットとし
て対比した結果である。
Furthermore, Figure 6 shows a particle size of 0.3μ (median diameter) generated using the single tube aerosol generation tube shown in Figure 3 and a double tube structure aerosol generation tube in the generator of the present invention. These are the results of comparing aerosol particle size distributions plotted on log probability paper.

図から明らかなように2重管構造のエアロゾル発生管を
用いた場合を示すAの中位径に対する幾何標準偏差σg
は1.4であるに対し、単管エアロゾル発生管の場合を
示すBのそれは1.52であって0.1以上小さく、図
中に示す単分散を示すCにより近い結果が得られること
が判る。
As is clear from the figure, the geometric standard deviation σg with respect to the median diameter of A, which shows the case where an aerosol generating tube with a double tube structure is used.
is 1.4, whereas that of B, which shows the case of a single tube aerosol generating tube, is 1.52, which is 0.1 or more smaller, and it is possible to obtain a result closer to C, which shows monodispersity shown in the figure. I understand.

なお以上においてはディオクチルフタレートのエアロゾ
ルの発生について説明したが、他の液のエアロゾルの発
生にも用いることができる。
Note that although the generation of an aerosol of dioctyl phthalate has been described above, it can also be used to generate an aerosol of other liquids.

以上の説明から明らかなように、本発明によればはソ均
一な所望粒径なもった所望の濃度のディ等 オクチルフタレート・のエアロゾルを小型な装置にへ より運転費少なく発生できるもので、空気フィルタの工
場検査はもとより現場における空気フィルタ取付部にお
ける空気漏れや捕集率の検証試験に用いて実用的効果は
大きい。
As is clear from the above explanation, according to the present invention, an aerosol of dioctyl phthalate having a uniform particle size and a desired concentration can be generated using a small device with low operating costs. It can be used not only for factory inspections of air filters, but also for on-site verification tests of air leakage and collection rate at the air filter installation part, and has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置の1例を示す部分断面図、第2図は本
発明の一実施例を示す系統図、第5図はその使用例を示
す部分断面図、第4図、第5図はそれぞれエアロゾルの
粒径の均一化促進のためのエアロゾル発生管の構造を示
す断面図、第6図はその粒径分布を示す図である。 (1)・・・槽、 (2)・・・ディオクチルフタレー
ト液、(5)・・・空気吹込ノズル、 (4)・・・多
孔板、 (5)・・・ケース、 (6)・・・ディオク
チルフタレート液のタンク、(7)・・・不活性ガス供
給管、  (7+z)・・・パルプ、 (8)・・・濃
度調整用不活性ガス供給管、  (8つ・・・)くルプ
、(9)・・・流量計、  (10)・・・混合ノズル
、  (11)・・・不活性ガスボンベ接続口、  (
12)・・・不活性ガスボンへ、(13)・・・混合ガ
ス供給管、 (13cL)・・・バルブ、  (14)
・・・流量計、 A・・・Co2ガス、 B・・・ディ
オクチルフタレート液、  C・・・ディオクチルフタ
レートとCo2ガスの混合ガス、  D・・・蒸気、E
・・・エアロゾル、  (15)・・・加熱管、  (
15α)・・・加熱源、 (16)・・・エアロゾル発
生管、(17)・・・空気口、  (is)・・・蒸気
放出ノズル、  ゛(19)・・・エアロゾル供給管接
続口、  (20)・・・エアロゾル供給管、(21)
・・・ダクト、 (22)・・・空気フィルタ単位群、
(25)・・・外周帰還路、  (24)・・・エアロ
ゾル放出口、(25)・・・吸込口、 (26)・・・
エアロゾル帰還口。 特許出願人  株式会社 忍足研究所 代理人 弁理士大塚 学 外1名
Fig. 1 is a partial sectional view showing an example of a conventional device, Fig. 2 is a system diagram showing an embodiment of the present invention, Fig. 5 is a partial sectional view showing an example of its use, Figs. 6 is a cross-sectional view showing the structure of an aerosol generating tube for promoting uniformity of aerosol particle size, and FIG. 6 is a diagram showing its particle size distribution. (1)...tank, (2)...dioctyl phthalate liquid, (5)...air blowing nozzle, (4)...porous plate, (5)...case, (6)... ...Dioctyl phthalate liquid tank, (7)...Inert gas supply pipe, (7+z)...Pulp, (8)...Inert gas supply pipe for concentration adjustment, (8... ) Kurup, (9)...flow meter, (10)...mixing nozzle, (11)...inert gas cylinder connection port, (
12)...To inert gas cylinder, (13)...Mixed gas supply pipe, (13cL)...Valve, (14)
...Flowmeter, A...Co2 gas, B...Dioctyl phthalate liquid, C...Mixed gas of dioctyl phthalate and Co2 gas, D...Steam, E
...Aerosol, (15) ...Heating tube, (
15α)...Heating source, (16)...Aerosol generation tube, (17)...Air port, (is)...Steam release nozzle, (19)...Aerosol supply pipe connection port, (20)...Aerosol supply pipe, (21)
... duct, (22) ... air filter unit group,
(25)...Outer circumference return path, (24)...Aerosol discharge port, (25)...Suction port, (26)...
Aerosol return port. Patent Applicant Oshizoku Research Institute Co., Ltd. Agent Patent Attorney Otsuka 1 person from outside the university

Claims (1)

【特許請求の範囲】 (1)不活性ガスとエアロゾル発生液の混合ガスを加熱
してその蒸気を冷却して大気塵を核とする凝縮作用によ
りエアロゾルを得ることを特徴とするエアロゾル発生方
法。 (2)それぞれ流量調節機構を備えた不活性ガスとエア
ロゾル発生液の混合ガス発生機構と、混合ガスの加熱機
構と、その発生蒸気を大気中に放出するエアロゾル発生
機構を備えたエアロゾル発生装置0 (5)特許請求の範囲第2項記載のエアロゾル発生機構
を、一端に空気口を備え他端にエアロゾル放出口を備え
た外周部が帰還路となる2重管内の上記エアロゾル放出
口側に、上記帰還路の一端と連通するエアロゾル吸込口
を設け、また上記空気口側には上記帰還路の他端と連通
するエアロシン帰還口を設けると共に、エアロゾル帰還
口の上流側には加熱混合ガスの蒸気放出ノズルを設けた
構成としたことを特徴とするエアロゾル発生装置。 (4)  特許請求の範囲第2項記載のエアロゾル発生
機構を一端に空気口を備え、他端にエアロゾル放出口を
備えた単管内に、縦続的に複数筒の蒸気放出ノズルを設
けた構成としたことを特徴とするエアロゾル発生装置。
[Scope of Claims] (1) An aerosol generation method characterized by heating a mixed gas of an inert gas and an aerosol-generating liquid, cooling the vapor, and obtaining an aerosol by condensation using atmospheric dust as a nucleus. (2) Aerosol generation device 0 equipped with a mixed gas generation mechanism of inert gas and aerosol generating liquid, each equipped with a flow rate adjustment mechanism, a heating mechanism for the mixed gas, and an aerosol generation mechanism that releases the generated steam into the atmosphere. (5) The aerosol generation mechanism according to claim 2 is placed on the aerosol discharge port side of a double pipe having an air port at one end and an aerosol discharge port at the other end, the outer circumference of which serves as a return path; An aerosol suction port communicating with one end of the return path is provided, an aerosin return port communicating with the other end of the return path is provided on the air port side, and a vapor of heated mixed gas is provided on the upstream side of the aerosol return port. An aerosol generator characterized by having a configuration including a discharge nozzle. (4) The aerosol generation mechanism according to claim 2 has a structure in which a plurality of steam discharge nozzles are arranged in series in a single pipe having an air port at one end and an aerosol discharge port at the other end. An aerosol generator characterized by:
JP57087741A 1982-05-24 1982-05-24 Method and apparatus for generating aerosol Pending JPS58204334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087741A JPS58204334A (en) 1982-05-24 1982-05-24 Method and apparatus for generating aerosol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087741A JPS58204334A (en) 1982-05-24 1982-05-24 Method and apparatus for generating aerosol

Publications (1)

Publication Number Publication Date
JPS58204334A true JPS58204334A (en) 1983-11-29

Family

ID=13923348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087741A Pending JPS58204334A (en) 1982-05-24 1982-05-24 Method and apparatus for generating aerosol

Country Status (1)

Country Link
JP (1) JPS58204334A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470911A2 (en) * 1990-08-10 1992-02-12 Roussel-Uclaf Spraying system
KR100695122B1 (en) * 2003-11-29 2007-03-14 삼성전자주식회사 Apparatus and process for stabilizing the concentration of aerosol
KR100733089B1 (en) 2006-07-27 2007-06-28 한국과학기술연구원 Combustion aerosol generator
CN103286629A (en) * 2013-05-14 2013-09-11 南京航空航天大学 Method and device for forming high-pressure and low-temperature jet flow by cutting coolant

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566734A (en) * 1978-11-14 1980-05-20 Shinwa Boeki Kk Method and apparatus for generating atomized particle of monodispersed plasticizer for air filter performance test

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5566734A (en) * 1978-11-14 1980-05-20 Shinwa Boeki Kk Method and apparatus for generating atomized particle of monodispersed plasticizer for air filter performance test

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0470911A2 (en) * 1990-08-10 1992-02-12 Roussel-Uclaf Spraying system
KR100695122B1 (en) * 2003-11-29 2007-03-14 삼성전자주식회사 Apparatus and process for stabilizing the concentration of aerosol
KR100733089B1 (en) 2006-07-27 2007-06-28 한국과학기술연구원 Combustion aerosol generator
CN103286629A (en) * 2013-05-14 2013-09-11 南京航空航天大学 Method and device for forming high-pressure and low-temperature jet flow by cutting coolant

Similar Documents

Publication Publication Date Title
JPH06154552A (en) Method for gasifying aqueous reducing solution by using flue gas energy for reducing nox in flue gas
KR870000869A (en) Method and apparatus for processing granular material
US4341530A (en) Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure
JPH04500721A (en) Method for generating a liquid mist transportable in a carrier gas stream and apparatus for carrying out the method
CN105268569B (en) A kind of mixing device of gas-liquid two-phase annular flow jet and mainstream gas
JPS58204334A (en) Method and apparatus for generating aerosol
CN111854020A (en) Infrared radiation humidifying device and humidifying method thereof
JP3691711B2 (en) Gas turbine plant
US5960026A (en) Organic waste disposal system
WO2012088887A1 (en) Method and device for preparing high temperature water vapour rich in active particles using plasma
CN106310933A (en) Flue gas denitration system for coal water slurry boiler and method for denitrating flue gas
CN207347204U (en) Desulfurization wastewater treatment system
US5059348A (en) Method for measuring the efficiency of gas mask filters
CN103028321A (en) Internal fogging heat-resistant denitration spray gun
KR20210014399A (en) Analyzing device of ash, resulting from biomass firing, causing fine dust
CN104003417B (en) A kind of reverse-flow urea pyrolysis ammonia-preparing device and method
CN208229688U (en) haze simulative generator
CN206008468U (en) A kind of flue gas denitrification system for coal water slurry boiler
CN218689292U (en) Dust removal steam generation device
CN110296435A (en) A kind of multi-functional adjustable combustion with reduced pollutants visualization device
TWI786954B (en) Device and method of simultaneously removing flammable gas and nitrous oxide
CN116754447B (en) Air preheater heat exchange ABS deposition simulation system and method along Cheng Yanqi
CN201997325U (en) Device for preparing high-temperature water vapor rich of activated particles with plasma
CN107522245A (en) Desulfurization wastewater treatment system
CN212467682U (en) Flue gas treatment device applied to small boiler