JPS58200988A - Method of promoting heating and heating furnace - Google Patents

Method of promoting heating and heating furnace

Info

Publication number
JPS58200988A
JPS58200988A JP8395282A JP8395282A JPS58200988A JP S58200988 A JPS58200988 A JP S58200988A JP 8395282 A JP8395282 A JP 8395282A JP 8395282 A JP8395282 A JP 8395282A JP S58200988 A JPS58200988 A JP S58200988A
Authority
JP
Japan
Prior art keywords
radiator
heating
heat transfer
heated
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8395282A
Other languages
Japanese (ja)
Other versions
JPS6312236B2 (en
Inventor
四郎 高橋
紀之 織田
信幸 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP8395282A priority Critical patent/JPS58200988A/en
Publication of JPS58200988A publication Critical patent/JPS58200988A/en
Publication of JPS6312236B2 publication Critical patent/JPS6312236B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Tunnel Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、加熱室において高幅ガス心・こてV加熱物を
加熱する方法及び装置に保ジ、史に拝し〈は、’JO熱
室自室内被加熱物の輻射による加熱効率全向上せしめる
伝熱促進方法に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for heating objects to be heated in a heating chamber with a wide gas core and a trowel. This article relates to a heat transfer promotion method that completely improves heating efficiency by radiation.

熱効率の向上は古くより常に検討され、最近をま全般的
な省エネルギー問題が大きく取り上げられていることか
ら熱の有効利用に対する関心及び要望は特に強くなって
いる。
Improving thermal efficiency has always been considered since ancient times, and recently, as general energy conservation issues have been widely discussed, interest and demand for effective use of heat have become particularly strong.

加熱炉における熱効率の向上のためには、炉帯、被加熱
物の出入口等よりの熱放散量の低下、排ガスによる熱損
失の低下又はこれらの熱の回収等に意が荘がれている。
In order to improve the thermal efficiency of a heating furnace, efforts are being made to reduce the amount of heat dissipated from the furnace zone, entrances and exits of objects to be heated, etc., reduce heat loss due to exhaust gas, and recover such heat.

加熱炉内において被加熱物への伝熱量を増加することは
、加熱炉の主目的の1行に直接的に寄与するととKなり
Increasing the amount of heat transferred to the heated object in the heating furnace directly contributes to one of the main purposes of the heating furnace.

排ガスのM度も低下するので最も効果的であん伝熱には
、伝導、対流、輻射の三様式があるが、流体特に気体の
伝熱は主として対流伝熱が支配的である。これは一般流
体では熱伝導率が低いため伝導伝熱が対流伝熱に比べ小
さい事と、流体が熱放射に際し輻射率が小さく、放射伝
熱が対流伝熱に比べ小さいことによる。
There are three modes of heat transfer: conduction, convection, and radiation, which are the most effective since the M degree of the exhaust gas is also lowered, but convection heat transfer is predominant in the heat transfer of fluids, especially gases. This is because general fluids have low thermal conductivity, so conductive heat transfer is smaller than convective heat transfer, and fluids have a small emissivity when radiating heat, so radiant heat transfer is smaller than convective heat transfer.

しかし、一般には放射伝熱は高温物体を含む系では、対
流伝熱よりも全伝熱に寄与する割合が大きいことが多く
、全体の90%以上を放射によるもの力2支配すること
も高温ガスによる熱伝達では通常のことである。
However, in general, in systems containing high-temperature objects, radiation heat transfer often contributes to a larger proportion of the total heat transfer than convective heat transfer, and radiation accounts for more than 90% of the total. This is normal for heat transfer due to

従って、流体を含む系においても、例え′!燃焼ガスよ
り被加熱物への伝熱において、炉内容積を大きく取るこ
とで有効ガス厚みを大きくすることで輻射伝熱の割合を
対流伝熱に対し大きく七っている例もあるが、一方で叶
乾燥空気等のようKはとんど放射率を屯たないような流
体もあり、高温における伝熱で本来一番効事のよい放射
伝熱を利用でき々いケースもある。
Therefore, even in systems containing fluids, even if ′! In the case of heat transfer from combustion gas to the heated object, there are examples in which the rate of radiation heat transfer is greatly increased compared to convective heat transfer by increasing the effective gas thickness by increasing the inner volume of the furnace. There are fluids such as dried air that have very little emissivity, and there are cases where it is difficult to use radiation heat transfer, which is originally the most effective method for heat transfer at high temperatures.

さらに輻射伝熱効率向上のための加熱炉の設計において
、被加熱物の形状、大きさ、炉の構造など、被加熱物上
の位置関係などや・ら適切な効果が得られないこともあ
る。
Furthermore, when designing a heating furnace to improve radiation heat transfer efficiency, it may not be possible to obtain an appropriate effect due to the shape and size of the object to be heated, the structure of the furnace, and the positional relationship on the object.

そこでこのような伝熱に際し、輻射体としての第3の物
体を高温排ガスなどの伝熱系に介在させ流体と該物体間
の伝熱を主として対流伝熱で行ない該物体と被加熱物間
の伝熱を輻射伝熱で行なわせることにより系の伝熱面積
を見掛上増加させる伝熱方法が知られている。この方法
は流体がかなり大きい透過率をもつ事を利用したもので
ある。
Therefore, in such heat transfer, a third object as a radiator is interposed in the heat transfer system such as high-temperature exhaust gas, and heat transfer between the fluid and the object is performed mainly by convective heat transfer, and the heat transfer between the object and the heated object is performed mainly by convection heat transfer. A heat transfer method is known in which the heat transfer area of the system is apparently increased by performing heat transfer by radiation heat transfer. This method takes advantage of the fact that the fluid has a fairly high permeability.

このような例としては一般に使われている加熱炉4そう
であり、加熱炉では炉曖を第3の物体となして、排ガス
と被加熱物間の伝熱を促進しているのでちる。そしてこ
のような現象をさらに積極化したものが、前述した如く
高温ガス流、略に炉帯2は別に第三の物体として輻射体
を設けることである。
An example of this is a commonly used heating furnace 4, which uses a furnace chamber as a third object to promote heat transfer between the exhaust gas and the object to be heated. To make this phenomenon more active, as mentioned above, a radiator is provided as a third object apart from the high-temperature gas flow, generally the furnace zone 2.

この場合の輻射体としては、一般に多数の細孔を有する
物体又は細線を束ねた物体、金網などの適度の通気性を
有しているものが知られている。
As the radiator in this case, generally known are objects having a large number of pores, objects made of bundled thin wires, wire meshes, and other objects having appropriate air permeability.

このような輻射体の介在は系の伝熱効率の向上に有効で
あることが確認されその積極的な活用が今後注目される
ことになろう。
It has been confirmed that the intervention of such a radiator is effective in improving the heat transfer efficiency of the system, and its active use will attract attention in the future.

本発明者らはこのような点に鑑み輻射体の利用について
種々研究、検討してきておりこ11までにも改良を行な
ってきているが、本発明もその一環として見い出された
もので、輻射体利用による伝熱効率をさらに高めること
に成功したものである。
In view of these points, the inventors of the present invention have conducted various studies and studies on the use of radiators, and have made improvements up to the present.The present invention was discovered as part of this effort. This has succeeded in further increasing the heat transfer efficiency.

即ち本発明は高温ガスにて被加熱物を加電する方法にお
いて高温ガス流路に被加熱物とこれに対向して輻射体を
設けかつこの輻射体を運動せしめる加熱促進方法であり
、これを可能とする加熱炉を要旨とするものである。
That is, the present invention is a heating acceleration method in which a radiator is provided in a high-temperature gas flow path and a radiator facing the object is provided in a high-temperature gas flow path, and the radiator is moved. This article focuses on a heating furnace that enables heating.

本発明の目的は、このようにすることにより輻射体が受
ける高温ガス(燃焼ガス)からの対流および放射伝熱に
よる加熱のうちガスによる伝熱率が非常に低いため輻射
体の加熱効率を著しく阻害している対流伝熱効果を向上
せしめることにより輻射体への伝熱を促進せ(7め輻射
体使用による輻射体からの被加熱物のすIIIpIh−
効果を遺憾なく発揮せしめることνこある。
The purpose of the present invention is to significantly increase the heating efficiency of the radiant because the heat transfer rate by gas is extremely low among the heating that the radiator receives by convection and radiation heat transfer from high-temperature gas (combustion gas). Promote heat transfer to the radiant by improving the convection heat transfer effect that has been inhibited.
It is necessary to fully demonstrate the effect.

本発明の加熱方法を適用しうる加熱炉としては種々のも
のが考えられ、例示すればY業用炉(ガラス、セラミッ
クス、セメント等)、金属用炉(鉄鋼、非鉄等)、生ゴ
ミ焼却炉1発生炉等の被加熱物に熱を与えるために用い
る炉でありまた発生炉のように被加熱物自体が発熱する
ような炉であってもよい。
There are various types of heating furnaces to which the heating method of the present invention can be applied; examples include Y industrial furnaces (glass, ceramics, cement, etc.), metal furnaces (steel, non-ferrous metals, etc.), and garbage incinerators. It is a furnace used to give heat to an object to be heated, such as a generation furnace, or it may be a furnace in which the object to be heated itself generates heat, such as a generation furnace.

また本発明は輻射伝熱を有効に利用するものであるため
熱源としては高温ガス例えば1000℃以、トの熔暁ガ
スを利用した加熱において最適なものである。
Furthermore, since the present invention effectively utilizes radiation heat transfer, it is most suitable for heating using a high temperature gas, for example, 1000° C. or higher, or melting gas as a heat source.

本発明による好ましい一聾様においては、輻射体さして
被加熱物に対向した面の伝熱面積は出来るだけ大きくし
て輻射効果を発揮せしめるように配電することであるが
、一方輻射体を加熱する高温ガスの流れの方向に対する
配置として次のようにすることである。
In a preferred single-deaf mode according to the present invention, the heat transfer area of the surface of the radiator facing the object to be heated is made as large as possible, and power is distributed so as to exhibit the radiation effect. The arrangement with respect to the flow direction of the high temperature gas is as follows.

即ち、輻1体を高温ガスの流れ方向に後述するように平
行に設けて輻射体の運動にとも々うガス流に与える影響
を可及的に少なくすることであり、ガス流の乱れを少な
くするように輻射体を運動せしめることである。
In other words, the radiator is placed parallel to the flow direction of the high-temperature gas as will be described later, so that the influence of the movement of the radiator on the gas flow is minimized, and the turbulence of the gas flow is minimized. The idea is to make the radiant move so that it does.

さらに好ましい一態様としては、ガス流の流れ方向く依
存することなく輻射体+17.l:記目的(・こ合うよ
うに運動せしめることであり、i’ v4) 1411
’)に輻射体として棒状体を使用することである。
In a further preferred embodiment, the radiator +17. l: Purpose of writing (・To make people move in unison, i' v4) 1411
') is to use a rod-shaped body as a radiator.

以下図面を参照して本発明を説明する。The present invention will be explained below with reference to the drawings.

第1図は、従来の典型的な加熱炉の一例であり、1けバ
ーナーロで、燃焼バーナを取付は高温燃焼ガスが加熱室
2へ送られ、加熱室内を矢印A方向に流通する。加熱室
2内には被η口熱物3、例えば煉瓦(セラミックス)、
ガラス、金属などが収容され、搬送ロール4で加熱炉内
を移行する。
FIG. 1 shows an example of a typical conventional heating furnace, in which a combustion burner is installed and high temperature combustion gas is sent to a heating chamber 2 and circulates in the direction of arrow A within the heating chamber. Inside the heating chamber 2, there is a heated object 3, such as a brick (ceramic),
Glass, metal, etc. are accommodated and transferred through the heating furnace by conveyor rolls 4.

ここで被加熱物3は主として;4iiガスの焔輻射及び
炉壁5を介しての固体輻射によQ 91+熱されている
が、輻射体6を加熱室内の適当な位電に配電することで
輻射効率の向上が可能と、ケる。
Here, the object to be heated 3 is heated mainly by the flame radiation of the 4ii gas and the solid radiation through the furnace wall 5, but by distributing the radiator 6 to an appropriate potential in the heating chamber It is possible to improve radiation efficiency.

このよう々輻射体を利用した加熱炉における改良が本発
明であり、第2図はその典型列を示す。
The present invention is an improvement in a heating furnace using a radiator as described above, and FIG. 2 shows a typical series thereof.

第2図において加熱室2内Q′こ設けら!″L/CI、
1lIQ1L/CI、1lIQ1体6などの被加熱物5
のυ0熱に際して例えば矢印B方向に回転運動をしてい
る。ここで高温ガスはバーナ口から略矢印C方向に流通
し加熱室上部に設けられた仕切板7の流通口8から炉壁
と仕切板間に形成された煙道9を通って矢印A方向に流
通していく。
In Fig. 2, Q' is provided inside the heating chamber 2! ″L/CI,
Heated object 5 such as 1lIQ1L/CI, 1lIQ1 body 6
When υ0 heats up, for example, it rotates in the direction of arrow B. Here, the high-temperature gas flows approximately in the direction of arrow C from the burner port, passes through the flow channel 8 of the partition plate 7 provided at the upper part of the heating chamber, passes through the flue 9 formed between the furnace wall and the partition plate, and flows in the direction of arrow A. It will be distributed.

第3図をさらに参照して輻射体6の使用態様を説明する
と、輻射体6は加熱室2内に上下2段にかつ幅方向のほ
ぼ全域にわたって設けられている。
The usage of the radiator 6 will be explained with further reference to FIG. 3. The radiator 6 is provided in the heating chamber 2 in two stages, upper and lower, and covers almost the entire widthwise area.

この輻射体の運動は、駆動軸10を炉壁外部νζまで延
ばしモーター11に接続することで容易に可能である。
This movement of the radiator is easily possible by extending the drive shaft 10 to the outside of the furnace wall νζ and connecting it to the motor 11.

第4図及び第5図を参照して、第2図に示した実施例に
使用されるに適している輻射体の具体的な形状について
説明する。
A specific shape of a radiator suitable for use in the embodiment shown in FIG. 2 will be described with reference to FIGS. 4 and 5.

第4図Vよ、それ自体も輻射機能をもつ駆動軸10に略
円盤状の輻射板12を複数軸方向に平行して形成したも
ので、輻射板12の外周には多砂の切込みをつけ輻射伝
熱をさらに良くするように工夫されている。
As shown in FIG. 4, the drive shaft 10, which itself has a radiation function, has a plurality of approximately disk-shaped radiating plates 12 formed in parallel in the axial direction, and the outer periphery of the radiating plates 12 is provided with a sandy cut. Designed to further improve radiant heat transfer.

第5図は、第4図と同様であるが輻射橡12の形成に代
えて多数の棒状体13を円盤秋に取りつけたものである
FIG. 5 is similar to FIG. 4, but instead of forming a radiant radiator 12, a large number of rod-like bodies 13 are attached to the disk.

これらの輻射体6はいずれも高温ガスとの接触面積は大
きく被加熱物への輻射効果も大傘いうえに、加熱中対流
伝熱効果を増すために回転せしめても高温ガスの流れを
大きく乱すこともなく極めて有利な実施tl様である。
Each of these radiators 6 has a large contact area with the high-temperature gas and has a large radiation effect on the heated object, and even when rotated to increase the convection heat transfer effect during heating, the flow of the high-temperature gas is greatly increased. This is a very advantageous implementation without any disturbance.

即ち、ガスの流れ方向く対して輻射体6が平行的に配置
されているので流れの円嘴化を阻害することが少ないの
である。
That is, since the radiator 6 is arranged parallel to the gas flow direction, it is less likely to inhibit the flow from becoming circular.

ここで輻射体(輻射体を構成する駆動軸、板状体、棒状
体などとその組立体)がガスの流れに対して平行的とは
、ガスの流通方向に対する輻射体及びその構成部分の対
面する面積ろ;油力向に面する面積と比較して可及的に
小さく配置すること、いいかえればガスの流、れを可及
的に切らないということを意味するものであも。
Here, when the radiator (the drive shaft, plate-shaped body, rod-shaped body, etc. that constitute the radiator, and their assembly) is parallel to the gas flow, it means that the radiator and its constituent parts face each other in the direction of gas flow. This means that the area should be as small as possible compared to the area facing the oil pressure direction, or in other words, the gas flow should not be cut off as much as possible.

岡、第4図及び第5図において、第4図に小す−射体を
ガスの流れ方向が駆動軸1oK&った位置になるように
配置することは、ガスの流れを輻射板12で大きく阻害
(切る)することになるので好ましくないが、第5図に
示すものは同様の配置をしてもそのようなことは避けら
れる。即ち第5図に示すような棒状体及びそれらの組立
体からなる輻射体の使用は、ガスの流れ方向に依存する
ことなく(ガスの流れ方向くどのように配置しても)ガ
ス流に対する抵抗が可及的に少ないので最も有利な輻射
体である。
In Figures 4 and 5, arranging the projector so that the gas flow direction is 1°K from the drive axis greatly increases the gas flow with the radiation plate 12. Although this is not preferable as it may cause interference (cutting), such a problem can be avoided even if the arrangement shown in FIG. 5 is similar. In other words, the use of a radiator consisting of a rod-shaped body and an assembly thereof as shown in Fig. 5 provides resistance to gas flow regardless of the direction of gas flow (no matter how it is arranged in the direction of gas flow). It is the most advantageous radiator because it has as little as possible.

第6図は他の応用例を示すもので、第4図、t45図に
示すような輻射体6を加熱炉2の加熱燃φ排ガスの出口
部分14に設けて被加熱物である例えば煉瓦3を加熱中
矢印B方向に回転駆動せしめるようにした本のである。
FIG. 6 shows another example of application, in which a radiator 6 as shown in FIG. This is a book in which the heating element is rotated in the direction of arrow B during heating.

このようKしても輻射体6けガスの流れ方向大に対して
は+r平平行鎖位置しているので好ましい実施態様であ
る。
Even in this case, the radiator 6 is in a +r plane parallel chain position with respect to the flow direction of the gas, so this is a preferred embodiment.

第7図は他の応用例を示すもので、輻射体6を炉壁であ
る天井部分5を通して吊り下げるようにして加熱炉(室
)2内に配電せしめたものである。
FIG. 7 shows another example of application, in which power is distributed within the heating furnace (chamber) 2 by hanging the radiator 6 through the ceiling portion 5, which is the furnace wall.

第7図に示すような吊り方式による輻射体6の具体的な
実施態様としては、第8図及び第9図に示すようなもの
が適切である。
As a specific embodiment of the hanging type radiator 6 as shown in FIG. 7, those shown in FIGS. 8 and 9 are suitable.

@8図及び第9図とも、吊りボルトを兼ねた駆動軸10
と複数の棒状体13又は板状体13′から表るものであ
り、ガス流通方向を考虜してそれぞれ使い分けすること
が適当である。
@ In both Figures 8 and 9, the drive shaft 10 also serves as a hanging bolt.
and a plurality of rod-shaped bodies 13 or plate-shaped bodies 13', and it is appropriate to use them properly depending on the direction of gas flow.

このような本発明において、輻射体に運動を与える手段
としては、一般的には加熱炉(室)外に設けた駆動源と
接続せしめた駆動軸を介して行表うのがよいが、ガス流
速が比較的大^い場合においては、輻射体を該ガス流に
より外力を加えることなく運動しうるような構造さして
おくこともできるが、輻射体とガス流との相対速度が遅
れていくことになるので特別の鳴合以外効果は小さい。
In the present invention, the means for imparting motion to the radiator is generally preferably carried out via a drive shaft connected to a drive source provided outside the heating furnace (chamber), but gas If the flow velocity is relatively high, the radiator can be structured so that it can be moved by the gas flow without applying external force, but the relative velocity between the radiator and the gas flow will be delayed. Therefore, the effect other than the special chirping is small.

本発明において輻射体を風体的にどの程度連動せしめた
ら効果的であるかeこついて汀、カロ熱炉の設計、操業
条件、被加熱物の量、配置輻射体の構造、形状など複雑
にからみ合ってくるので一概には決めKくいが、第4図
、115図、第8図及び第9図の如き輻射体の使用の例
においては駆動軸の回転数として50〜500 rpm
、周速としてα5〜b が得られるようである。
In the present invention, it is difficult to determine how effectively the radiators should be interlocked in terms of wind and air, but it is complicated due to complex factors such as the design of the caloric furnace, operating conditions, the amount of material to be heated, and the structure and shape of the arranged radiators. However, in the examples of using radiators as shown in Figures 4, 115, 8, and 9, the rotation speed of the drive shaft is 50 to 500 rpm.
, α5~b seems to be obtained as the circumferential speed.

また本発明で使用される輻射体の材質としては、100
0℃以上といった高温ガスを対象とする加熱炉での使用
に十分耐用しうるものであることが必要であり、セラミ
ックスからつくられることが望ましい。具体的にはコー
ジェライト、ジルコン、ジルコニア、ムライト、アルミ
ナ、アルミニウムチタネート、窒化珪素、炭化珪素など
の高耐熱性と高強度及び比較的小さい熱膨張率を有する
焼結体として得られ易いものから選択するのがよい。
Furthermore, the material of the radiator used in the present invention is 100%
It needs to be durable enough to be used in a heating furnace that handles high-temperature gases such as 0° C. or higher, and is preferably made of ceramics. Specifically, it is selected from materials that can be easily obtained as a sintered body having high heat resistance, high strength, and a relatively small coefficient of thermal expansion, such as cordierite, zircon, zirconia, mullite, alumina, aluminum titanate, silicon nitride, and silicon carbide. It is better to do so.

以上の如く、本発明の加熱方法及び加熱炉においては高
温ガスによる加熱炉(室)内に被加熱物に向けて輻射体
を設けかつこの輻射体を運動せしめるものであるので、
高温ガスと輻射体間の対流伝熱向上を促進しこれに伴っ
て輻射体の熱吸収が大きくなり結果として輻射体利甲に
よる輻射効率の向上効果を遺憾なく発揮せしめうろこと
く成功し九のであり、各種の加熱炉において、それぞれ
の条件によっても異なるが最大50%程度にまで及ぶ伝
熱効率の向上も期待されるなどその工業的価値は大きい
ものでちも
As described above, in the heating method and heating furnace of the present invention, a radiant is provided in the heating furnace (chamber) using high-temperature gas and is moved toward the object to be heated.
The convection heat transfer between the high-temperature gas and the radiant is promoted, and the heat absorption of the radiant increases accordingly.As a result, the radiant enhancer fully demonstrates the effect of improving radiation efficiency, and has achieved great success. It is expected to improve heat transfer efficiency by up to 50% in various heating furnaces, depending on the conditions, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の加熱炉の一例を示す断面図、第2図は本
発明の実施例を示す加熱炉の主要部の断面図、第3図は
第2図のX−X線に活って切断した部分に相当する他の
実施例の断面図、第4図及び第5図は本発明で使用する
輻射体の実施例を示す斜視図、第6図及び第7図1d本
発明の他の実施例を示す断面図、第8図及び第9図は本
発明で使用する他の輻射体の実施例を示す斜視図である
。 図面にて、2は加熱室(炉)、5は婢+to pA物。 5は炉壁、6は輻射体、10は駆動軸、12及び13は
輻射体を構成する輻射板状体及び輻射棒状体をそれぞれ
示している。 −1’  7  )!1 1’、J)¥I 才2 目
Fig. 1 is a sectional view showing an example of a conventional heating furnace, Fig. 2 is a sectional view of the main part of a heating furnace showing an embodiment of the present invention, and Fig. 3 is a cross-sectional view showing an example of a conventional heating furnace. FIGS. 4 and 5 are perspective views showing embodiments of the radiator used in the present invention, and FIGS. 8 and 9 are perspective views showing other embodiments of the radiator used in the present invention. In the drawings, 2 is a heating chamber (furnace), and 5 is a tortoise. Reference numeral 5 denotes a furnace wall, 6 a radiator, 10 a drive shaft, and 12 and 13 a radiant plate-like body and a radiant rod-like body constituting the radiator, respectively. -1'7)! 1 1', J)¥I 2nd year old

Claims (1)

【特許請求の範囲】 1、 高温ガスにて被加熱物を加熱する方法において、
高温ガス流路に被加熱物とこれに対向して輻射体を設け
、かつこの輻射体を運動せしめることを特徴とする加熱
促進方法。 2、 輻射体を運動せしめて高温ガスから輻射体への対
流伝熱を大きくし、輻射体から被加熱物への輻射効果を
高める特許請求の範囲ta1項記載の方法。 5、 輻射体を高温ガスの流れ方向に平行的に設け、ガ
ス流に与える抵抗が可及的に少なくなるように運MJぜ
しめる特許請求の範囲第1項又は第2項記載の方法。 4、@射体としてガスの流れ方向に依存するこ七なくガ
ス流に与える抵抗が可及的に少なくなるように運動せし
める特許請求の範囲第51に、載の方法。 5、 輻射体が棒状又はその組合せからなる特許請求の
範囲第1項乃至第41負いずノしかセ4截の方法。 6、 輻射体がセラミックスからなる特許請求の範囲第
1項乃至第5項いずれか記載の方法。 7、 輻射体をガス流路外に設けた駆動源により運動せ
しめる特許請求の範囲第6項ら上載)8法。 8、炉内の高温ガス中に被加熱物に対向して輻射体を設
けかつ該輻射体に輻射体を運動せしめる駆動機構を付設
せしめたことを特徴とする被加熱物の加熱炉。 ?、 輻射体をガスの流れ方向に対して平行的に配置し
てなる特許請求の範囲第8項記載の加熱炉。 10、  輻射体として棒状体又はその組合せ体を用い
た特許請求の範囲第8項又は第9項記載の加熱炉。
[Claims] 1. In a method of heating an object with high-temperature gas,
1. A method for promoting heating, comprising providing an object to be heated and a radiator facing the object in a high-temperature gas flow path, and causing the radiator to move. 2. The method according to claim ta1, wherein the radiant is moved to increase convective heat transfer from the high temperature gas to the radiant, thereby enhancing the radiation effect from the radiator to the object to be heated. 5. The method according to claim 1 or 2, wherein the radiator is provided parallel to the flow direction of the high-temperature gas, and the MJ is moved so that the resistance given to the gas flow is as small as possible. 4. The method as set forth in claim 51, wherein the projectile is caused to move so that the resistance exerted on the gas flow is as small as possible, regardless of the direction of the gas flow. 5. A method according to claims 1 to 41, in which the radiator is rod-shaped or a combination thereof. 6. The method according to any one of claims 1 to 5, wherein the radiator is made of ceramics. 7. Method 8 above (from claim 6), in which the radiator is moved by a drive source provided outside the gas flow path. 8. A heating furnace for an object to be heated, characterized in that a radiator is provided in the high-temperature gas in the furnace, facing the object to be heated, and a drive mechanism for moving the radiator is attached to the radiator. ? The heating furnace according to claim 8, wherein the radiator is arranged parallel to the flow direction of the gas. 10. The heating furnace according to claim 8 or 9, wherein a rod-shaped body or a combination thereof is used as the radiator.
JP8395282A 1982-05-20 1982-05-20 Method of promoting heating and heating furnace Granted JPS58200988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8395282A JPS58200988A (en) 1982-05-20 1982-05-20 Method of promoting heating and heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8395282A JPS58200988A (en) 1982-05-20 1982-05-20 Method of promoting heating and heating furnace

Publications (2)

Publication Number Publication Date
JPS58200988A true JPS58200988A (en) 1983-11-22
JPS6312236B2 JPS6312236B2 (en) 1988-03-17

Family

ID=13816915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8395282A Granted JPS58200988A (en) 1982-05-20 1982-05-20 Method of promoting heating and heating furnace

Country Status (1)

Country Link
JP (1) JPS58200988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250488A (en) * 1985-04-26 1986-11-07 大光炉材株式会社 Agitator in furnace
JP2015117869A (en) * 2013-12-17 2015-06-25 株式会社Ihi Radiant heater and radiant heating method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253145A (en) * 1988-08-17 1990-02-22 Fujitsu Ltd Automatic test controlling system
JPH0528229A (en) * 1991-07-19 1993-02-05 Kokusai Electric Co Ltd Device and method for inspecting screen data

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250488A (en) * 1985-04-26 1986-11-07 大光炉材株式会社 Agitator in furnace
JP2015117869A (en) * 2013-12-17 2015-06-25 株式会社Ihi Radiant heater and radiant heating method

Also Published As

Publication number Publication date
JPS6312236B2 (en) 1988-03-17

Similar Documents

Publication Publication Date Title
JPS58200988A (en) Method of promoting heating and heating furnace
JPS6359073B2 (en)
JP2598619Y2 (en) Thermal storage type alternating combustion device
JPS58108392A (en) Rotary heat accumulating type ceramic heat exchanger
EP1318370A4 (en) Regenerative heat reservoir for combustion burner
JP3463770B2 (en) Method of manufacturing burner heat storage body and structure thereof
CN205803555U (en) The belt type roasting machine of energy-conserving and environment-protective
JPH06281132A (en) Burner tile made of ceramic fiber
JPS60202259A (en) Catalytic combustion type hot water supplier
JPS5926237Y2 (en) Furnace wall structure
JPH094830A (en) Furnace wall for incinerator
SU1028990A1 (en) Rotating furnace
JP2941825B2 (en) Radiator tube of iron-chromium-aluminum type alloy and method of manufacturing the same
JPS6135340Y2 (en)
JPH02259322A (en) Radiant tube
JP2873392B2 (en) Radiant tube burner
JP3017013B2 (en) Radiant heating furnace
SU1728611A2 (en) Rotary furnace heat exchanger
SU771442A1 (en) Rotary furnace
SU851054A2 (en) Rotating furnace heat exchange apparatus
JP3059672B2 (en) Radiant tube furnace
RU2103624C1 (en) Furnace heat exchanger
SU1158833A1 (en) Rotary furnace
JPS6227341B2 (en)
SU1004725A1 (en) Rotary kiln