JPH094830A - Furnace wall for incinerator - Google Patents

Furnace wall for incinerator

Info

Publication number
JPH094830A
JPH094830A JP15139795A JP15139795A JPH094830A JP H094830 A JPH094830 A JP H094830A JP 15139795 A JP15139795 A JP 15139795A JP 15139795 A JP15139795 A JP 15139795A JP H094830 A JPH094830 A JP H094830A
Authority
JP
Japan
Prior art keywords
brick
casing steel
furnace
bricks
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15139795A
Other languages
Japanese (ja)
Inventor
Nobuharu Kimura
信春 木村
Yoshio Hibino
義雄 日比野
Tadahachi Goshima
忠八 五島
Minoru Ike
稔 池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Metropolitan Government
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Metropolitan Government filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15139795A priority Critical patent/JPH094830A/en
Publication of JPH094830A publication Critical patent/JPH094830A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent the adhesion of clinker to the inner surface of a furnace, in a garbage incinerator, an industrial waste incinerator and the like. CONSTITUTION: A plurality of layers of casing steel plates 2, 3,... are provided in parallel to the outside of bricks 1, forming the inner wall of a furnace, and cooling air is conducted to flow between the casing steel plates whereby the bricks 1 are cooled. Further, the brick 1 is placed on a supporting base 9, attached to the casing steel plate 2 near the inside of the furnace, and the brick 1 is fixed to the casing steel plate 3 outside of the casing steel plate 2 while spaces between respective bricks 1 are filled by ceramic fiber ropes. The internal wall of the furnace 1 is cooled efficiently by convection cooling effect, developed by cooling air, and radiation cooling effect between respective layers. On the other hand, respective bricks 1 are supported independently piece by piece whereby a structure, high in reliability with respect to thermal stress and mechanical strength, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はごみ焼却炉,産業廃棄物
焼却炉その他の焼却炉の炉壁構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste incinerator, an industrial waste incinerator, and other incinerator wall structures.

【0002】[0002]

【従来の技術】従来の焼却炉の炉壁構造は、図9に例示
するように炉内側から耐火レンガ,断熱レンガ,
(B1 ,B2 )保温材(ロックウール)を積層した構造
となっていた。また空冷壁構造については、特開昭58
−22818号,実開昭62−45532号等で提案さ
れている。
2. Description of the Related Art A furnace wall structure of a conventional incinerator is constructed from the inside of the furnace as shown in FIG.
(B 1 , B 2 ) had a structure in which heat insulating materials (rock wool) were laminated. The air-cooled wall structure is described in JP-A-58.
No. 22818, No. 62-45532, and the like.

【0003】[0003]

【発明が解決しようとする課題】近年、ごみ発熱量の増
加に伴って炉内が高温雰囲気となり、またNOx 低減策
として低酸素で運転することにより灰の融点が低くなる
こと等に起因して、炉壁にクリンカが付着し、炉の長期
的な運転を困難にする場合がある。
In recent years, due to an increase in the heat value of waste, the inside of the furnace becomes a high temperature atmosphere, and as a NO x reduction measure, the melting point of ash is lowered by operating with low oxygen. As a result, a clinker may adhere to the furnace wall, which may make long-term operation of the furnace difficult.

【0004】クリンカ付着量はレンガの表面温度が高い
領域で多くなる傾向があり、文献等によるクリンカ溶融
試験でも、クリンカは1100℃程度で強く固着し、8
00〜900℃以下ではほとんど付着しないと報告され
ている。ところが従来の炉壁構造は基本的に断熱構造と
なっているため、レンガ表面の温度は1000℃以上の
高温となり、クリンカが非常に付着しやすい温度レベル
となっている。
The amount of clinker adhered tends to increase in a region where the surface temperature of the brick is high. In the clinker melting test according to the literature, etc., the clinker strongly adheres at about 1100 ° C.
It has been reported that almost no adhesion occurs at a temperature of from 00 to 900 ° C or lower. However, since the conventional furnace wall structure is basically a heat insulating structure, the temperature of the brick surface is as high as 1000 ° C. or higher, which is a temperature level at which the clinker is very likely to adhere.

【0005】そこで、レンガ表面温度を低くするため
に、前記のとおりレンガを空気で冷却する空冷壁構造が
提案されているが、レンガ数枚を1ブロックとして鋼板
に取付けるような構造になっているため、熱膨張による
レンガの強度上に問題があった。
Therefore, in order to lower the brick surface temperature, an air-cooled wall structure has been proposed in which bricks are cooled with air as described above, but a structure in which several bricks are attached to a steel plate as one block is proposed. Therefore, there was a problem in the strength of the brick due to thermal expansion.

【0006】[0006]

【課題を解決するための手段】本発明は、前記従来の課
題を解決するために、炉の内壁面にレンガ層,同レンガ
層の外方に複数層のケーシング鋼板がそれぞれ配され、
上記レンガ層と上記ケーシング鋼板との間および上記ケ
ーシング鋼板相互の間に冷却用空気が流される焼却炉の
炉壁において、上記複数層のケーシング鋼板のうち最も
内側に配されたケーシング鋼板に取付けられた支持台の
上に上記レンガ層を構成する各レンガを載せ、それらレ
ンガを上記複数層のケーシング鋼板の一にそれぞれ支持
棒によって固定するとともに、各レンガ相互の間にセラ
ミックファイバロープを詰めたことを特徴とする焼却炉
の炉壁を提案するものである。
In order to solve the above-mentioned conventional problems, the present invention provides a brick layer on the inner wall surface of a furnace, and a plurality of casing steel plates on the outside of the brick layer.
In the furnace wall of the incinerator in which the cooling air is flowed between the brick layer and the casing steel plate and between the casing steel plates, the casing steel plates arranged on the innermost side among the casing steel plates of the plurality of layers are attached. The bricks constituting the brick layer were placed on a support stand, and the bricks were fixed to one of the casing steel plates of the plurality of layers by a supporting rod, respectively, and a ceramic fiber rope was packed between the bricks. It proposes a furnace wall of an incinerator characterized by.

【0007】[0007]

【作用】本発明においては、内壁面のレンガ層の外方に
複数層のケーシング鋼板が配され、それらの層間に冷却
用空気が流されるので、空気による対流冷却効果と各層
間の放射冷却効果で、効率良く炉壁を冷却することがで
きる。また、最も内側のケーシング鋼板に取付けられた
支持台の上に各レンガを載せ、それらレンガをケーシン
グ鋼板の一にそれぞれ支持棒によって固定するので、各
レンガは1枚ずつ独立して支持され、熱応力や機械的強
度に対して信頼性の高い構造となる。更に、各レンガ相
互の間にセラミックファイバロープを詰めるので、冷却
用空気の流路と炉内とが完全に遮断される。
In the present invention, a plurality of layers of casing steel plates are arranged outside the brick layer on the inner wall surface, and cooling air is flown between the layers, so that the convection cooling effect by the air and the radiation cooling effect between the layers are achieved. Thus, the furnace wall can be cooled efficiently. In addition, since each brick is placed on the support table attached to the innermost casing steel plate, and the bricks are fixed to one of the casing steel plates by the supporting rods, each brick is supported independently one by one. The structure has high reliability with respect to stress and mechanical strength. Furthermore, since the ceramic fiber rope is packed between the bricks, the flow path of the cooling air and the inside of the furnace are completely cut off.

【0008】[0008]

【実施例】図1は本発明の第1実施例を示す縦断側面
図、図2は図1のII−II水平断面図である。また図3は
本実施例における空冷レンガの取付状況を示す縦断側面
図、図4は同じく正面図である。
1 is a vertical sectional side view showing a first embodiment of the present invention, and FIG. 2 is a horizontal sectional view taken along the line II--II of FIG. Further, FIG. 3 is a vertical cross-sectional side view showing an attachment state of the air-cooled bricks in this embodiment, and FIG. 4 is a front view of the same.

【0009】まず図1および図2において、約350mm
角,厚さ約80mmのSiCレンガ(1)を空冷レンガと
して積むことにより、炉内壁面のレンガ層を構成し、そ
のレンガ層の背後(外方)に4層のケーシング鋼板
(2),(3),(4),(5)を平行に配置する。レ
ンガ層とケーシング鋼板(2),(3),(4)により
形成される空間へ炉内側から順に冷却空気を流してレン
ガ(1)を冷却する。各空気層を仕切板(6)によって
分割するとともに、第1空気層の入口部にはパンチング
プレ−トを配置して空気流れを整流する。第3層のケー
シング鋼板(4)と第4層(外壁)のケーシング鋼板
(5)の間は静止空気層として断熱するとともに、この
外壁ケーシング(5)の内側には保温材を貼りつける。
また、空冷レンガ(1)は直接空気によって冷却するの
で、レンガとレンガの合せ面のシールのためにセラミッ
クファイバロープ(8)を用いる。
First, in FIGS. 1 and 2, about 350 mm
A brick layer on the inner wall surface of the furnace is formed by stacking SiC bricks (1) having a corner and a thickness of about 80 mm as air-cooled bricks, and four layers of casing steel plates (2), (behind the brick layer (outside)). 3), (4) and (5) are arranged in parallel. The brick (1) is cooled by sequentially flowing cooling air into the space formed by the brick layer and the casing steel plates (2), (3), and (4) from the inside of the furnace. Each air layer is divided by a partition plate (6), and a punching plate is arranged at the inlet of the first air layer to rectify the air flow. The casing steel plate (4) of the third layer and the casing steel plate (5) of the fourth layer (outer wall) are thermally insulated as a static air layer, and a heat insulating material is attached to the inside of the outer wall casing (5).
Further, since the air-cooled brick (1) is directly cooled by air, the ceramic fiber rope (8) is used for sealing the brick-to-brick mating surface.

【0010】次に図3および図4に示すように、レンガ
(1)は第1層のケーシング鋼板(2)に取付けられた
支持台(9)の上に載せるように積み上げてゆく。レン
ガ(1)の中央には半割構造のレンガ固定用レンガ(1
0)を嵌め込み、レンガ1個に対し1本のレンガ支持棒
(11)を用いて第2層のケーシング鋼板(3)にワッ
シャ(12)とナット(13)で固定する。第1層のケ
ーシング鋼板(2)は高温となるので、熱応力を緩和す
るために薄板構造とするが、第2層のケーシング鋼板
(3)は厚板構造とし強度部材とする。
Next, as shown in FIGS. 3 and 4, the bricks (1) are piled up so as to be placed on the support base (9) attached to the casing steel plate (2) of the first layer. In the center of the brick (1), a brick with a half structure (1)
0) is fitted and is fixed to the casing steel plate (3) of the second layer with a washer (12) and a nut (13) using one brick support rod (11) for one brick. Since the casing steel plate (2) of the first layer has a high temperature, it has a thin plate structure in order to relieve thermal stress, while the casing steel plate (3) of the second layer has a thick plate structure and is a strength member.

【0011】本実施例においては、空冷レンガ(1)と
して熱伝導率の高いSiCレンガを用い、かつその空冷
レンガ(1)の背後に平行に複数層のケーシング鋼板
(2),(3),(4)を設けることにより構成される
空間に冷却空気を流すので、レンガと空気による対流冷
却効果およびレンガ背面とケーシングとの放射冷却効果
により、効率良く炉壁を冷却することができ、かつ強度
上の信頼性も高い。また、空冷レンガ(1)の支持方法
として、ケーシング鋼板(2)に取付けられた支持台
(9)に空冷レンガ(1)を1枚ずつ載せて、空冷レン
ガ(1)とケーシング鋼板(3)をレンガ支持棒(1
1)によって固定し、各レンガの間にはセラミックファ
イバロープを詰めるので、シールと熱応力の緩和が達成
される。
In this embodiment, a SiC brick having a high thermal conductivity is used as the air-cooled brick (1), and a plurality of layers of casing steel plates (2), (3), which are parallel to the back of the air-cooled brick (1). Since the cooling air is made to flow in the space constituted by providing (4), the furnace wall can be efficiently cooled by the convective cooling effect of the brick and air and the radiative cooling effect of the brick back surface and the casing, and the strength can be increased. The top reliability is also high. Further, as a method of supporting the air-cooled bricks (1), the air-cooled bricks (1) are placed one by one on a support base (9) attached to the casing steel plate (2), and the air-cooled bricks (1) and the casing steel plate (3) are mounted. The brick support rod (1
Since it is fixed by 1) and the ceramic fiber rope is packed between each brick, sealing and relaxation of thermal stress are achieved.

【0012】次に本実施例におけるレンガ冷却作用を図
5により説明する。炉内壁面の空冷レンガ(1)の背後
にケーシング鋼板(2),ケーシング鋼板(3),ケー
シング鋼板(4),ケーシング鋼板(5)を平行に設
け、それらで形成される空気層を炉内側から順に第1空
気層,第2空気層,第3空気層,静止空気層とする。ま
た冷却空気を第1空気層から順に第2,第3空気層に流
すとする。この場合、炉内高温ガスから空冷レンガ
(1)への入熱qは、レンガ内では熱伝導により伝わ
る。そしてレンガ背面から一部は対流伝熱qC11 により
第1空気層へ放熱され、残りは放射伝熱qR1によりケー
シング鋼板(2)へ放熱される。レンガを効率良く冷却
するためには、放射伝熱qR1を大きくすることが必要
で、そのためにはケーシング鋼板(2)の温度を下げる
ことが有効である。そこで第2空気層に空気を流し、対
流伝熱qC21 ,放射伝熱qR2によってケーシング鋼板
(2)の温度を下げる。効率良く冷却を行なうためには
R2を大きくすれば良く、このために第3空気層に冷却
空気を流す。
Next, the brick cooling action in this embodiment will be described with reference to FIG. The casing steel plate (2), the casing steel plate (3), the casing steel plate (4), and the casing steel plate (5) are provided in parallel behind the air-cooled brick (1) on the inner wall surface of the furnace, and the air layer formed by these is provided inside the furnace. The first air layer, the second air layer, the third air layer, and the stationary air layer are arranged in this order. Further, it is assumed that the cooling air is allowed to flow in order from the first air layer to the second and third air layers. In this case, the heat input q from the high temperature gas in the furnace to the air-cooled brick (1) is transferred by heat conduction in the brick. Then, a part of the brick back surface is radiated to the first air layer by convective heat transfer q C11 , and the rest is radiated to the casing steel plate (2) by radiant heat transfer q R1 . In order to cool the brick efficiently, it is necessary to increase the radiant heat transfer q R1 . For that purpose, it is effective to lower the temperature of the casing steel plate (2). Therefore, air is caused to flow through the second air layer, and the temperature of the casing steel plate (2) is lowered by convective heat transfer q C21 and radiant heat transfer q R2 . In order to perform cooling efficiently, q R2 may be increased, and for this reason, cooling air is passed through the third air layer.

【0013】このようにして、空気層を多くすればする
ほど、理論的にはレンガ温度は下がる傾向となるが、空
気層数が多くなると、空気層数の増加に対してレンガ温
度が降下する割合は小さくなり、また圧損も増加するの
で、実用上は3層程度が適切である。
In this way, the more the number of air layers, the theoretically the brick temperature tends to decrease. However, when the number of air layers increases, the brick temperature decreases as the number of air layers increases. Since the ratio becomes small and the pressure loss also increases, about 3 layers are suitable for practical use.

【0014】上記のとおり、本発明のような冷却方式に
おいては、放射による熱流束qR1,qR2,qR3,qR4
大きくすることが重要となる。このためには、ケーシン
グ鋼板表面の放射率を増加させればよい。また対流伝熱
C21 等を大きくするために、ケーシング鋼板の表面積
(伝熱面積)を増加させることも有効である。ケーシン
グ鋼板表面の放射率を増加させる手段としては、通常の
SUS板の代りに、焼いたり、あるいはアルカリによる
黒ぞめ処理を行なったりした酸化被膜付ケーシング鋼板
を使用することが考えられる。またカラー鉄板,耐熱塗
料付鉄板を使ってもよい。
As described above, in the cooling system as in the present invention, it is important to increase the heat fluxes q R1 , q R2 , q R3 and q R4 due to radiation. For this purpose, the emissivity of the surface of the casing steel plate may be increased. It is also effective to increase the surface area (heat transfer area) of the casing steel plate in order to increase the convective heat transfer q C21 and the like. As a means for increasing the emissivity of the surface of the casing steel sheet, it is conceivable to use a casing steel sheet with an oxide film, which has been baked or subjected to blackening treatment with an alkali, instead of the usual SUS sheet. Alternatively, a colored iron plate or an iron plate with heat resistant paint may be used.

【0015】図6は炉内熱負荷が 25000 kcal/m2h の場
合のレンガ温度のシミュレーション結果を示す図であ
る。これによれば、ケーシング鋼板として通常のSUS
板を用いた場合(放射率 0.3 )でも、冷却空気量を調節
することにより、レンガ表面温度を800〜900℃以
下としてクリンカの付着を防止することができる。ま
た、ケーシング鋼板に酸化被膜を施して放射率を 0.8
に増加させれば、レンガ表面の温度は更に約130℃低
下し、非常に効率の良い冷却性能を達成できる。次に図
7は本発明の第2実施例を示す縦断側面図、図8は図7
のVIII−VIII水平断面図である。この実施例において
は、ケーシング鋼板(2),(3),(4)にそれぞれ
フィン(14)が取付けられている。これによりケーシ
ング鋼板の伝熱面積が増加するので、前記のとおり対流
による伝熱量が大きくなって冷却効率が向上し、空冷レ
ンガ(1)の温度が更に低くなる。
FIG. 6 is a diagram showing a simulation result of brick temperature when the heat load in the furnace is 25000 kcal / m 2 h. According to this, as a casing steel plate, an ordinary SUS is used.
Even when a plate is used (emissivity: 0.3), by adjusting the amount of cooling air, the brick surface temperature can be set to 800 to 900 ° C. or less to prevent clinker from adhering. The casing steel sheet is coated with an oxide film to reduce the emissivity to 0.8.
If the temperature is increased to 1, the temperature of the brick surface is further lowered by about 130 ° C, and very efficient cooling performance can be achieved. Next, FIG. 7 is a vertical sectional side view showing a second embodiment of the present invention, and FIG.
VIII-VIII horizontal cross-sectional view. In this embodiment, fins (14) are attached to the casing steel plates (2), (3) and (4), respectively. As a result, the heat transfer area of the casing steel plate increases, so that the amount of heat transfer by convection increases, the cooling efficiency improves, and the temperature of the air-cooled brick (1) further decreases.

【0016】[0016]

【発明の効果】本発明によれば、焼却炉の内壁レンガ層
を効率良く冷却することができるので、レンガ壁面にク
リンカが付着するのを効果的に防止できる。またレンガ
は、1枚,1枚が独立した支持構造となっているので、
熱応力や機械的強度の観点からも信頼性の高い構造が実
現される。
According to the present invention, since the inner wall brick layer of the incinerator can be efficiently cooled, it is possible to effectively prevent the clinker from adhering to the brick wall surface. In addition, since the bricks have an independent support structure,
A highly reliable structure is realized from the viewpoint of thermal stress and mechanical strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の第1実施例を示す縦断側面図で
ある。
FIG. 1 is a vertical sectional side view showing a first embodiment of the present invention.

【図2】図2は図1のII−II水平断面図である。FIG. 2 is a horizontal sectional view taken along the line II-II of FIG.

【図3】図3は上記実施例における空冷レンガの取付状
況を示す縦断側面図である。
FIG. 3 is a vertical cross-sectional side view showing how the air-cooled bricks are mounted in the above-described embodiment.

【図4】図4は図3の正面図である。FIG. 4 is a front view of FIG.

【図5】図5は上記実施例における熱移動状況を示す図
である。
FIG. 5 is a diagram showing a heat transfer state in the above embodiment.

【図6】図6は上記実施例における空冷レンガ表面温度
の計算結果を示す図である。
FIG. 6 is a diagram showing calculation results of air-cooled brick surface temperature in the above-mentioned embodiment.

【図7】図7は本発明の第2実施例を示す縦断側面図で
ある。
FIG. 7 is a vertical cross-sectional side view showing a second embodiment of the present invention.

【図8】図8は図7のVIII−VIII水平断面図である。8 is a horizontal sectional view taken along the line VIII-VIII in FIG. 7.

【図9】図9は従来の焼却炉の炉壁構造を例示する図で
ある。
FIG. 9 is a diagram illustrating a furnace wall structure of a conventional incinerator.

【符号の説明】[Explanation of symbols]

(1) 空冷レンガ(SiCレンガ) (2) 第1層のケーシング鋼板 (3) 第2層のケーシング鋼板 (4) 第3層のケーシング鋼板 (5) 第4層(外壁)のケーシング鋼板 (6) 仕切板 (7) 既設レンガ (8) セラミックファイバロープ (9) レンガ支持台 (10) レンガ固定用レンガ(半割) (11) レンガ支持棒 (12) ワッシャ (13) ナット (14) フィン (1) Air-cooled brick (SiC brick) (2) First layer casing steel sheet (3) Second layer casing steel sheet (4) Third layer casing steel sheet (5) Fourth layer (outer wall) casing steel sheet (6) ) Partition plate (7) Existing brick (8) Ceramic fiber rope (9) Brick support (10) Brick fixing brick (half) (11) Brick support rod (12) Washer (13) Nut (14) Fin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 五島 忠八 横浜市金沢区幸浦一丁目8番地1 三菱重 工業株式会社横浜研究所内 (72)発明者 池 稔 横浜市中区錦町12番地 三菱重工業株式会 社横浜製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tadachi Goto 1-8-8, Koura, Kanazawa-ku, Yokohama City Mitsubishi Heavy Industries, Ltd. Yokohama Research Laboratory (72) Minor Ike, 12 Nishikimachi, Naka-ku, Yokohama Mitsubishi Heavy Industries Stock Company Yokohama Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炉の内壁面にレンガ層,同レンガ層の外
方に複数層のケーシング鋼板がそれぞれ配され、上記レ
ンガ層と上記ケーシング鋼板との間および上記ケーシン
グ鋼板相互の間に冷却用空気が流される焼却炉の炉壁に
おいて、上記複数層のケーシング鋼板のうち最も内側に
配されたケーシング鋼板に取付けられた支持台の上に上
記レンガ層を構成する各レンガを載せ、それらレンガを
上記複数層のケーシング鋼板の一にそれぞれ支持棒によ
って固定するとともに、各レンガ相互の間にセラミック
ファイバロープを詰めたことを特徴とする焼却炉の炉
壁。
1. A brick layer is provided on an inner wall surface of a furnace, and a plurality of layers of casing steel plates are arranged outside the brick layer, respectively, for cooling between the brick layer and the casing steel plate and between the casing steel plates. In the furnace wall of the incinerator in which air is flowed, each brick constituting the brick layer is placed on the support table attached to the casing steel sheet arranged at the innermost side among the plurality of layers of casing steel sheets, and the bricks are A furnace wall of an incinerator characterized in that it is fixed to one of the plurality of layers of casing steel plates by a supporting rod, and a ceramic fiber rope is packed between the bricks.
JP15139795A 1995-06-19 1995-06-19 Furnace wall for incinerator Pending JPH094830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15139795A JPH094830A (en) 1995-06-19 1995-06-19 Furnace wall for incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15139795A JPH094830A (en) 1995-06-19 1995-06-19 Furnace wall for incinerator

Publications (1)

Publication Number Publication Date
JPH094830A true JPH094830A (en) 1997-01-10

Family

ID=15517702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15139795A Pending JPH094830A (en) 1995-06-19 1995-06-19 Furnace wall for incinerator

Country Status (1)

Country Link
JP (1) JPH094830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925161B1 (en) * 2009-07-31 2009-11-05 주식회사 에스엔 Incinerator for preventing clinker attachment
JP5970597B1 (en) * 2015-10-16 2016-08-17 株式会社プランテック Refractory material cooling structure, incinerator
JP5970598B1 (en) * 2015-10-27 2016-08-17 株式会社プランテック Refractory material cooling structure, incinerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100925161B1 (en) * 2009-07-31 2009-11-05 주식회사 에스엔 Incinerator for preventing clinker attachment
JP5970597B1 (en) * 2015-10-16 2016-08-17 株式会社プランテック Refractory material cooling structure, incinerator
JP5970598B1 (en) * 2015-10-27 2016-08-17 株式会社プランテック Refractory material cooling structure, incinerator

Similar Documents

Publication Publication Date Title
JP4347269B2 (en) Turbine
CN210911437U (en) Multilayer combined type heat insulation device
US5323484A (en) Heating apparatus with multilayer insulating structure
EP2534269B1 (en) Hot blast stove dome and hot blast stove
JPH094830A (en) Furnace wall for incinerator
JPH10503006A (en) New water cooling wall tube block structure
US5522371A (en) Thermal insulation engine
JPH0331408A (en) Groove-type structure for running molten pig iron
GB2058326A (en) Recuperator
JP3192690B2 (en) Inner cylinder of gas turbine combustor
US4398474A (en) Insulating structure for high temperature devices
JP2011064385A (en) Solar heat collecting structure
JPS589184Y2 (en) crucible furnace
JPH0979774A (en) Corrugated ceramic plate laminated heat storage body
JPS5958298A (en) Insulating molded member coating cooled pipe of furnace
JPH0510681A (en) Insulating structure for heating furnace
JPS58200988A (en) Method of promoting heating and heating furnace
JPS6359073B2 (en)
JP2524669B2 (en) Continuous billet heating furnace
JPS6111592A (en) Heat transfer converting body
CN102561561A (en) Improved thermal insulation curtain wall
FI129398B (en) Chimney flue sleeve of a chimney flue
JPS6080077A (en) Heat-insulating cooling method of furnace and heat-insulating member thereof
JPH03105014A (en) Heat insulating exhaust muffler
SU859415A1 (en) Car for receiving incandescent coke

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011225