JPS5820094A - Video processing circuit - Google Patents

Video processing circuit

Info

Publication number
JPS5820094A
JPS5820094A JP56118738A JP11873881A JPS5820094A JP S5820094 A JPS5820094 A JP S5820094A JP 56118738 A JP56118738 A JP 56118738A JP 11873881 A JP11873881 A JP 11873881A JP S5820094 A JPS5820094 A JP S5820094A
Authority
JP
Japan
Prior art keywords
signal
color
video signal
primary color
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56118738A
Other languages
Japanese (ja)
Inventor
Junichi Yamanaka
山中 純一
Taizo Nishino
西野 泰蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56118738A priority Critical patent/JPS5820094A/en
Publication of JPS5820094A publication Critical patent/JPS5820094A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits

Abstract

PURPOSE:To simplify the constitution of a color coder and a gamma compensation/ matrix arithmetic part as well as to increase the color reproducibility and to miniaturize a video processing circuit, by giving the prescribed gamma compensation to each address contents of a memory and then storing the ideal value multiplied by a prescribed coefficient. CONSTITUTION:Both the luminance and chrominance signals I and Q of the primary color video signal component are fed to the primary video signal input terminals 1-n. The memories M1-M3 are connected to the terminals 1-n as the exclusive storage circuits. The gamma compensation is given to the primary color signal which is digitized by the memory M1, and the digital value of the primary color video signal of the color difference signal is delivered by the value multiplied 1 by the prescribed value. Then the gamma compensation is given to the primary color video signal which is turned into the digital value by the memory M2, and the digital value of the primary color video signal of the I color difference signal multiplied by the prescribed value is delivered. At the same time, the digital value of the primary color video signal of the Q color difference signal is delivered in the same way by the memory M3. Thus the constitution is simplified for a color coder and a gamma compensation/matrix arithmetic part.

Description

【発明の詳細な説明】 この発明は、ディジタル化された原色映倫信号をガンマ
補正すると同時に、輝度信号、X色差信号およびq色差
信号を得る映像4611回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an image 4611 circuit that performs gamma correction on a digitized primary color image signal and simultaneously obtains a luminance signal, an X color difference signal and a q color difference signal.

従来使用されているカラーカメラはアナログ信号処理に
よるもので1wL数の原色映倫信号(たとえば赤、縁、
前辺下R,G、Bと略す)を周知のようにガンマ補正を
行った後、カラーカメラのマ)リツクス回路に導入し輝
度信号や色差信号を合成している。
Conventionally used color cameras use analog signal processing to process primary color signals (for example, red, edge,
After performing gamma correction on the lower front edge (R, G, B) in a well-known manner, they are introduced into a matrix circuit of a color camera to synthesize luminance signals and color difference signals.

このようなアナログ処理系C=おいては、ガンマ補正回
路や、マトリックス回路のドリフト。
In such an analog processing system C=, the drift of the gamma correction circuit and matrix circuit.

鐸時変化などによって生じる誤差が無視できず。Errors caused by changes in the trigger time cannot be ignored.

日常点検や定期点検による再−瞥を必要としていた。It was necessary to revisit it through daily and periodic inspections.

このため近年映像信号をディジタに化また後。For this reason, in recent years video signals have been converted to digital.

ス演算を行う方式が提案されている。しかし現在提案さ
れている方式は、ディジタル化された各原色映像信号に
ガンマ補正を施し、その後ディジタル信号のシフトと加
減算でマトリックス演算を行う方式である。
A method has been proposed that performs space calculations. However, the currently proposed method is to perform gamma correction on each digitalized primary color video signal, and then perform matrix operations by shifting, adding and subtracting the digital signals.

たとえば、輝度信号を得るマ)lックス演算は次のα)
式によって行われる。
For example, the matrix operation to obtain the luminance signal is as follows α)
It is done by a formula.

my−0,30g1+0.591o+0.00mm・6
.α)ここで* ” N o ” G t ” lおよ
び1丁はそれぞれR,G、Bおよび輝度信号の電圧レベ
ルである。
my-0.30g1+0.591o+0.00mm・6
.. α) Here * ``N o '' G t '' l and 1 are the voltage levels of R, G, B and luminance signals, respectively.

ディジタル化さ糺たR、G、Hの各原色映像信号からα
)式の演算を行う際、前述のレフト回路と加減算による
方式例として提案されている演算例は 0.30,2  +2 −0.3125 −−−−−−
(2)o、5o=z  +2 −0.5625  ・・
・川(3)0、11.2 −0.125  −−−−−
−−−−−−−−−− (4)であり、この(2) −
(4)式に示すようなディジタル信号(すなわち2進数
)のレフトと加算による方式である。
α from the digitalized R, G, and H primary color video signals
), the calculation example proposed as an example of a method using the aforementioned left circuit and addition/subtraction is 0.30,2 +2 −0.3125 −−−−−−
(2) o, 5o=z +2 -0.5625...
・River (3) 0, 11.2 -0.125 -----
−−−−−−−−−− (4), and this (2) −
This is a method using left and addition of digital signals (ie, binary numbers) as shown in equation (4).

伐)〜(4)式に示す各係数はそれらの和が1に保たれ
ているが、NT・8C方式に定められた(1)式の係数
とはかなりの誤差が生じている。すなわちRの係数では
約4%、Gの係数では約−4,7%、モしてBの係数で
は約13.6%である。
Although the sum of the coefficients shown in formulas (4) to (4) is maintained at 1, there is a considerable error from the coefficients of formula (1) defined in the NT/8C system. That is, the coefficient of R is about 4%, the coefficient of G is about -4.7%, and the coefficient of B is about 13.6%.

このようなことはI、Qの各色差信号合成についても生
じるし、これら誤差による受像機ブラウン管上の色再現
誤差は従来のアナログ方式に比べ大きくなることは容易
に想侭できる(アナログ方式はマトリツ・クス定数の誤
差を1%程度あるいはそれ以下を目標として設計される
)。
This kind of thing also occurs when combining the I and Q color difference signals, and it is easy to imagine that the color reproduction error on the cathode ray tube of the receiver due to these errors will be larger than that of the conventional analog system (the analog system is matrices).・Designed with the goal of keeping the error in the Kux constant to around 1% or less).

これらの誤差を少なくするためリフトの数および加減の
数を増すことはカラーカメラの形状を大きくシ、かつデ
ィジタルガンマ補正回路を別に必要とすることはこれら
条件(カラーカメラの形状)をいっそう悪くしてしまう
Increasing the number of lifts and addition/subtraction in order to reduce these errors greatly reduces the shape of the color camera, and requiring a separate digital gamma correction circuit worsens these conditions (the shape of the color camera). I end up.

この発明は、上記従来の欠点を除去するためになされた
もので、ディジタル化された原色映像信号処理4二おい
て、ガンマ補正と同時に輝度信号およびI、Q色差信号
を合成するための出力を得ることによりカラーカメラの
回路のgm化、小形化、低消費電力化を計ることのでき
る映倫処理回路を提供することを目的とする。
This invention has been made to eliminate the above-mentioned drawbacks of the conventional technology, and includes an output for combining a luminance signal and I, Q color difference signals at the same time as gamma correction in digitalized primary color video signal processing 42. The object of the present invention is to provide an image processing circuit that can be used to make a color camera circuit more compact, more compact, and lower in power consumption.

以下、この発明の映倫処理回路一実施例を図面を参照し
て説明する。第1図はその一実施例における輝度信号お
よびI、Q色差信号の翼厚色映像信号成分を得る回路の
ブロック図であり。
Hereinafter, one embodiment of the video processing circuit of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a circuit for obtaining thickness color image signal components of a luminance signal and I, Q color difference signals in one embodiment.

この第1図の1〜+mは1ピツ)!ディジタル化された
R原色映像信号入力端である。このR[色映像信号入力
端1〜11に接続された入力線番=は読み出し専用記憶
回路M1〜Ml(以下メモリと云う)のアドレス選択信
号として入力されるようになっている。そして、たとえ
ば、メモリM1の各アドレスの内容は、ディジタル化さ
れたR原色映像信号の映像レベルにガンマ補正を施すと
きに得られる出力特性(第2図の破纏りがガンマ補正の
特性曲線であり、実線Aはガンーン補正なし、r−1の
ときの特性である。点線のr値は約0.45である。こ
のことはアナログ方式のガンマ補正と同じ、である。)
による出力比O,a Oを乗じた2進デイジタル値を記
憶させておく。
1~+m in this figure 1 is 1 pin)! This is a digitized R primary color video signal input terminal. This R[input line number connected to color video signal input terminals 1 to 11== is inputted as an address selection signal of read-only storage circuits M1 to Ml (hereinafter referred to as memory). For example, the contents of each address in the memory M1 are the output characteristics obtained when gamma correction is applied to the video level of the digitized R primary color video signal (the broken summary in Figure 2 is the gamma correction characteristic curve). (The solid line A is the characteristic when there is no Gamma correction and r-1. The r value of the dotted line is about 0.45. This is the same as the analog gamma correction.)
The output ratio O, a The binary digital value multiplied by O is stored.

すなわち、メモリM1の内容は、ディジタル化されたR
原色映像信号にガンマ補正を施し。
That is, the contents of memory M1 are digitized R
Gamma correction is applied to the primary color video signal.

さらに0.30を乗じた値で輝度信号のR原色映像信号
による成分のディジタル値となる。このディジタル値は
1171.IRYI・・・として得られるようになって
いる。(この出力は入力に1より小なる係数な秦じて得
られるので、aビットより少なくてもかまわない)。
The value obtained by further multiplying by 0.30 becomes the digital value of the component of the luminance signal due to the R primary color video signal. This digital value is 1171. It can be obtained as IRYI... (Since this output can be obtained as long as the input has a coefficient smaller than 1, it does not matter if there are fewer than a bits).

なお、第1図におけるCLKはメモ9M1〜M1の内容
の読み出しを制御する制御入力である。
Note that CLK in FIG. 1 is a control input that controls reading of the contents of the memos 9M1 to M1.

同様にして、メモリM2によってディジタル化された鼠
原色映像信号にガンマ補正を施し。
Similarly, gamma correction is applied to the gray primary color video signal digitized by the memory M2.

さらに0.601’l!じることで、!色差信号のR原
色映像信号による成分のディジタに値が得られる。この
ディジタに値は1111.Ml!!、…として得られる
Another 0.601'l! By doing so! A value is obtained in the digital component of the R primary color video signal of the color difference signal. This digit has a value of 1111. Ml! ! , which is obtained as...

I、Qの色差信号は次のO5) 、 (6)式で規定さ
れる。ここで!色差信号合成のためのkの係数は0.6
0で、輝度信号合成のそれ(0,30)の丁度2倍であ
るので、1111.III!・・・を1ビツトシフFす
ることによって1ilY1.II□300.を得られる
ことは云うまでもない。
The I and Q color difference signals are defined by the following formula (6). here! The coefficient of k for color difference signal synthesis is 0.6
0, which is exactly twice that of the luminance signal synthesis (0, 30), so 1111. III! By shifting F by 1 bit, 1ilY1. II□300. Needless to say, you can get it.

I t−0,601m−0,281e−0,321m 
ms++*Ql)I Q−0,21111−0,521
o+0.311 B・参曲(6)メモリMl、Mlと同
じくメモリM1によってガンマ補正後のq色差信号のR
原色映倫信号による成分のディジタル値が得られる。
I t-0,601m-0,281e-0,321m
ms++*Ql)I Q-0,21111-0,521
o+0.311 B. Participation (6) Memory Ml, same as Ml, R of q color difference signal after gamma correction by memory M1
A digital value of the component based on the primary color signal is obtained.

以上、R原色映像信号について述べてきたが。The R primary color video signal has been described above.

G、Bについても同様のことが可能なことはあきらかで
ある。すなわち第1図の回路なG、B各層色映像信号に
も適用すれば、ガンマ補正されかつ輝度信号および色差
信号を合成する際必要な係[(1) 、 @) 、 m
)式の各係数)が乗じられたディジタル値出力を得るこ
とができる。
It is clear that the same thing is possible for G and B as well. In other words, if the circuit shown in Fig. 1 is applied to the G and B layer color video signals, the gamma-corrected and necessary coefficients [(1), @), m
) It is possible to obtain a digital value output multiplied by each coefficient ) of the equation.

すなわち、第3図はこの発明における輝度信号および色
差信号の合成を行う回路のブロック図であり、この第3
図において、10,11゜12はそれぞれディジタル化
された獣、G、Bの各原色映倫信号入力端子であって、
それぞれメモリIJ〜11に接続されている。このメモ
リ11〜11はそれぞれ第1図のメモ9MJ〜MJのよ
うなメモリであり、それらの出力は前述のよう1ニガン
マ補正後α) 、 (5) 、 (8)式の各係数を乗
じた出力となる。
That is, FIG. 3 is a block diagram of a circuit for synthesizing a luminance signal and a color difference signal according to the present invention.
In the figure, 10, 11° and 12 are digitized beast, G, and B primary color signal input terminals, respectively.
Each is connected to the memory IJ-11. These memories 11 to 11 are memories like memos 9MJ to MJ in Figure 1, respectively, and their outputs are multiplied by the coefficients of equations α), (5), and (8) after 1 nigamma correction as described above. This becomes the output.

これらのメモリ11〜15の出力は輝度信号合成回路1
6.1色差信号合成回路JF、Q色差信号合成回路11
に送られ、そこでなんら係数な端じることなく(すなわ
ちレフトなどの操作なく)加減算を行うことによって輝
度信号II、および!色差信号2o%q色差信号11の
ディジタル値出方を得ることができるようになっている
The outputs of these memories 11 to 15 are sent to the luminance signal synthesis circuit 1.
6.1 Color difference signal synthesis circuit JF, Q color difference signal synthesis circuit 11
The luminance signal II and ! are sent to the luminance signal II and ! It is possible to obtain the digital value output of the color difference signal 2o%q color difference signal 11.

以上から明らかなように、メモリの各アドレス内容は所
定のガンマ補正後(約0.45)(IL(5) 、 (
@式の係数を乗じた理想値を配憶させることができる。
As is clear from the above, the contents of each address in the memory are after predetermined gamma correction (approximately 0.45) (IL(5), (
The ideal value multiplied by the coefficient of the @ expression can be stored.

一方、ディジタル値のビット数は有限であるから実際生
じる誤差は±1/Ll!Bとなる。すなわち8ビツトは
約±0.2%10ビツトでは±O,OS%の高精度でガ
ンマ補正とカラーコーダのマトリックス演算が同時に行
うことができる。
On the other hand, since the number of bits of a digital value is finite, the actual error that occurs is ±1/Ll! It becomes B. That is, gamma correction and color coder matrix calculation can be performed at the same time with a high precision of approximately ±0.2% for 8 bits and ±0.0OS% for 10 bits.

このことはディジタル化された複数の原色映像信号から
ガンマ補正、カラーコーダマトリックス演算部の構成を
簡単にし、かつ精度向上による色再現性の向上をもたら
し、しかも回路の小型化、消費電力低減、生産コストの
低減な計ることができ、あわせて信頼性向上をもたらす
ことができる。
This simplifies the configuration of the color coder matrix calculation unit that performs gamma correction from multiple digital primary color video signals, and improves color reproducibility due to improved accuracy.In addition, it reduces circuit size, reduces power consumption, and improves productivity. It is possible to reduce costs and improve reliability.

また原色映像信号はml、G、Bでない他の方式コニお
いても同様の手法が用いられるし1色差信号としてR−
Y、B−Yなど!、Q以外を用いるときも有効であるこ
とは云うまでもない。
In addition, the same method is used for primary color video signals other than ml, G, and B, and R-
Y, B-Y etc! , it goes without saying that it is also effective when using other than Q.

以上のように、この発明の映像処理回路によれば、カラ
ーテレビジ璽ンカメラ億二おいて、ディジタル化された
原色映像信号をアドレス選択信号として各読み出し専用
メモツC二人力してガンマ補正と同時にそれぞれ輝度信
号、I色差信号、Q!!1!信号を得るための係数を乗
じて、それぞれディジタル値の輝度信号成分、!色差信
号成分、Q色差信号成分を出方するようにしたので、高
精度でガンマ補正とカラーコーダのマトリックス演算を
同時に行うことができる。
As described above, according to the video processing circuit of the present invention, in a color television camera, two people simultaneously perform gamma correction on each read-only note C using a digitized primary color video signal as an address selection signal. Luminance signal, I color difference signal, Q! respectively. ! 1! Luminance signal component of each digital value, multiplied by a coefficient to obtain the signal! Since the color difference signal component and the Q color difference signal component are output, gamma correction and color coder matrix calculation can be performed simultaneously with high precision.

これにともない、ガシマ補正、カラーコーダおよびマ)
lックス演算部の構成の簡略化と高精度による色再現性
を向上および高信頼性を得ることができるとともに、小
型化および低消費電力化を期することができるものであ
る。
Along with this, Gashima correction, color coder and
It is possible to improve color reproducibility and obtain high reliability due to the simplification and high precision of the configuration of the lux calculation unit, and also to achieve miniaturization and low power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1@Iはこの発明の映像処理回路における輝度信号、
■色差信号およびQ色差信号のに原色映像信号成分を得
る回路のブロック図、第2図は第1図の回路におけるR
原色映倫信号の映像レベルにガンマ補正を施したときl
:得られるガyマ畳性な示すO3,第3図はこの発明の
映像処1IIi回路における輝度信号、■色差信号、q
6色差信号の合成を行うブロック図である。 J−vH・・・R原色映倫信号入力端子、M1〜Ml、
11〜15・・・メモリ、1#・・・輝度信号合成回路
、JP・・・I色差信号合成回路、1#・・・Q色差信
号合成回路。 出願人代理人 弁理士 鈴 圧式 彦 特許庁長官   島 1)春 樹  殿1.事件の表示 特願昭56−118738号ゝ 2、発明の名称 映像処理回路 3、補正をする者 事件との関係 特許出願人 (307)東京芝浦電気株式会社 5、自発補正 76、補正の内容 明細書第3頁第8行の rEY=0.3OtR十0.59EI+0.00Eト(
IIJを「Ey=0.30M &+0.59E優+0.
11E ト・・(IIJと補正する。
The first @I is a luminance signal in the video processing circuit of the present invention,
■A block diagram of a circuit that obtains primary color video signal components from color difference signals and Q color difference signals.
When gamma correction is applied to the video level of the primary color signal
:O3 showing the obtained gamut characteristics, FIG.
FIG. 2 is a block diagram for synthesizing six color difference signals. J-vH...R primary color signal input terminal, M1 to Ml,
11 to 15...Memory, 1#...Luminance signal synthesis circuit, JP...I color difference signal synthesis circuit, 1#...Q color difference signal synthesis circuit. Applicant's agent Patent attorney Suzu Ushiki Hiko Shima, Commissioner of the Patent Office 1) Haruki Tono1. Indication of the case Japanese Patent Application No. 118738/1982, Name of the invention Video processing circuit 3, Person making the amendment Relationship to the case Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 5, Voluntary amendment 76, Details of the amendment rEY on page 3, line 8 of the book = 0.3OtR10.59EI+0.00E (
IIJ as “Ey=0.30M &+0.59E excellent+0.
11E... (Corrected as IIJ.

Claims (1)

【特許請求の範囲】[Claims] カラーテレビジ璽ンカメラにおいて所定ビットにディジ
タル化された原色映像信号管アドレス選択信号として入
力してこのディジタル化さ゛れた原色映倫信号のガンマ
補正を行った値1;輝度信号成分を得るための係数を乗
じてディジタル値の輝度信号成分を出力する第1の読み
出し専用記憶手段と、上記ディジタル化された原色映倫
信号をアドレス選択信号として入力してこのディジタル
化された原色映像信号のガンマ補正を行った値に1色差
信号を得るための係数を乗じてディジタル値の1色差信
号を出力する第2の読み出し専用記憶手段と、上記ディ
ジタル化された原色映倫信号をアドレス選択信号として
入力してこのディジタル化された原色映像信号にガンマ
補正を行った値にQ色差信号を得るを出力する第3の読
み出し専用記憶手段とよりなる映像処理回路。
The value 1 is the value 1 obtained by inputting the digitized primary color video signal tube address selection signal into a predetermined bit in a color television camera and performing gamma correction on this digitized primary color video signal; the coefficient for obtaining the luminance signal component. a first read-only storage means for outputting the luminance signal component of the digital value after multiplication; and gamma correction of the digitized primary color video signal by inputting the digitized primary color video signal as an address selection signal. a second read-only storage means for outputting a digital one-color difference signal by multiplying the value by a coefficient for obtaining a one-color difference signal; and a second read-only storage means for outputting a digital one-color difference signal; A video processing circuit comprising third read-only storage means for outputting a value obtained by performing gamma correction on the primary color video signal to obtain a Q color difference signal.
JP56118738A 1981-07-29 1981-07-29 Video processing circuit Pending JPS5820094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118738A JPS5820094A (en) 1981-07-29 1981-07-29 Video processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118738A JPS5820094A (en) 1981-07-29 1981-07-29 Video processing circuit

Publications (1)

Publication Number Publication Date
JPS5820094A true JPS5820094A (en) 1983-02-05

Family

ID=14743842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118738A Pending JPS5820094A (en) 1981-07-29 1981-07-29 Video processing circuit

Country Status (1)

Country Link
JP (1) JPS5820094A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211394A (en) * 1983-05-16 1984-11-30 Sony Corp Digital color encoder
JPS60114097A (en) * 1983-11-25 1985-06-20 Matsushita Electric Ind Co Ltd Correction circuit of color difference signal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121786A (en) * 1979-03-14 1980-09-19 Matsushita Electric Ind Co Ltd Color television signal transmission system
JPS5762685A (en) * 1980-10-03 1982-04-15 Nippon Telegr & Teleph Corp <Ntt> Signal generator in color television system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55121786A (en) * 1979-03-14 1980-09-19 Matsushita Electric Ind Co Ltd Color television signal transmission system
JPS5762685A (en) * 1980-10-03 1982-04-15 Nippon Telegr & Teleph Corp <Ntt> Signal generator in color television system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59211394A (en) * 1983-05-16 1984-11-30 Sony Corp Digital color encoder
JPS60114097A (en) * 1983-11-25 1985-06-20 Matsushita Electric Ind Co Ltd Correction circuit of color difference signal

Similar Documents

Publication Publication Date Title
US5008739A (en) Real-time digital processor for producing full resolution color signals from a multi-color image sensor
KR100359181B1 (en) A memory based vlsi architecture for image compression
US4789892A (en) Color adjusting device including matrix-masking circuitry
JPH0865546A (en) Circuit and method for generating shading correction coefficient
US7351946B2 (en) Semiconductor integrated circuit device and imaging system
US6934411B2 (en) Method and apparatus for RGB color conversion that can be used in conjunction with lossless and lossy image compression
JPS5820094A (en) Video processing circuit
Gordon et al. A low-power multiplierless YUV to RGB converter based on human vision perception
JPS6390283A (en) Contour compensating circuit
Parulski et al. A digital color CCD imaging system using custom VLSI circuits
JP2001320591A (en) Color balance adjustment method and device, and recording medium
US20030081832A1 (en) Color conversion method, color conversion apparatus, color conversion matrix generation method and color conversion matrix generation program
JPS585079A (en) Image processor
JP2650969B2 (en) Digital television camera device
JPS6148275A (en) Picture signal processor
JPH05211659A (en) Gamma correcting circuit and method
KR950005067B1 (en) Apparatus for compensating color regeneration of digital video camera
JPH0369239B2 (en)
JPS58151176A (en) Video signal processor
JP2828901B2 (en) Color space conversion method and apparatus
JPS61263372A (en) Arithmetic processing system
JP2625750B2 (en) Digital mixer
JPH01305792A (en) Correction device
JPH03154980A (en) Chrominance signal covnerting circuit
JPS6160068A (en) Color masking device