JPH0369239B2 - - Google Patents

Info

Publication number
JPH0369239B2
JPH0369239B2 JP57028521A JP2852182A JPH0369239B2 JP H0369239 B2 JPH0369239 B2 JP H0369239B2 JP 57028521 A JP57028521 A JP 57028521A JP 2852182 A JP2852182 A JP 2852182A JP H0369239 B2 JPH0369239 B2 JP H0369239B2
Authority
JP
Japan
Prior art keywords
signal
circuit
signals
color
primary color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57028521A
Other languages
Japanese (ja)
Other versions
JPS58146192A (en
Inventor
Junichi Yamanaka
Taizo Nishino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57028521A priority Critical patent/JPS58146192A/en
Publication of JPS58146192A publication Critical patent/JPS58146192A/en
Publication of JPH0369239B2 publication Critical patent/JPH0369239B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Description

【発明の詳細な説明】 〔発明の技分野〕 この発明は例えばデイジタル化された原色映像
信号より揮度信号および色差信号を生成するカラ
ーコーダマトリクス回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a color coder matrix circuit that generates volatility signals and color difference signals from, for example, digitized primary color video signals.

〔発明の技術術的背景とその問題点〕[Technical background of the invention and its problems]

周知のように、従来実用に供されているこの種
のカラーコーダマトリクス回路はアナログ信号処
理によるもので、赤,緑,青(以下、R,G,B
と略記する)の原色映像信号から輝度信号や色差
信号を抵抗ネツトワークとトランジスタからなる
マトリクス回路によつて得ている。このため、マ
トリクス回路の各係数は抵抗の精度および温度変
化や経時変化、さらにはトランジスタにおける各
パラメータの変動による入出力インピーダンス変
動の影響を受けることになり、実際の運用におい
ては煩雑な日常調整や日常点検を必要としてい
た。また、調整や点検を行なうため多くの可変調
整器、例えば可変抵抗が使用されており、この可
変抵抗がさらに変動要素となつたり故障率を高め
る要因となるといつた矛盾を生じている。
As is well known, this type of color coder matrix circuit that has been used in practice is based on analog signal processing, and is based on red, green, blue (hereinafter referred to as R, G, B).
The luminance signal and color difference signal are obtained from the primary color video signal (abbreviated as ) by a matrix circuit consisting of a resistor network and transistors. For this reason, each coefficient of the matrix circuit is affected by resistance accuracy, temperature changes, changes over time, and input/output impedance fluctuations due to changes in each parameter of the transistor.In actual operation, complicated daily adjustments and Daily inspection was required. Furthermore, many variable regulators, such as variable resistors, are used for adjustment and inspection, and this creates a contradiction in that the variable resistors become even more variable elements and become a factor that increases the failure rate.

このため、近年デイジタル方式のカラーコーダ
が多数開発されている。この場合、マトリクス回
路の係数は近似計算によつて求められ、デイジタ
ル化されたR,G,B原色映像信号がビツトシフ
ト演算と加減算の組み合せによつて近似的に求め
られる。即ち、例えばNTSC方式による輝度信号
YはR,G,Bの各原色映像信号から次式 Y=0.30R+0.59G+0.11B …(1) によつて合成される。デイジタル化されたR,
G,Bの各原色映像信号より(1)式の演算を行なう
場合、前記シフト演算と加減算による計算例は次
のようになる。
For this reason, many digital color coders have been developed in recent years. In this case, the coefficients of the matrix circuit are obtained by approximate calculation, and the digitized R, G, B primary color video signals are approximately obtained by a combination of bit shift operation and addition/subtraction. That is, for example, the luminance signal Y according to the NTSC system is synthesized from the R, G, and B primary color video signals according to the following equation: Y=0.30R+0.59G+0.11B (1). digitized R,
When the calculation of equation (1) is performed using the G and B primary color video signals, an example of calculation using the shift calculation and addition/subtraction is as follows.

0.30≒2-2+2-4=0.3125 …(2) 0.59≒2-1+2-4=0.5625 …(3) 0.11≒2-3=0.125 …(4) このような計算では、Rの係数について約4
%,Gの係数について約−4.7%,Bの係数につ
いては約13.6%の誤差が生ずる。これは既存のア
ナログ方式によるマトリクス係数が0.5%程度の
誤差で設計され、且つ、1%程度の誤差に調整、
確認されていることに比べると極めて大きな誤差
となつている。また、この誤差は色差信号を合成
するマトリクス回路についても同様のことが言え
る。したがつて、従来のデイジタル方式カラーコ
ーダは色再現というカラーテレビジヨンカメラの
重要な特性がアナログ方式に比べて劣るものでで
あつた。この特性精度を高めるためにはさらに多
くのシフト演算、加減算を要することになり、回
路構成が複雑化して信頼性が低下するものであつ
た。
0.30≒2 -2 +2 -4 =0.3125 …(2) 0.59≒2 -1 +2 -4 =0.5625 …(3) 0.11≒2 -3 =0.125 …(4) In such a calculation, the coefficient of R is approximately 4
%, an error of about -4.7% for the coefficient of G, and an error of about 13.6% for the coefficient of B. This is because the matrix coefficients of the existing analog method are designed with an error of about 0.5%, and are adjusted to an error of about 1%.
This is an extremely large error compared to what has been confirmed. Further, this error can be similarly applied to a matrix circuit that synthesizes color difference signals. Therefore, conventional digital color coders are inferior to analog color coders in color reproduction, which is an important characteristic of color television cameras. In order to improve the precision of this characteristic, more shift operations, additions and subtractions are required, which complicates the circuit configuration and reduces reliability.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情に基づいてなされたもの
で、その目的とするところは構成簡単にして所定
のテレビジヨン放送方式において規定された係数
の理想値に極めて近似した高精度の輝度信号およ
び色差信号を得ることが可能なカラーコーダマト
リクス回路を提供しようとするものである。
The present invention has been made based on the above circumstances, and its purpose is to provide highly accurate luminance signals and color difference signals that are extremely close to the ideal values of coefficients specified in a predetermined television broadcasting system by simplifying the configuration. The present invention is intended to provide a color coder matrix circuit that can be obtained.

〔発明の概要〕[Summary of the invention]

この発明は例えば記憶回路にデイジタル化され
たR,G,Bの原色映像信号にNTSC方式の輝度
信号、色差信号を得るために必要な係数を乗算し
た値を記憶しておき、この値をデイジタル化され
た原色映像信号によつてそれぞれアドレス指定し
て読出し、これら読出された信号を加減算して所
要の輝度信号および色差信号を得るものでであ
る。
This invention stores, for example, in a storage circuit a value obtained by multiplying a digitalized R, G, and B primary color video signal by a coefficient necessary to obtain an NTSC luminance signal and a color difference signal, and then stores this value in a digital signal. Each address is designated and read out using the converted primary color video signal, and these read out signals are added and subtracted to obtain the required luminance signal and color difference signal.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例について図面を参照
して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図はRの原色映像信号より輝度信号Y,色
差信号IおよびQのRによる成分を得るものであ
る。輝度信号YのRによる成分RYは(1)式中の
0.30Rによつて示され、色差信号I,QのRによ
る成分RI,RQは次式 I=0.60R−0.28G−0.32B …(5) Q=0.21R−0.52G+0.31B …(6) における0.60R,0.21Rで示される。図中11,
12,13はそれぞれ読出し専用記憶回路(以
下、ROMと略記する)である。このROM11,
12,13はそれぞぞれnビツトでデイジタル化
されたRの原色映像信号によつてアドレス指定さ
れ、このアドレス指定後、読出しタイミングを指
定するクロツク信号CLKによつて指定されたア
ドレスの記憶内容が読出される。このROM1
1,12,13にはそれぞれRの原色映像信号の
10進数表示に前記0.30,0.60,0.21を乗じた数値
の2進数値RY1〜RYo,RI1〜RIo,RQ1〜RQo
1番地からn番地までに記憶される。したがつ
て、アドレス指定に応じてROM11,12,1
3からはアドレスに対応した信号に0.30,0.60,
0.21が乗算された輝度信号Y,色差信号I,Qの
Rによる成分RY1〜RYo,RI1〜RYo,RQ1
RQoが出力される。
In FIG. 1, R components of a luminance signal Y and color difference signals I and Q are obtained from an R primary color video signal. The component RY of the luminance signal Y due to R is expressed in equation (1).
0.30R, and the components RI and RQ of color difference signals I and Q due to R are as follows: I=0.60R−0.28G−0.32B…(5) Q=0.21R−0.52G+0.31B…(6) It is indicated by 0.60R and 0.21R. 11 in the figure,
12 and 13 are read-only memory circuits (hereinafter abbreviated as ROM), respectively. This ROM11,
12 and 13 are each addressed by an R primary color video signal digitized with n bits, and after this address designation, the memory contents at the address designated by the clock signal CLK that designates the read timing are Read out. This ROM1
1, 12, and 13 each have an R primary color video signal.
Binary values RY 1 to RY o , RI 1 to RI o , and RQ 1 to RQ o obtained by multiplying the decimal number by the above-mentioned 0.30, 0.60, and 0.21 are stored at addresses 1 to n. Therefore, depending on the address specification, ROM11, 12, 1
From 3 onwards, the signal corresponding to the address is 0.30, 0.60,
Components of luminance signal Y, color difference signals I, and Q multiplied by 0.21 due to R RY 1 ~RY o , RI 1 ~RY o , RQ 1 ~
RQ o is output.

上記構成をGの原色映像信号,Bの原色映像信
号に適用することにより、(1)式,(5)式,(6)式の2
項,3項に相当する輝度信号YのG,B成分
GY,BYおよび色差信号I,QのG,B成分GI,
GQ,BQが得られる。これら各信号成分を合成
することにより輝度信号Y,色差信号I,Qを得
ることができる。
By applying the above configuration to the G primary color video signal and the B primary color video signal, 2 of equations (1), (5), and (6) can be obtained.
G and B components of the luminance signal Y corresponding to terms 3 and 3
GY, BY and G, B components GI of color difference signals I, Q,
GQ and BQ are obtained. By combining these signal components, a luminance signal Y and color difference signals I and Q can be obtained.

第2図はその構成を示すものである。図中3
1,32,33はそれぞぞれnビツトでデイジタ
ル化されたR,G,Bの原色映像信号によつてア
ドレス指定され、RY,RI,RQ,GY,GI,GQ,
BY,BI,BQなる各信号成分を出力する記憶回
路であり、第1図と同一構成のものである。この
記憶回路31,32,33の出力のうち輝度信号
成分RY,GY,BYはデイジタル加算回路34に
供給され、I,Q信号成分RI,GI,BIおよび
RQ,GQ,BQはそれぞれデイジタル加減算回路
35,36に供給される。しかして、加算回路3
4では(1)式に相当する演算が行なわれて輝度信号
Yが出力され、加減算回路35,36では(5)式,
(6)式に相当する演算がそれぞれ行なわれて色差信
号I,Qが出力される。
FIG. 2 shows its configuration. 3 in the diagram
1, 32, and 33 are respectively addressed by R, G, and B primary color video signals digitized with n bits, and RY, RI, RQ, GY, GI, GQ,
This is a memory circuit that outputs signal components BY, BI, and BQ, and has the same configuration as that in FIG. 1. Among the outputs of the memory circuits 31, 32, 33, the luminance signal components RY, GY, BY are supplied to the digital adder circuit 34, and the I, Q signal components RI, GI, BI and
RQ, GQ, and BQ are supplied to digital addition/subtraction circuits 35 and 36, respectively. Therefore, adder circuit 3
4, the calculation corresponding to equation (1) is performed and the luminance signal Y is output, and the addition/subtraction circuits 35 and 36 calculate equation (5),
Calculations corresponding to equation (6) are performed, and color difference signals I and Q are output.

上記構成によれば、nビツトでデイジタル化さ
れたR,G,Bの原色映像信号それぞれにNTSC
方式の変換に要する係数値を乗算し、この値をそ
れぞれROMに記憶している。このROMにそれ
ぞれ記憶したデイジタル値は有限のビツト数であ
るため(1)式,(5)式,(6)式の理想値に対して±1/2
LSBの誤差が生じる。しかし、この誤差は原色
映像信号を8ビツトでデイジタル化した場合約±
0.2%,10ビツトでデイジタル化した場合約±
0.05%であるため、従来のアナログ方式あるいは
デイジタル方式のカラーコーダマトリクス回路に
比べて極めて高精度の輝度信号および色差信号を
得ることができる。
According to the above configuration, each of the R, G, and B primary color video signals digitized with n bits is converted to NTSC.
They are multiplied by the coefficient values required for system conversion, and these values are stored in the ROM. Since each digital value stored in this ROM is a finite number of bits, it is ±1/2 of the ideal value of equations (1), (5), and (6).
LSB error occurs. However, this error is about ± when the primary color video signal is digitized with 8 bits.
Approximately ± when digitized at 0.2%, 10 bits
Since it is 0.05%, it is possible to obtain luminance signals and color difference signals with extremely high precision compared to conventional analog or digital color coder matrix circuits.

尚、上記実施例ではR,G,Bの原色映像信号
よりNTSC方式の各信号を得る場合について説明
したが、これに限らず原色映像信号がR,G,B
以外の他の方式についてもマトリクスの係数を変
えることにより同様に行ない得る。また、色差信
号を例えばR−Y,B−Yに変換することもマト
リクスの係数を変えることにより可能である。即
ち、カラーコーダマトリクス回路の主たる信号源
であるカラーテレビジヨンカメラの原色映像信号
がR,G,B方式やY,R,B方式と異なる場合
でもROMの記憶内容を変えることにより大幅な
構成変更をしなくとも対処できる利点を有してい
る。但し、この場合ROMに代えて例えばプログ
ラマブル読出し専用記憶回路(P−ROM)等、
記憶内容を書換え可能な記憶回路とする必要があ
る。
In the above embodiment, the case where each signal of the NTSC system is obtained from the primary color video signals of R, G, and B was explained, but the present invention is not limited to this.
The same method can be applied to other methods by changing the coefficients of the matrix. Furthermore, it is also possible to convert the color difference signal into, for example, RY, BY by changing the coefficients of the matrix. In other words, even if the primary color video signal of the color television camera, which is the main signal source of the color coder matrix circuit, is different from the R, G, B system or the Y, R, B system, it is possible to make a major configuration change by changing the stored contents of the ROM. It has the advantage that it can be dealt with without having to do so. However, in this case, instead of ROM, for example, a programmable read-only memory circuit (P-ROM), etc.
It is necessary to use a memory circuit whose memory contents can be rewritten.

また、ROMにはγ補正を行なつた数値を記憶
してもよい。このようにすれば前段の回路構成を
簡単化することが可能である。
Further, the ROM may store numerical values subjected to γ correction. In this way, it is possible to simplify the circuit configuration of the previous stage.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したようにこの発明によれば、構成
簡単にして所定のテレビジヨン放送方式において
規定された係数の理想値に極めて近似した高精度
の輝度信号および色差信号を得ることが可能なカ
ラーコーダマトリクス回路を提供できる。
As detailed above, according to the present invention, it is possible to obtain highly accurate luminance signals and color difference signals that are very close to the ideal values of coefficients specified in a predetermined television broadcasting system with a simple configuration. A coder matrix circuit can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明に係わるカラーコーダマトリク
ス回路の一実施例を示すもので、第1図は記憶回
路の構成を示す図、第2図はカラーコーダマトリ
クス回路の構成を示す図である。 31,32,33……記憶回路、34……加算
回路、35,36……加減算回路。
The drawings show an embodiment of a color coder matrix circuit according to the present invention, with FIG. 1 showing the configuration of a memory circuit, and FIG. 2 showing the configuration of the color coder matrix circuit. 31, 32, 33...memory circuit, 34...addition circuit, 35, 36...addition/subtraction circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 デイジタル化された複数の映像信号に所定の
テレビジヨン放送方式に対応した変換係数がそれ
ぞれ乗算されこの乗算値がそれぞれ記憶されてお
り、この値が前記対応するデイジタル化された映
像信号によりそれぞれアドレス指定されて読出さ
れる記憶回路と、この記憶回路の出力信号をそれ
ぞれ加減算して前記テレビジヨン放送方式に一致
した信号を出力する手段とを具備したことを特徴
とするカラーコーダマトリクス回路。
1 A plurality of digitized video signals are each multiplied by a conversion coefficient corresponding to a predetermined television broadcasting system, and each of these multiplied values is stored, and this value is individually addressed by the corresponding digitized video signal. 1. A color coder matrix circuit comprising: a memory circuit that is specified and read; and means for adding and subtracting output signals of the memory circuit and outputting a signal conforming to the television broadcasting system.
JP57028521A 1982-02-24 1982-02-24 Color coder matrix circuit Granted JPS58146192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028521A JPS58146192A (en) 1982-02-24 1982-02-24 Color coder matrix circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028521A JPS58146192A (en) 1982-02-24 1982-02-24 Color coder matrix circuit

Publications (2)

Publication Number Publication Date
JPS58146192A JPS58146192A (en) 1983-08-31
JPH0369239B2 true JPH0369239B2 (en) 1991-10-31

Family

ID=12250971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028521A Granted JPS58146192A (en) 1982-02-24 1982-02-24 Color coder matrix circuit

Country Status (1)

Country Link
JP (1) JPS58146192A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2748441B2 (en) * 1988-10-14 1998-05-06 日本電気株式会社 Video signal conversion circuit
JPH02143694A (en) * 1988-11-24 1990-06-01 Nec Corp Picture signal conversion circuit
JP2763336B2 (en) * 1989-06-07 1998-06-11 キヤノン株式会社 Color information signal processing device

Also Published As

Publication number Publication date
JPS58146192A (en) 1983-08-31

Similar Documents

Publication Publication Date Title
US4727506A (en) Digital scaling circuitry with truncation offset compensation
US4534059A (en) Method for correcting gradation of output data, for use in a picture digital processing system
KR880001553B1 (en) Controlled ram signal processor
KR100215150B1 (en) Gamma correction circuit
US4523221A (en) TV Receiver circuitry for performing chroma gain, auto-flesh control and the matrixing of I and Q signals to (R-Y), (B-Y) and (G-Y) signals
US7847973B2 (en) Color mapping circuit
JPH0369239B2 (en)
JPS60216670A (en) Color correcting system
US5644365A (en) Method and circuit for generating a composite video signal
US8130323B2 (en) Closed loop DAC calibration
GB2236639A (en) Television automatic colour balance correction circuit
JPS6390283A (en) Contour compensating circuit
US5283670A (en) Hardware implementation of an HDTV color corrector
JPH09148931A (en) Correction circuit for d/a converter
JPS62256516A (en) Filter device for base band transmission
JP2828901B2 (en) Color space conversion method and apparatus
JPH05211659A (en) Gamma correcting circuit and method
JPS60114097A (en) Correction circuit of color difference signal
JPS5820094A (en) Video processing circuit
JPH06197239A (en) Digital gamma correcting circuit
JPS615625A (en) Correcting device for linearity of da converter
JPH0223778A (en) Digital television camera device
JPS6156930B2 (en)
JPS60210029A (en) Temperature correction type digital-analog converter
JPS60197088A (en) Processing circuit of color video signal