JPS58199834A - Preliminary reduction method of chromium ore - Google Patents

Preliminary reduction method of chromium ore

Info

Publication number
JPS58199834A
JPS58199834A JP57080849A JP8084982A JPS58199834A JP S58199834 A JPS58199834 A JP S58199834A JP 57080849 A JP57080849 A JP 57080849A JP 8084982 A JP8084982 A JP 8084982A JP S58199834 A JPS58199834 A JP S58199834A
Authority
JP
Japan
Prior art keywords
reduction
ore
furnace
preliminary
chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57080849A
Other languages
Japanese (ja)
Other versions
JPS6136574B2 (en
Inventor
Hisamitsu Koitabashi
小板橋 寿光
Hisao Hamada
浜田 尚夫
Toshihiro Inatani
稲谷 稔宏
Nobuo Tsuchitani
槌谷 暢男
Eiji Katayama
英司 片山
Shiko Takada
高田 至康
Mitsuo Kadoto
角戸 三男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57080849A priority Critical patent/JPS58199834A/en
Publication of JPS58199834A publication Critical patent/JPS58199834A/en
Publication of JPS6136574B2 publication Critical patent/JPS6136574B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To produce ferrochromium inexpensively in a high yield, by constituting a preliminary reduction furnace for chromium ore by segmenting the same into a reaction region where FeO is reduced preferentially and a reaction region where the reduction of mainly Cr2O3 is accelerated. CONSTITUTION:Chromium ore 2 and a carboneous material 3 are charged into a preliminary reduction furnace 1 for reduction of iron oxide, and the waste gas (CO+N2) 4 generated in a melt reduction furnace, gasous H2 and the waste gases 7, 8 generated from a preliminary reduction furnace 9 for reduction of chromium oxide are introduced into said furnace, where the fluidized reduction of mainly FeO is accomplished. When the preliminary reduction of the FeO progresses to a certain extent, the preliminarily reduced ore is transferred through a connecting pipe 6 into the furnace 9, where a CH4-contg. gas 12 is introduced together with the waste gas (CO+N2) 10 generated in the melt reduction furnace to the ore and the reduction of Cr2O3 is accomplished. The ore upon completion of the preliminary reduction is transferred with a transport pipe 11 to the melt reduction furnace.

Description

【発明の詳細な説明】 この発明は、クロム鉱石の予備還元法に関するもOであ
り、とくに予備還元炉をr・0を優先して115elせ
る反応域と主としてOr、O,の還元を促進畜せる反応
域とに区分した構成にして、3段階で予備遺児する方法
について提案する・クロム鉱石の資源は低品位化、看鉱
化の傾向にあゐ。クロム鉱石の製伊によるフェロクロム
の製造は通常電気炉によっているが、電力原単位は数千
に111/lにも達し、きわめてコスト高となる・最近
は電力によらないフェロクロムその他の合金鉄製造技術
としての溶融還元法が注目されている・本発明者らはさ
きに予備還元炉と溶融還元炉とを直結した装Wlを用い
、溶融還元炉発生排ガスを利用して粉粒状鉱石から直接
溶融金属を製造する方法について4?願昭5o−sss
・4勺として提案したが、この方法は各種鉱石の製錬に
応用される技術であり、例えげクロム鉱石からフェロク
ロムを溶製するのに好適である。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for pre-reduction of chromium ore, and in particular, the pre-reduction furnace is equipped with a reaction zone that gives priority to r. We propose a three-stage preparation method with a structure divided into reaction zones and reaction zones.Chromium ore resources are trending toward lower grade and abandoned mineralization. Ferrochrome is usually manufactured using an electric furnace from chromium ore, but the electricity consumption rate reaches several thousand units per liter, making it extremely costly.Recently, ferrochrome and other ferroalloy manufacturing technologies that do not rely on electricity have been developed. The smelting reduction method is attracting attention as a smelting reduction method.The present inventors previously used a Wl system that directly connected a preliminary reduction furnace and a smelting reduction furnace to directly convert molten metal from powdered ore by using the exhaust gas generated by the smelting reduction furnace. 4. How to manufacture? Gansho 5o-sss
・Although this method was proposed as a fourth step, it is a technology that is applied to the smelting of various ores, and is suitable for smelting ferrochrome from chromium ore, for example.

しかし、クロム鉱石のような難還元性鉱石の予備遺児に
溶l@還元炉からの高温の排ガスを還元ガスとして使用
すると、酸化クロム(Or、08)の方が鉱石中に含ま
れる酸化鉄(FeO)に比し還元されにくいので、クロ
ム鉱石全体としての予備還元率が上がらないという間1
点があるO また本発明者らは、クロム鉱石の予備還元方法として重
油や石炭などを使って予備還元する方法について特開昭
6?−011851号として提案したが、この方法の場
合反応炉内温度を1100〜1800℃に保持した高温
での還元が必要であるため、もともと低い温度である溶
融還元炉からの排ガスtIs用するのであるから十分完
成された技術であるとけ言えない6 一方、このような事情からクロム鉱石をもつと低温で還
元する技術についての検討もなされ、例えば、その還光
剤としてメタン(OIL、)が有効であることが知られ
ているO 一般に、該0T14の還元力は、H,ooよりも優れて
いる。すなわち、反iai、’、:内温度1100℃に
おいて、Haoを用いてり゛=ゝ鉱石を還元する場合、
りpム鉱石中のF・0の還元&才よく進むが、GrOC
)i17cは著しく悪いOこれに対し、0−をS畠 用いると、r・O,Or、O,の両方の還元ともによく
進むのである・ここで問題と々るのは、このOH4を還
元ガスとして使用すると価格が高いのが欠点であるe 本発明は、少量のOH使用で上記の間一点を口重 避するようにしたことに併せ、高還元率を達成するため
に、O鉱石中のFeOとOr Oの還元性のr    
                 18ちがいに着目
して、難還元性のG r s・〕、の還元のみは0ガス
などのOR4含有ガスによって行い、易還元性のFeO
O還元は(30,H,によって行うようにしたことで、
従来技術の間髄点を解決したのである@その要点を述べ
ると、 り四ム鋼石を、流動層を構成させる予備還元炉にて、0
0と6を主成分とする溶融還元炉発生排ガスの導入によ
って予備還元する方法において、上記予備還元炉を、素
化鉄還元用予備還元域と酸化クロム豪元用予備還元域と
に区別して設け、まず、り關ム鉱゛石゛および縦材を、
−化鉄還元用予備還元域に装入しこむに溶融還元炉発生
排ガスおよび一化クロム還元用予備還元域発生排ガス【
好適例として用いる00. )!、 N、ガスを導入し
てその鉱石中の7eOの優先還元を行わせ、ついでその
予備還元後の鉱石をさらに上記酸化クロム還元用予備還
元域に移してここに導入する01(、含有ガスと上記溶
融還元炉発生排ガスにてOr、O,の還元を行わせるこ
とを特徴とするクロム鉱石の予備還元法である0以下に
本発明の構成の詳細を説明するO 図面の第1図は、長lに示す工うな種々の組成にかかる
還元ガス(ト4)についての還元率特性を示し、第S図
は従来法(OH,00,H,N、混合ガスの無段階透光
(l B 04+)’)と本発明5(OH4=後期(6
0分)、00.H,:前期(oo分)(F1段階還元)
との還元率曲線の比較を示す図であるO1!験は、クロ
ム鉱石s4を流動反応容器にて1100℃の温度で予備
還元したものである0 表 1      (供給ガス@ //win)なお、
第1図、tIIis図に使用した3種類の還元率は(1
)〜(8)式のように定義した0鉄道元率 R,、= 
aoe、Fe/’r、Fe x 100  (1)Or
還元率 Ror= sol、Or/T、Or x  1
00   (1)第1図から判ることは”(3r、RT
はCH4の増加とともに上昇するが、R1゜はOH4の
増加に対する上昇率は小さいa Rir。は、OH,を
使用せずに、00、H,の使用によって高い値になるが
、R0r#jOH4を使用しなければ高い値が得られな
い。R1を嶋い値にするにはR6rを高くする必要があ
り、そノタメにOH,は是非必要である。図中のIガス
の例は、本発明の実施例で、Co、1(、含有ガスとO
H4含有ガスを区別して使用するとき、全還元時間1f
fiO分の内の前半60分は、m1段階の酸化鉄還元用
予備還元炉にCo、T(、含有ガスを供給し、後半の6
0分は第2段階の酸化クロム還元用予備葉元炉にOH,
含有ガス(Cガス)を供給した。この実施例ではR7は
著しく向上した。
However, when high-temperature exhaust gas from a molten @ reduction furnace is used as a reducing gas for the remains of a hard-to-reducible ore such as chromium ore, chromium oxide (Or, 08) is more concentrated than iron oxide (ore) contained in the ore. Since it is difficult to reduce compared to FeO), the preliminary reduction rate of chromium ore as a whole does not increase.1
There is a point O Also, the present inventors have disclosed a method for preliminary reduction of chromium ore using heavy oil, coal, etc. This method was proposed as No. 011851, but since this method requires reduction at a high temperature while maintaining the temperature inside the reactor at 1100 to 1800°C, the exhaust gas tIs from the smelting reduction furnace, which is originally at a low temperature, is used. On the other hand, due to these circumstances, studies have been conducted on technology to reduce chromium ore at low temperatures; for example, methane (OIL) is effective as a reducing agent. Generally, the reducing power of 0T14 is better than that of H,oo. That is, when reducing the ore using Hao at an internal temperature of 1100°C,
Reduction of F・0 in Ripm ore & proceeding cleverly, but GrOC
) i17c is extremely bad O. On the other hand, when 0- is used, the reduction of both r, O, Or, and O progresses well. The problem here is that this OH4 is converted into a reducing gas. The disadvantage is that the price is high when used as a Reducing r of FeO and Or O
18 Focusing on the difference, only the reduction of G r s , which is difficult to reduce, was carried out using an OR4-containing gas such as 0 gas, and the reduction of G r s , which was easily reducible
O reduction was performed by (30,H,), so
This solution solved the key points of the conventional technology.
In the method of pre-reducing by introducing exhaust gas generated from a smelting reduction furnace containing 0 and 6 as main components, the pre-reduction furnace is provided separately into a pre-reduction area for elemental iron reduction and a pre-reduction area for chromium oxide. , First, the limestone and vertical members are
−The exhaust gas generated in the smelting reduction furnace and the exhaust gas generated in the preliminary reduction zone for chromium monoxide reduction are charged into the preliminary reduction zone for iron oxide reduction.
00. used as a preferred example. )! , N gas is introduced to perform preferential reduction of 7eO in the ore, and then the pre-reduced ore is further transferred to the pre-reduction zone for chromium oxide reduction and 01 (, containing gas and This is a preliminary reduction method for chromium ore characterized by reducing Or, O, in the exhaust gas generated by the smelting reduction furnace. Figure S shows the reduction rate characteristics of reducing gases (G4) with various compositions as shown in Fig. 04+)') and present invention 5 (OH4=late (6
0 minutes), 00. H,: Early period (oo minutes) (F1 stage reduction)
O1! is a diagram showing a comparison of reduction rate curves with O1! In the experiment, chromium ore s4 was pre-reduced at a temperature of 1100°C in a fluidized reaction vessel.0 Table 1 (Supplied gas @ //win)
The three types of reduction rates used in Figure 1 and tIIis diagram are (1
)~(8) 0 railway yuan rate defined as in formula R,,=
aoe, Fe/'r, Fe x 100 (1) Or
Reduction rate Ror= sol, Or/T, Or x 1
00 (1) What can be seen from Figure 1 is “(3r, RT
increases with the increase in CH4, but the rate of increase in R1° with respect to the increase in OH4 is small. can be obtained using 00,H, without using OH, but a high value cannot be obtained without using R0r#jOH4. In order to make R1 a low value, it is necessary to increase R6r, and for that reason, OH is absolutely necessary. The example of I gas in the figure is an example of the present invention.
When using H4-containing gas separately, the total reduction time is 1f.
The first 60 minutes of the fiO minute are used to supply Co, T (, and gases containing gas) to the preliminary reduction furnace for iron oxide reduction in the m1 stage,
0 minutes is OH to the preliminary furnace for chromium oxide reduction in the second stage.
Containing gas (C gas) was supplied. In this example, R7 was significantly improved.

また、第2図は表2に示す実験条件下での結果であるが
、0H4Tt最初から11k後まで流す従来法(Dガス
の例)に較べると、最初CO,H,ガスを60分流しそ
の後OH,を60分流す本発明法(Eガスの例)の方が
、90分を過ぎるとR1が高くなをことが判った。本発
明法の場合にR1が向上する理由は、■OH供給量が?
 //sinであり、従来法よ鳴 りも多い、■Or鉱石粒子lコに注目すると、本発明法
の場合、OH4を供給する前にFeOの還元が進んでい
るので、粒子内に気孔が生成しており、OH,にょるO
r、08還元の際にOH4の侵入が容易である仁とが挙
げられる。
In addition, Figure 2 shows the results under the experimental conditions shown in Table 2, but compared to the conventional method (example of D gas) in which 0H4Tt is flowed from the beginning until after 11k, CO, H, and gases are initially flowed for 60 minutes and then It was found that the method of the present invention (example of E gas) in which OH was flowed for 60 minutes had a higher R1 after 90 minutes. The reason why R1 improves in the case of the method of the present invention is because of ■OH supply amount?
//sin, and there is a lot of noise compared to the conventional method. Focusing on the Ore particles, in the case of the method of the present invention, reduction of FeO has progressed before OH4 is supplied, so pores are generated within the particles. OH, Nyoru O
r, which allows easy entry of OH4 during 08 reduction.

表  3 図面の第8図に、本発明の好適実施例である設備の例を
示す◎この設備は、FeO還元用の00゜■、ガスを、
溶l1lIIR元炉の排ガスならびに拳化クロム還元用
予備還元炉発生排ガスで賄い、一方該酸化クロム還元用
予備還元炉へは溶融還元炉発生排ガスとOH,ガスを用
いるようにした点に特色がある。図示の1は酸化鉄還元
用予備還元炉であり、ここではクロム鉱石2、炭材3が
装入されると、溶融還元炉発生排ガス(OO+N、)4
と、H,ガス6および酸化クロム還元用予備還元炉9か
らの発生排ガス7.8の導入によって主としてF・Oの
流動還元を行わせる。
Table 3 Figure 8 of the drawings shows an example of equipment that is a preferred embodiment of the present invention.
It is unique in that it is supplied with the exhaust gas from the molten IIR main furnace and the exhaust gas generated from the preliminary reduction furnace for reducing chromium oxide, while the exhaust gas generated from the smelting reduction furnace, OH, and gas are used for the preliminary reduction furnace for reducing chromium oxide. . 1 in the figure is a preliminary reduction furnace for iron oxide reduction, and here, when chromium ore 2 and carbonaceous material 3 are charged, the smelting reduction furnace generates exhaust gas (OO+N,) 4
By introducing H, gas 6, and generated exhaust gas 7.8 from the preliminary reduction furnace 9 for reducing chromium oxide, fluidized reduction of F.O is mainly performed.

その後、FeOの予備還元がある程度進行した段階で、
その予備還元鉱石を、下段に位瞳する酸化クロム還元用
予備還元炉9内に連結管6を通して移送し、こむに溶融
還元炉発生排ガス(OQ+M、)とともにOH含有ガス
1!を導入してOr、O,の還鳴 元を行わせ、こうして予備還元の終了した鉱石は輸送管
11にて、図示しない溶融還元炉へ移送するO 表8 りoム鉱石:フィリピン産クロム鉱石 組成: Or O49,24 8 FsOR08憾 粒径:98〜48M   ?、Gl係 48〜100M   8t$、?鴫 looM以下  51番優 (Mはメツシュである0) 表畠は本発明の効果を示すもので、従来法に比べると還
元率(R1)が向上していることが判る。
After that, when preliminary reduction of FeO has progressed to a certain extent,
The pre-reduced ore is transferred through the connecting pipe 6 into the pre-reduction furnace 9 for reducing chromium oxide located in the lower stage, and is then transferred to the smelting reduction furnace together with the exhaust gas (OQ+M) and the OH-containing gas 1! is introduced to perform the reduction of Or, O, and the pre-reduced ore is transferred to a smelting reduction furnace (not shown) via a transport pipe 11. Table 8 Rhium ore: Chromium ore from the Philippines Composition: Or O49,248 FsOR08 Particle size: 98~48M? , GL staff 48~100M 8t$,? Below M, No. 51 (M is mesh, 0) Omotabatake shows the effect of the present invention, and it can be seen that the reduction rate (R1) is improved compared to the conventional method.

以上要するに本発明の場合、少ないOH含有ガス番 使用量で低温還元であっても高い還元率が得られ、フェ
ロクロムが高歩留で安価に製造できる・
In summary, in the case of the present invention, a high reduction rate can be obtained even in low-temperature reduction with a small amount of OH-containing gas used, and ferrochrome can be produced at a high yield and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は還元ガス組成と還元率との関係を示すグラフ、 第2図は本発明法と従来法の比較を示す還元率と還元時
間の関係を示すグラフ、 第8図は本発明法で用匹る予備還元製蓋の略纏図である
。 l・・・酸化鉄還元用予備還元炉、 6・・・連結管、 9・・・酸化クロム還元用予備還元炉、11・・・輸送
管〇 第1図 第2図 □Dガλ(従粟
Figure 1 is a graph showing the relationship between reducing gas composition and reduction rate, Figure 2 is a graph showing the relationship between reduction rate and reduction time, showing a comparison between the present method and the conventional method, and Figure 8 is a graph showing the relationship between reducing gas composition and reduction rate. It is a schematic diagram of a pre-reduced lid for use. l...Preliminary reduction furnace for reducing iron oxide, 6...Connecting pipe, 9...Preliminary reduction furnace for reducing chromium oxide, 11...Transport pipe millet

Claims (1)

【特許請求の範囲】 1 クロム鉱石を、流動層を構成させる予備還元炉にて
、00とN、を主成分とする溶融量元炉発生排ガスの導
入によって予備還元する方法において、 上記予備還元炉を、酸化鉄還元用予備還元域と拳化りロ
ム還元用予備還元竣とに区別して設け、 まず、クロム鉱石および炭材t#化鉄遺元用予備還元域
に装入し、ここに00. H,M。 ガスを導入して鉱石中の1・0の優先還元を行わせ、次
いでその予備還元した鉱石【さらに上記酸化クロム還元
用予備還元域に移し、ζこに主としてOH含有ガスを導
入してOr、O。 の還元を行わせることを特徴とするクロム鉱石の予備還
元法◎
[Scope of Claims] 1. A method for pre-reducing chromium ore in a pre-reduction furnace forming a fluidized bed by introducing a melted amount of exhaust gas generated from the main furnace, the main components of which are 00 and N. are separated into a preliminary reduction zone for iron oxide reduction and a preliminary reduction zone for fistified ROM reduction. First, chromium ore and carbon material T# are charged into the preliminary reduction zone for iron oxide remains, and 00 .. H,M. A gas is introduced to perform preferential reduction of 1.0 in the ore, and then the pre-reduced ore is transferred to the above-mentioned pre-reduction zone for chromium oxide reduction, where mainly an OH-containing gas is introduced to reduce Or, O. A preliminary reduction method for chromium ore, which is characterized by reducing ◎
JP57080849A 1982-05-15 1982-05-15 Preliminary reduction method of chromium ore Granted JPS58199834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080849A JPS58199834A (en) 1982-05-15 1982-05-15 Preliminary reduction method of chromium ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080849A JPS58199834A (en) 1982-05-15 1982-05-15 Preliminary reduction method of chromium ore

Publications (2)

Publication Number Publication Date
JPS58199834A true JPS58199834A (en) 1983-11-21
JPS6136574B2 JPS6136574B2 (en) 1986-08-19

Family

ID=13729791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080849A Granted JPS58199834A (en) 1982-05-15 1982-05-15 Preliminary reduction method of chromium ore

Country Status (1)

Country Link
JP (1) JPS58199834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539251A (en) * 2013-10-21 2016-12-15 ケイ・ダブリュ・ジー リソーシーズ,インコーポレイテッド Direct production of chromium iron alloys from chromite ores

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016539251A (en) * 2013-10-21 2016-12-15 ケイ・ダブリュ・ジー リソーシーズ,インコーポレイテッド Direct production of chromium iron alloys from chromite ores

Also Published As

Publication number Publication date
JPS6136574B2 (en) 1986-08-19

Similar Documents

Publication Publication Date Title
CN101906501A (en) Direct steelmaking process by using fine ores, coal and oxygen
JPS622602B2 (en)
JPS6055574B2 (en) Method for recovering nonvolatile metals from metal oxide-containing dust
CN103343291B (en) Method for producing phosphorus weathering resistant steel from limonitic laterite ore
CA2408720C (en) Method and device for producing pig iron or liquid steel pre-products from charge materials containing iron ore
CN213507040U (en) Device for producing direct reduced iron by circularly reducing iron ore powder
JPS58199834A (en) Preliminary reduction method of chromium ore
US2107980A (en) Method for preparing iron and steel
JPS6220809A (en) Melt reduction method of iron ore
JPS5834114A (en) Manufacture of reduced iron
US3591364A (en) Reducing gas generation
RU2198937C2 (en) Method and device for production of metals and metallic alloys
JP2016044334A (en) Method of producing sintered ore
JPS62230923A (en) Manufacture of iron by smelting and reduction
US1543321A (en) Process for producing metals and alloys
JPS6156216A (en) Treatment of exhaust gas from melt reducing furnace
CN210506409U (en) System for preparing reduced iron from methanol tail gas
JP2828489B2 (en) Production method of chromium-containing hot metal
GB1508591A (en) Manufacture of alloy steels and ferrous alloys
JPS602362B2 (en) Iron oxide direct reduction method
ITMI991960A1 (en) PROCEDURE AND PLANT TO PRODUCE SPECIAL STEEL IRON
KR20240110832A (en) Associated networks of steelmaking methods and plants
JPH05214414A (en) Method for reducing ore or metal oxide at high speed
US1757298A (en) Process of producing low carbon alloys
JPS6132366B2 (en)