JPS602362B2 - Iron oxide direct reduction method - Google Patents

Iron oxide direct reduction method

Info

Publication number
JPS602362B2
JPS602362B2 JP55116801A JP11680180A JPS602362B2 JP S602362 B2 JPS602362 B2 JP S602362B2 JP 55116801 A JP55116801 A JP 55116801A JP 11680180 A JP11680180 A JP 11680180A JP S602362 B2 JPS602362 B2 JP S602362B2
Authority
JP
Japan
Prior art keywords
gas
reaction
furnace
temperature
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55116801A
Other languages
Japanese (ja)
Other versions
JPS5641306A (en
Inventor
守 青木
正博 富田
啓 宇都宮
博信 迫
伝太郎 金子
勝乗 嶋崎
良知 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP55116801A priority Critical patent/JPS602362B2/en
Priority to AR282462A priority patent/AR222720A1/en
Publication of JPS5641306A publication Critical patent/JPS5641306A/en
Publication of JPS602362B2 publication Critical patent/JPS602362B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/22Increasing the gas reduction potential of recycled exhaust gases by reforming
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は鉄鉱石等の酸化鉄を還元ガスにより固体還元し
て金属鉄を得る直接還元製鉄法、特に還元ガスを高効率
に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a direct reduction iron manufacturing method for producing metallic iron by solid reduction of iron oxide such as iron ore using a reducing gas, and particularly to a method for producing reducing gas with high efficiency.

直接還元製鉄技術は、発展途上国等を中Dにして小規模
製鉄技術として脚光を浴びて来ている。
Direct reduction steelmaking technology has been attracting attention as a small-scale steelmaking technology that has become a medium-sized technology in developing countries.

この中で堅型炉方式の直接還元製鉄法としてはミドレツ
クス法(米国特許3748120、37私123、36
17227等)、アームコ法(同3558118、総5
0616等)ピュロフアー法(同3883123 39
48646等)、新日鉄法(同4001010等)の方
式が知られている。これらの方式では還元ガス製造用ガ
スとして天然ガス等を主成分としたガスを使用し、この
ガスを改質炉にて改質して還元ガスとなしている。
Among these, the Midrex method (U.S. Pat. No. 3,748,120, 37 I 123, 36
17227, etc.), Armco method (3558118, total 5
0616 etc.) Purofur method (3883123 39
48646, etc.) and the Nippon Steel method (4001010, etc.) are known. In these systems, a gas mainly composed of natural gas or the like is used as the reducing gas production gas, and this gas is reformed in a reforming furnace to become the reducing gas.

この改質炉における改質反応の結果生成される還元ガス
は、一般に900qo以上のかなりの高温ガスであり、
還元炉特に堅型還元炉に吹き込むガスとしては高温にす
ぎる。そこで従釆は改質炉で生成された高温還元ガスを
ガス冷却器等で冷却調整するとか、あるいは冷却した還
元炉排ガスを混合して冷却調整するとかの手段を講ぜざ
るを得なかった。これらの冷却調整手段の結果、還元ガ
スの有する頭熱を損失するとか、あるいは還元ガスの還
元能力を劣化させるという問題があった。またメタン等
の炭化水素の数質において、酸化剤としてC02を用い
るときには特に敦質反応時に炭素析出の問題があり、還
元ガス製造においてはこの問題も解決しなければならな
い点となっている。
The reducing gas produced as a result of the reforming reaction in this reforming furnace is generally a considerably high temperature gas of 900 qo or more,
The temperature is too high for gas to be blown into a reduction furnace, especially a vertical reduction furnace. Therefore, the subordinates had no choice but to take measures such as adjusting the cooling of the high-temperature reducing gas produced in the reforming furnace using a gas cooler, or mixing the cooled reduction furnace exhaust gas to adjust the cooling. As a result of these cooling adjustment means, there is a problem that the head heat of the reducing gas is lost or the reducing ability of the reducing gas is deteriorated. Furthermore, in the case of hydrocarbons such as methane, when CO2 is used as an oxidizing agent, there is a problem of carbon precipitation, especially during the oxidation reaction, and this problem must also be solved in the production of reducing gas.

本発明は、直接還元製鉄法における上述の問題点を解消
しうる新しい還元ガス製造方式を含む直接還元製鉄法を
提供することを目的とする。
An object of the present invention is to provide a direct reduction iron manufacturing method including a new reducing gas production method that can solve the above-mentioned problems in the direct reduction iron manufacturing method.

更に詳しくは、改質反応の際の炭素析出の問題を解消し
うる方法を提供することを目的とする。更に、敬質炉に
て生成した高温教質ガスの有する顔熱を有効に利用して
、熱損失の低減・解消を図ることのできる方法を提供す
ることを目的とする。更に改質炉設備の低減を図ること
のできる方法を提供することを目的とする。このような
目的を達成する本発明は、メタンを主成分とするガスを
政質して得た還元ガスを還元炉に吹込んで酸化鉄を還元
して金属鉄を得る直接還元製鉄法において、改質すべき
メタンを主成分とするガスを二分し、その一方を還元炉
排ガスと混合して外熱型の触媒を充填した改質炉に供V
給して高溢改質ガスを生成せしめ、その他方を加熱して
上記高溢改質ガスと混合し、これら混合ガスの有する熱
を利用して、還元炉に吹き込まれる途中において触媒存
在下で吸熱反応である改質反応を起させ、この反応を通
じて冷却調整された還元ガスを得、この還元ガスを還元
炉に吹き込むことを特徴とする直接還元製鉄方法、であ
る。
More specifically, it is an object of the present invention to provide a method capable of solving the problem of carbon precipitation during a reforming reaction. Furthermore, it is an object of the present invention to provide a method capable of reducing and eliminating heat loss by effectively utilizing facial heat possessed by high-temperature teaching gas produced in a refining furnace. Furthermore, it is an object of the present invention to provide a method that can reduce the amount of reforming furnace equipment. The present invention achieves the above object by improving the direct reduction iron manufacturing method in which iron oxide is reduced to obtain metallic iron by blowing the reducing gas obtained by refining gas containing methane as the main component into a reduction furnace. The gas whose main component is methane to be reformed is divided into two parts, one of which is mixed with the reduction furnace exhaust gas and supplied to a reforming furnace filled with an externally heated catalyst.
The other part is heated and mixed with the above-mentioned high-flow reformed gas, and by using the heat of these mixed gases, it is blown into the reduction furnace in the presence of a catalyst. This is a direct reduction iron making method characterized by causing a reforming reaction which is an endothermic reaction, obtaining a cooling and regulated reducing gas through this reaction, and blowing this reducing gas into a reduction furnace.

本発明の方法では、まず敬質すべきメタンを主成分とす
るガスを二分してその一方を還元炉排ガスと混合して外
熱型の触媒を充填した改質炉に供給することとしている
In the method of the present invention, first, a gas whose main component is methane to be treated is divided into two parts, one of which is mixed with reduction furnace exhaust gas and supplied to a reforming furnace filled with an external heating type catalyst.

メタンを主成分とするガス、例えば天然ガスの改質反応
は、C山十日20→CO+3日2 C比十C02→2CO十2日2 で起こるが、この反応に際して 2CO→C02十C↓ C凡→2日2十C↓ という反応により炭素析出の起こる危険がある。
The reforming reaction of a gas whose main component is methane, such as natural gas, occurs as follows: C mountain 10 days 20 → CO + 3 days 2 C ratio 10 C02 → 2CO 12 days 2; There is a risk that carbon precipitation will occur due to the reaction of normal → 20C↓ for 2 days.

この反応は、成分組成(分圧)、温度等によって影響さ
れる。本発明では上記炭素析出の問題を成分組成を変え
ることによって炭素析出の抑制を図っている。これに対
して本発明は、成分組成(分氏)を変えることによって
炭素析出を抑制するものである。すなわち本発明では、
改質すべきメタンを主成分とするガスの全部を改質炉に
供艶貧するのではなく、これを二分して、その一方のみ
を故買炉に供V給することにより、還元炉排ガスとの混
合ガス中のメタンガスの分圧を低減して上記の反応を抑
制せんとするものである。この炭素析出に関して、天然
ガス(メタン)をC02十日20の酸化剤で改費する場
合、CH4/(C02十QO)の比の変化による炭素析
出温度の変化を平衡論上の計算で調べると、第1図に示
すF結果となる。
This reaction is influenced by component composition (partial pressure), temperature, etc. In the present invention, the problem of carbon precipitation is suppressed by changing the component composition. In contrast, the present invention suppresses carbon precipitation by changing the component composition (minutes). That is, in the present invention,
Rather than supplying all of the gas whose main component is methane to be reformed to the reforming furnace, it is divided into two parts and only one of them is supplied to the waste furnace, thereby reducing the waste gas from the reduction furnace. The purpose is to suppress the above reaction by reducing the partial pressure of methane gas in the mixed gas. Regarding this carbon precipitation, when natural gas (methane) is reused with an oxidizing agent of CO2, the change in carbon precipitation temperature due to the change in the ratio of CH4/(C020QO) is investigated using equilibrium theory calculations. , the F result shown in FIG. 1 is obtained.

尚この結果は、酸化剤としてC02及び日20が実質的
に併存している系についての計算結果である。この第1
図から知られるように、改質反応における炭素析出領域
はCH4/(C02十日20)比の上・昇と共に高温側
に広がっていく。
Note that this result is a calculation result for a system in which C02 and H20 substantially coexist as oxidizing agents. This first
As can be seen from the figure, the carbon precipitation region in the reforming reaction expands toward the high temperature side as the CH4/(C02 Toka 20) ratio increases.

本発明の場合、政質すべき炭化水素ガスを二分してその
一方のみを改費炉に供給するため、全量を供給する場合
に比べて炭化水素ガス、例えば天然ガス(メタン)の量
が少なく、したがってCH4/(C02十日20)比が
低いため、炭素析出領域はあまり高温側に広がらない。
後述するように、本発明の方法の場合の改質炉に供給さ
れる混合ガスのC瓜/(C02十日20)の比(容積比
)は、望ましくは0.35〜0.55であり、これを第
1図にあてはめると、炭素析出は約670〜715℃以
上では最早起らないことになる。したがって本発明の方
法において改質反応は750つ○とかなり低い温度で行
なっても炭素析出の問題が実質的になくなるのである。
また改質反応の速度を考えると、より高温の方が望まし
いわけであるが、上記のように炭素析出の問題をなくす
ることができるため、高活性の触媒を用いて最高でも9
50℃で改質反応を行なわせれば還元ガスを生成できる
。尚改質反応における炭素析出抑制の補助的手段として
改質炉に供給する混合ガスの予熱は有効な手段であるが
、本発明の場合には上述したように炭素析出温度の上限
が低いため、混合ガスの子熱温度も700〜750q0
以下の比較的低い温度で十分である。本発明の方法では
前記した通り、更に改質すべきメタンを主成分とするガ
スの一部を改質炉に供給し、残りのメタンを主成分とす
るガスを加熱して改質炉から出る改質された高温改質ガ
スと混合し、これら混合ガスの有する熱を利用して、還
元炉に吹き込まれる途中において改質反応を起させる。
In the case of the present invention, since the hydrocarbon gas to be purified is divided into two and only one of them is supplied to the refurbishment reactor, the amount of hydrocarbon gas, such as natural gas (methane), is smaller than when the whole amount is supplied. Therefore, since the CH4/(C02 Toka 20) ratio is low, the carbon precipitation region does not spread much toward the high temperature side.
As will be described later, in the method of the present invention, the ratio (volume ratio) of C melon/(CO2 10 days 20) of the mixed gas supplied to the reforming furnace is preferably 0.35 to 0.55. Applying this to FIG. 1, it follows that carbon precipitation no longer occurs above about 670-715°C. Therefore, in the method of the present invention, even if the reforming reaction is carried out at a temperature as low as 750°, the problem of carbon precipitation is substantially eliminated.
Considering the speed of the reforming reaction, a higher temperature is preferable, but as mentioned above, the problem of carbon precipitation can be eliminated, so a high temperature of at most 90% is possible using a highly active catalyst.
Reducing gas can be generated by carrying out the reforming reaction at 50°C. Although preheating the mixed gas supplied to the reforming furnace is an effective means as an auxiliary means for suppressing carbon precipitation in the reforming reaction, in the case of the present invention, as mentioned above, the upper limit of the carbon precipitation temperature is low. The child heat temperature of the mixed gas is also 700 to 750q0
Relatively low temperatures below are sufficient. As described above, in the method of the present invention, a part of the gas containing methane as the main component to be further reformed is supplied to the reforming furnace, and the remaining gas containing methane as the main component is heated to produce the reformed gas coming out of the reforming furnace. The mixed gas is mixed with the purified high-temperature reformed gas, and the heat of these mixed gases is used to cause a reforming reaction while being blown into the reduction furnace.

この敦質反応では混合ガス中のCH4の全てを還元ガス
成分に改費する必要はない。
In this synthetic reaction, it is not necessary to convert all of the CH4 in the mixed gas into reducing gas components.

すなわち、還元鉄の製鋼炉での溶解・精錬時に発熱源と
して炭素をある程度(例えばCO.1〜0.3%)還元
鉄に含有せしめておくことは有効であり、このため還元
炉に吹き込まれる還元ガスにCQを含ませておいて、こ
のCILにより、還元鉄を浸炭するのが望ましい。この
浸炭に必要なC伍は、天然ガスの場合に吹き込まれる還
元ガスに対して1〜的ol%程度で十分である。このよ
うに、還元炉に吹き込まれる還元ガスにはC日を含ませ
ておくべきなので、数質炉から出た高温改質ガスと加熱
されたメタンを主成分とするガスとの混合ガスの故質反
応ではCH4の全てを改賀する必要はなく、部分的な反
応で十分である。
In other words, it is effective to include a certain amount of carbon (for example, CO.1 to 0.3%) in the reduced iron as a heat source when melting and refining the reduced iron in a steelmaking furnace. It is desirable to include CQ in the reducing gas and carburize the reduced iron using this CIL. In the case of natural gas, the amount of carbon necessary for this carburizing is sufficient to be about 1 to 1 ol% relative to the reducing gas blown into the carburizing process. In this way, the reducing gas blown into the reduction furnace should contain C days, so the mixture gas of the high temperature reformed gas discharged from the reduction furnace and the heated gas whose main component is methane will be reduced. In the qualitative reaction, it is not necessary to convert all of the CH4; a partial reaction is sufficient.

この混合ガスの政質反応は、混合ガス自身の保有する熱
を利用して行なわれるものである。
This political reaction of the mixed gas is carried out using the heat possessed by the mixed gas itself.

メタンを主成分とするガスは望ましくは改質炉と加熱源
を共用する加熱炉で800〜95び0に加熱される。ま
た改質炉から出る改質された高温の還元ガス中には、政
質炉に供給された混合ガスのC比/(CQ十仏0)比が
低いため教質反応後も酸化剤としてのC02及び比○が
残存しており、このC02、Hぬを酸化剤として、上記
混合ガスの数質反応が進行する。この反応は混合ガス自
身の保有熱を利用するので、非外熱型で行なうことにな
る。
The gas containing methane as a main component is preferably heated to 800 to 950°C in a heating furnace that shares a heating source with the reforming furnace. In addition, the reformed high-temperature reducing gas coming out of the reforming furnace does not act as an oxidizing agent even after the reforming reaction because the C ratio/(CQ Jubutsu 0) ratio of the mixed gas supplied to the political reactor is low. C02 and ratio O remain, and the qualitative reaction of the above-mentioned mixed gas proceeds using these C02 and H as oxidizing agents. Since this reaction utilizes the heat possessed by the mixed gas itself, it is performed in a non-ectothermic manner.

また反応に際しては、無触媒方式よりも触媒方式で行な
うことが望ましい。すなわち非外熱型の触媒方式で行な
うことが望ましく、この反応容器はアフターリアクター
と称される。メタンを主成分とするガスの改質炉への供
給及び加熱炉への供給(したがって加熱炉を出て高温教
質ガスへの混合)の分配は、改質炉十加熱炉供給分に対
する加熱炉供給分0.4〜0.6にするのが望ましい。
Further, in the reaction, it is preferable to carry out the reaction using a catalytic method rather than a non-catalytic method. That is, it is preferable to carry out the reaction using a non-exothermal catalyst system, and this reaction vessel is called an afterreactor. The distribution of the supply of gas containing methane as a main component to the reforming furnace and the supply to the heating furnace (therefore, the gas that leaves the heating furnace and is mixed with high-temperature teaching gas) is divided into two parts: It is desirable that the supply amount be 0.4 to 0.6.

尚加熱炉に供繋台するメタンを主成分とするガスの比率
が高くなると、C比/(CQ+日20)の比が高くなり
、炭素析出温度領域が高温側に拡大してくるが、上述の
ように、この部分での改質は部分的なもので十分なので
、あまり問題にならない。加熱されたメタンを主成分と
するガスと改費炉から出た高温改費ガスは、混合時の温
度が前述の通り800〜950℃であり、この保有熱に
より吸熱山字応である敢質反応が進行する。
Note that as the ratio of gas containing methane as the main component supplied to the heating furnace increases, the ratio of C ratio/(CQ + day 20) increases, and the carbon precipitation temperature range expands to the high temperature side, but as mentioned above. As shown in the figure, the modification in this area is only partial and is not a big problem. As mentioned above, the temperature of the heated methane-based gas and the high-temperature recycled gas discharged from the recycled furnace is between 800 and 950 degrees Celsius, as mentioned above, and this retained heat causes an endothermic reaction. The reaction progresses.

この改費反応により混合ガス温度は50〜20ぴ0降下
し、還元炉への吹込み温度として通した温度に冷却調整
されることになる。尚途中に補助的に加熱器あるいは冷
却器を設けて吹込み温度のより正確な調整を行なえばさ
らによい。次に本発明の方法についての実施例を示す。
The temperature of the mixed gas drops by 50 to 20 ppm due to this reforming reaction, and the temperature of the mixed gas is adjusted to the temperature that was used as the temperature at which it was blown into the reduction furnace. It would be better if an auxiliary heater or cooler was provided midway to more accurately adjust the blowing temperature. Next, examples of the method of the present invention will be shown.

第2図は本発明の方法のプロセスフローを示す図である
。第2図において、1は堅型還元炉、2は政質炉、3は
加熱炉であり、堅型還元炉1から排出された還元排ガス
aはスクラバー4で除塵、冷却、日20除去されb、そ
の後二分されて一方が政質炉2及び加熱炉3用燃料とな
り、他方b′は天然ガス様5からの天然ガスの一部cと
混合され、混合ガスdとなって改費炉2に供蔓溝される
。改質された高温還元ガスe及び天然ガスの他の一部f
を加熱炉一3にて加熱した加熱天然ガスgとは改質炉出
側で混合され、この混合ガスhは還元炉に吹込まれる途
中において触媒を充填した非外熱望塾のアフターリアク
ター6で混合ガス自身の保有熱で改質反応を起こし、同
時に燐熱仮応により冷却調整され、堅型還元炉1への吹
込みに適した還元ガスjとなる。以上述べて来たように
、本発明によれば、メタンを主成分とするガスの敦質に
よる直接還元製鉄用還元ガスの製造において、敬質時の
炭素析出の防止・抑制を、敦質炉に供給する炭化水素ガ
スの量を少なくして酸化剤との含有比率を下げることに
より達成しており、この結果改質炉設備の低減を図るこ
とができる。
FIG. 2 is a diagram showing the process flow of the method of the present invention. In Fig. 2, 1 is a vertical reduction furnace, 2 is a political furnace, and 3 is a heating furnace, and the reduced exhaust gas a discharged from the vertical reduction furnace 1 is dedusted and cooled by a scrubber 4, and removed b. , after that, it is divided into two, and one becomes the fuel for the political reactor 2 and the reheating furnace 3, and the other b' is mixed with a part c of the natural gas from the natural gas 5, and becomes the mixed gas d, which is sent to the refining reactor 2. It will be buried. Reformed high temperature reducing gas e and other part of natural gas f
is mixed with the heated natural gas g heated in the heating furnace 1 3 on the exit side of the reformer, and this mixed gas h is mixed with the heated natural gas g heated in the heating furnace 1 3, and this mixed gas h is mixed with the after reactor 6 of the Higaiki Juku packed with a catalyst on the way to being blown into the reduction furnace. A reforming reaction is caused by the heat possessed by the mixed gas itself, and at the same time, cooling is adjusted by phosphorthermal reaction, resulting in a reducing gas j suitable for being blown into the vertical reduction furnace 1. As described above, according to the present invention, in the production of direct reduction reducing gas for iron making using the densification of a gas containing methane as a main component, it is possible to prevent and suppress carbon precipitation during the densification process. This is achieved by reducing the amount of hydrocarbon gas supplied to the oxidizing agent and lowering the content ratio with the oxidizing agent.As a result, it is possible to reduce the amount of reforming furnace equipment.

更に上記改質炉で生成する高温改質ガスだけでは不足す
る還元ガスは、高温教質ガスの保有する熱を有効に利用
し、これに加熱健一で加熱された炭化水素ガスを混合し
、敢費反応を起させて還元炉吹き込みに必要な還元ガス
を得ると共に、この改費反応(隣熱反応)を通じて吹込
み用還元ガスとして好適な温度に冷却調整できるので、
熱損失の低減をも図ることができるのである。
Furthermore, reducing gas, which is insufficient with just the high-temperature reformed gas produced in the above-mentioned reforming furnace, can be produced by effectively utilizing the heat possessed by the high-temperature teaching gas and mixing it with hydrocarbon gas heated in the heating Kenichi. It is possible to obtain the reducing gas necessary for injection into the reducing furnace by causing a cost reaction, and through this cost reaction (adjacent heat reaction), the temperature can be adjusted to a temperature suitable for use as a reducing gas for injection.
It is also possible to reduce heat loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、C02十日20による天然ガス(メタン)の
数質反応におけるC比/(CQ+QO)と炭素析出温度
との関係を示した図である。 第2図は本発明のプロセスフローを示した図である。1
・・・・・・堅型還元炉、2・・・・・・改質炉、3・
・…・加熱炉、4…・・・スクラバ−、5・…・・天然
ガス源、6・・・…アフターリアクター。 第1図 第2図
FIG. 1 is a diagram showing the relationship between C ratio/(CQ+QO) and carbon precipitation temperature in a numerical reaction of natural gas (methane) by C02 Toka 20. FIG. 2 is a diagram showing the process flow of the present invention. 1
......Right reduction furnace, 2...Reforming furnace, 3.
...Heating furnace, 4...Scrubber, 5...Natural gas source, 6...After reactor. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 メタンを主成分とするガスを改質して得た還元ガス
を還元炉に吹き込んで酸化鉄を還元して金属鉄を得る直
接還元製鉄法において、改質すべきメタンを主成分とす
るガスを二分し、その一方を還元炉排ガスと混合して改
質炉に供給して高温改質ガスを生成せしめ、その他方を
加熱して上記高温改質ガスと混合し、これら混合ガスの
有する熱を利用して還元炉に吹き込まれる途中において
触媒存在下で吸熱反応である改質反応を起させ、この反
応を通じて還元炉への吹込みに適した温度に冷却調整さ
れた還元ガスを得ることを特徴とする酸化鉄の直接還元
製鉄方法。
1. In the direct reduction ironmaking method, in which the reducing gas obtained by reforming the gas whose main component is methane is blown into a reduction furnace and the iron oxide is reduced to obtain metallic iron, the gas whose main component is methane to be reformed is One half is mixed with the reduction furnace exhaust gas and supplied to the reformer to generate high-temperature reformed gas, and the other half is heated and mixed with the high-temperature reformed gas to release the heat contained in these mixed gases. A reforming reaction, which is an endothermic reaction, occurs in the presence of a catalyst while being blown into the reduction furnace, and through this reaction, the reducing gas is cooled and adjusted to a temperature suitable for being blown into the reduction furnace. Direct reduction method of iron oxide using iron oxide.
JP55116801A 1980-08-25 1980-08-25 Iron oxide direct reduction method Expired JPS602362B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP55116801A JPS602362B2 (en) 1980-08-25 1980-08-25 Iron oxide direct reduction method
AR282462A AR222720A1 (en) 1980-08-25 1980-09-09 DIRECT REDUCTION PROCEDURE TO PRODUCE METAL IRON

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55116801A JPS602362B2 (en) 1980-08-25 1980-08-25 Iron oxide direct reduction method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP54116381 Division

Publications (2)

Publication Number Publication Date
JPS5641306A JPS5641306A (en) 1981-04-18
JPS602362B2 true JPS602362B2 (en) 1985-01-21

Family

ID=14695997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55116801A Expired JPS602362B2 (en) 1980-08-25 1980-08-25 Iron oxide direct reduction method

Country Status (2)

Country Link
JP (1) JPS602362B2 (en)
AR (1) AR222720A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270739A (en) * 1979-10-22 1981-06-02 Midrex Corporation Apparatus for direct reduction of iron using high sulfur gas
JPS582562B2 (en) * 1980-10-13 1983-01-17 日立金属株式会社 Temperature adjustment method and device for circulating reducing gas in sponge iron production equipment
CN100451133C (en) * 2005-09-15 2009-01-14 中冶东方工程技术有限公司 Method and apparatus for producing directly reduced iron with coke oven gas
CN106834579A (en) * 2017-03-03 2017-06-13 江苏省冶金设计院有限公司 The system and method that a kind of natural gas tri-reforming prepares DRI

Also Published As

Publication number Publication date
AR222720A1 (en) 1981-06-15
JPS5641306A (en) 1981-04-18

Similar Documents

Publication Publication Date Title
KR101551887B1 (en) System and method for reducing iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
KR101857790B1 (en) Reduction of iron oxide to metallic iron using coke oven gas and oxygen steelmaking furnace gas
USRE32247E (en) Process for the direct production of steel
US5858057A (en) Method for producing direct reduced iron with a controlled amount of carbon
US9328395B2 (en) Method and apparatus for producing direct reduced iron utilizing a source of reducing gas comprising hydrogen and carbon monoxide
JPH03274213A (en) Direct reduction of iron-containing metal oxide
US4253867A (en) Method of using a methane-containing gas for reducing iron ore
RU2726175C1 (en) Methods and systems for increasing carbon content in cancellous iron in reducing furnace
CA1152749A (en) Method of making sponge iron
CA1069699A (en) Producing hot reducing gas
US6039916A (en) Apparatus for producing direct reduced iron with a controlled amount of carbon
PL116426B3 (en) Process for coke oven gas conversion
JPS62263911A (en) Method and apparatus for producing high carbon reduced iron in vertical direct reducing furnace
CA1284274C (en) Melt-reductive iron making method from iron ore
JPS62263910A (en) Method and apparatus for producing high carbon reduced iron in vertical direct reducing furnace
JPS602362B2 (en) Iron oxide direct reduction method
US4348226A (en) Direct reduction process for producing metallic iron
JPS6015682B2 (en) Metal ore reduction method
AU699428B2 (en) Direct reduction process for iron oxide-containing materials
JP4967191B2 (en) Method and apparatus for controlling carburization of DRI
JPH0456081B2 (en)
JPS5834114A (en) Manufacture of reduced iron
GB1269841A (en) Method of and apparatus for reducing iron oxide to metallic iron
RU2190022C2 (en) Method and device for production of iron by direct reduction
US4179281A (en) Method for cooling high-temperature reduced iron