JPS58199832A - Method for recovering rhodium - Google Patents

Method for recovering rhodium

Info

Publication number
JPS58199832A
JPS58199832A JP57083849A JP8384982A JPS58199832A JP S58199832 A JPS58199832 A JP S58199832A JP 57083849 A JP57083849 A JP 57083849A JP 8384982 A JP8384982 A JP 8384982A JP S58199832 A JPS58199832 A JP S58199832A
Authority
JP
Japan
Prior art keywords
rhodium
compound
catalyst
alumina
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57083849A
Other languages
Japanese (ja)
Other versions
JPS6140287B2 (en
Inventor
Yoshinobu Sakakibara
吉延 榊原
Kazunori Takigawa
滝川 和則
Hiroaki Fukui
弘明 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYATARAA KOGYO KK
Original Assignee
KIYATARAA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYATARAA KOGYO KK filed Critical KIYATARAA KOGYO KK
Priority to JP57083849A priority Critical patent/JPS58199832A/en
Publication of JPS58199832A publication Critical patent/JPS58199832A/en
Publication of JPS6140287B2 publication Critical patent/JPS6140287B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To recover efficiently Rh from a used catalyst contg. Rh on an aluminous carrier by adding a compound of an element which forms a compound together with Rh and prevents Rh from being solubilized in alumina to the catalyst, carrying out calcination and reduction, and dissolving and extracting Rh. CONSTITUTION:To a used catalyst contg. Rh on an aluminous carrier is added 0.01-2mol/l of a compound of an element which forms a compound together with Rh and prevents Rh from being solubilized in alumina. The chloride, nitrate, carbonate or acetate of La, Ca, Pb or Na or the oxyacid salt of boron is used as the compound. Calcination is carried out an 600-1,300 deg.C. Rh can be dissolved easily and extracted from the used catalyst, and it is efficiently recovered.

Description

【発明の詳細な説明】 は この発明゛の′使用済触媒からロジウムを効率よく回収
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a method for efficiently recovering rhodium from a spent catalyst.

白金族金属性近年、装飾品への利用よりはむしろ化学工
業、自転車産業等の分野において使用される触媒への利
用が急増している。ここで使用される触媒は、一定期間
使用された後、使用済触媒となる。このために、この使
用済触媒中の白金族金属を回収し資源化することは社会
的な急務といえる。
Platinum group metals In recent years, their use as catalysts in fields such as the chemical industry and the bicycle industry has rapidly increased, rather than as decorations. The catalyst used here becomes a spent catalyst after being used for a certain period of time. For this reason, it is an urgent social need to recover the platinum group metals in this spent catalyst and turn them into resources.

これらの触媒は、白金族金属支持体(担体)として、ア
ルミナ粒状物、またはアルミナを被覆し九セラミ、り1
基体を使用しているものが多い。
These catalysts use alumina granules or alumina coated as a platinum group metal support (carrier).
Many use a base material.

このような触媒中の白金族金属を回収する方法として数
多くの提案が出されているがロジウムの回収方法につい
ては数少ない。
Although many proposals have been made as methods for recovering platinum group metals in such catalysts, there are only a few methods for recovering rhodium.

したがりて、このように回収困難と考えられるロジウム
(Rh)の回収方法に関して、白金(pt)、・9ラジ
ウム(Pd )等と同様にロジウムを効率よく回収する
方法の出現が望まれている。
Therefore, regarding the recovery method of rhodium (Rh), which is considered to be difficult to recover, it is desired to develop a method to efficiently recover rhodium in the same way as platinum (pt), .9 radium (Pd), etc. .

従来、アルミナ担体上のロジウムおよび他の白金族金属
を回収するには、白金族金属を強酸溶液を用いて溶解抽
出することによって回収をおこなっているが、この際白
金族金属の溶解と同時に担体であるアルミナをも多量に
溶解することになる。したがって、溶解し九ムtトの処
理が容易ではない、また、担体であるアルミナを全て溶
解しないと、溶解抽出したRh”が不溶解のアルミナに
吸着されるので、高抽出率は望めない、したがって、こ
の問題を避けるために、溶解抽出するための前処理とし
て触媒を1200 C以上の高温度で焼成し、担体のア
ルミナをα化する仁とによって、アルミナが溶解する仁
となく、また白金族金属の再赦着の問題の生ずることが
なくなって、容易に白金族金属を効率よく回収し得るこ
とができる。しかしながら、この前処理を施すことによ
シ白金、/4ラジウムについて杜高回収率が得られるこ
とが判明したが、ロジウムについては回収率が1096
以下と低率となってしまう。
Conventionally, rhodium and other platinum group metals on an alumina support have been recovered by dissolving and extracting the platinum group metal using a strong acid solution. A large amount of alumina, which is Therefore, it is not easy to dissolve and process the alumina, and if the alumina that is the carrier is not completely dissolved, the dissolved and extracted Rh" will be adsorbed to the undissolved alumina, so a high extraction rate cannot be expected. Therefore, in order to avoid this problem, the catalyst is calcined at a high temperature of 1200 C or higher as a pretreatment for dissolution and extraction, and the alumina is pregelatinized on the carrier, so that the alumina does not dissolve and the platinum is removed. The problem of re-accumulation of group metals does not occur, and platinum group metals can be easily and efficiently recovered.However, by performing this pretreatment, it is possible to recover platinum and However, for rhodium, the recovery rate was 1096
The rate is as low as below.

ロジウムがこのように溶解抽出が困難である理由として
、ロジウム自体が強酸類に対して安定であることもある
が、本発明者らがもつとも大きい原因として考えている
のは、アルミナがα化する際に%Rh、0.がα−アル
ミナ中に固溶してしまうことである。このα−At2o
sとRb203との固溶の事実は、At(OH)、とR
h(OH)、との混合物を1200℃の温度で空気中で
焼成したものにつき、X線回折によってしらべたところ
、α−アルミナのピークが低角度側ヘシフトし、格子定
数Cを算出した結果、通常12.990Xのものが、1
2.9951に拡大していたことがら明らかである。こ
のような事実からして、一般的に鉱考えられ、幸いRh
20.と、α−At20.との固溶体が、条件によって
祉一部生成するものと考えられる。このことを考察する
に、アルミナを担体とする触媒において、Rhは一般に
極少蒼しか担持されておらず、焼成する際Rhがアルξ
す中に固溶化することは十分可能性がある仁とである。
One of the reasons why rhodium is difficult to dissolve and extract is that rhodium itself is stable against strong acids, but the inventors believe that the main reason is that alumina becomes pregelatinized. When %Rh, 0. is dissolved in α-alumina. This α-At2o
The fact that s and Rb203 are in solid solution indicates that At(OH) and R
When the mixture with h(OH) was calcined in air at a temperature of 1200°C, it was examined by X-ray diffraction, and the peak of α-alumina shifted to the lower angle side.As a result of calculating the lattice constant C, Usually 12.990X is 1
It is clear that it has expanded to 2.9951. Considering these facts, it is generally considered that Rh
20. and α-At20. It is thought that a solid solution of the molecule is formed depending on the conditions. Considering this, in catalysts using alumina as a carrier, Rh is generally supported only in a very small amount, and during calcination, Rh is
It is quite possible that it will form a solid solution in the water.

このようにして、AA20.中に固溶したRhは、α−
アルミナと同様酸に対して極めて安定となシ、溶解抽出
による回収は不可能となる。
In this way, AA20. Rh dissolved in α-
Like alumina, it is extremely stable against acids, making recovery by dissolution extraction impossible.

この発明は、上記の従来技術の問題点を解決し、使用済
触媒中のロジウムを効率よく回収する方法を提供するも
のであって、アルミナ質系担体に、ロジウムを含有させ
た触媒よ、b−ジウムを溶解抽出して回収する方法にお
いて、ロジウムと化合物を生成してロジウムのアルミナ
への固溶を防止する元素の化合物を触媒に添加含有させ
、これを焼成および還元し、しかるのちロジウ゛ムを溶
解抽出することを特徴とする。
The present invention solves the problems of the prior art described above and provides a method for efficiently recovering rhodium in a spent catalyst. - In the method of dissolving and extracting and recovering dium, a compound of an element that forms a compound with rhodium and prevents solid solution of rhodium in alumina is added to the catalyst, which is calcined and reduced, and then the rhodium is recovered. It is characterized by dissolution and extraction.

この発明においては、上記のようにロジウム(ah)と
化合物を生成してロジウムのアルミナへの固溶を防止す
るような元素の化合物を、ロジウムをアルミナに含有さ
せ九触謀に添加含有させこれを焼成する。このような元
素の化合物としては、まずロジウムと複合酸化物MxR
kyO8(Mは金ll1)を生成する金属、例えばラン
タン(し0、カルシウム(C&)、鉛(pb)、ナトリ
ウA (Na )の塩類、例えば塩化物、硝酸塩、炭酸
塩、酢酸塩があげられる。
In this invention, a compound of an element that forms a compound with rhodium (ah) and prevents solid solution of rhodium in alumina as described above is added to alumina by adding rhodium to the alumina. to be fired. As a compound of such an element, first of all, rhodium and the composite oxide MxR
Metals that produce kyO8 (M is gold), such as salts of lanthanum, calcium (C&), lead (PB), and sodium A (Na), such as chlorides, nitrates, carbonates, and acetates. .

この発明の方法において、触媒に添加含有させる元素の
化合物としては、上記金属塩の#シか、例えば硼素の酸
素酸(H3BO,等)があげられる。
In the method of the present invention, examples of the compound of the element added to the catalyst include the above-mentioned metal salts and, for example, boron oxygen acid (H3BO, etc.).

このような硼素の酸素酸は、ロジウムとRhBOXのご
とき化合物を生成して、ロジウムのアルミナへの固溶を
防止するものと推測される。
It is presumed that such a boron oxygen acid generates a compound such as rhodium and RhBOX, thereby preventing solid solution of rhodium in alumina.

上記に示した元素の化合物を触媒に添加含有させて60
0〜1300℃の温度で焼成すると第1表のような化合
物を生成し、さらにこの化合物に還元処理を施すと第1
表のような元素や化合物に変化する。
A compound of the elements shown above is added to the catalyst and 60%
When calcined at a temperature of 0 to 1300°C, the compounds shown in Table 1 are produced, and when this compound is further subjected to reduction treatment, the compounds shown in Table 1 are produced.
Changes into elements and compounds as shown in the table.

第  1  表 上記のような元素の化合物を触媒に添加することによシ
、焼成に際して、Rh、0.のアルンナヘの固溶が開始
されると推定される温度である800℃よシも低い温度
域で、ロジウムと添加する元素の化合物とにより上記の
ような化食物が生成されてロジウムが消費されてしまい
、かつこの生成化合物が1200℃〜1300℃の高温
域でも安定でろ・て、−一において生成化合物よシロジ
ウムが遊離することがないので、ロジウムがアルミナへ
固溶することが避けられる。さらに、室温まで冷却して
も生成化合物は、α−アル建す上で安定であり、この生
成化合物を還元処理するととKより酸に溶解しゃすい化
合物となるので、効率よくロジウムを溶解抽出して回収
することが可能となる。
Table 1 By adding compounds of the elements listed above to the catalyst, Rh, 0. In a temperature range lower than 800°C, which is the temperature at which the solid solution of Arunna is estimated to start, rhodium is consumed by the formation of the above-mentioned chemical compounds between rhodium and the compound of the added element. Moreover, this product compound is stable even in the high temperature range of 1200° C. to 1300° C. Since rhodium is not liberated from the product compound in -1, solid solution of rhodium in alumina can be avoided. Furthermore, even when cooled to room temperature, the product compound is stable in terms of α-alkyl structure, and when this product compound is reduced, it becomes a compound that is more soluble in acids than K, so it is possible to efficiently dissolve and extract rhodium. It becomes possible to collect the waste.

上記のように還元処理したのち60ジウム金属のXaa
折をおこなうと、ロジウム金属のピークがブロードなピ
ークとなるが、これはロジウム結晶が微細化しているも
のと考えられる。
After reduction treatment as above, 60dium metal Xaa
When folded, the rhodium metal peak becomes a broad peak, which is thought to be due to the rhodium crystals becoming finer.

上記のような生成化合物を生成させるための焼成温度は
、600〜1300℃であることが好まシい、600℃
未満の温度で、あると生成化合一が生成し離く、一方1
300℃をこえる温度であると、他種の生成化合物を生
じやすく、均一な生成化合物を生じ難いからである。
The calcination temperature for producing the product compound as described above is preferably 600 to 1300°C, preferably 600°C.
At temperatures below 1, the product compound 1 is formed and separated, while 1
This is because if the temperature exceeds 300°C, other types of product compounds are likely to be produced and it is difficult to produce uniform product compounds.

この発明において、生成化合物を生成させるために添加
含有させる元素の化合物の量は、触媒1jKつ@ o、
 o x 4ルー2モルであることが好ましい、0.0
1モル未満では生成化合物が生成せず、ま九2モルをこ
す含有量の場合には、とくに含有量を増加させても増加
による効果が得られず、2モルをこす含有量とすること
に特別の意味がないからである。
In this invention, the amount of the compound of the element to be added and contained in order to produce the product compound is as follows:
preferably 0.0 x 4 to 2 moles;
If the content is less than 1 mol, no product will be produced, and if the content is 2 mol, no effect will be obtained even if the content is increased, so it is decided to set the content to 2 mol. This is because it has no special meaning.

この発明方法によると、触媒中のロジウムは添加含有さ
れた元素の化合物と上述したような化合物を生成するの
でアルミナに固溶することなく、さらにこの生成化合物
を還元処理したものは、酸に溶解しやすく、かつ還元後
のロジウムの結晶が微細化されて酸に溶解しやすい状態
になっているので、ロジウムの溶解抽出を容易におこな
い得て、ロジウムの回収を効率よくおこなうことができ
る。
According to the method of this invention, rhodium in the catalyst forms the above-mentioned compound with the added element, so it does not form a solid solution in alumina, and the resulting compound is further reduced and dissolved in acid. Moreover, since the rhodium crystals after reduction are finely divided and easily dissolved in acid, rhodium can be easily dissolved and extracted, and rhodium can be recovered efficiently.

実施例1〜5 粒状r =*z2o、担体に、ロジウム0.014重量
−および白金0.131重量−を含有させた自動車排ガ
ス浄化用触媒に、添加化合物として、La(No、)、
を0.01モル/l触媒〜2.0モル/ノ触媒の割合で
含浸させ、空気中で1200℃の温度で1時間焼成した
のち、水素化ホウ素ナトリウム(NoBHa )溶液で
還元処理した。この処理物について、HCAおよび町0
2混合液でロジウムおよび白金の溶解抽出をおこない、
それぞれの溶解抽出率(4)を測定した。その結果とし
て第2表に、La (NOs )sの含浸量(モル/!
触媒)とこれに対応するRh溶解抽出率■およびPt溶
解抽出率−を示し友。
Examples 1 to 5 Granular r = *z2o, a catalyst for purifying automobile exhaust gas in which the carrier contained 0.014 weight of rhodium and 0.131 weight of platinum was added as an additive compound, La (No, ),
was impregnated at a ratio of 0.01 mol/l to 2.0 mol/l catalyst, calcined in air at a temperature of 1200°C for 1 hour, and then subjected to reduction treatment with a sodium borohydride (NoBHa) solution. Regarding this treated product, HCA and town 0
Perform dissolution extraction of rhodium and platinum with the two mixed liquids,
The dissolution extraction rate (4) of each was measured. As a result, Table 2 shows the amount of La (NOs)s impregnated (mol/!
(catalyst) and the corresponding Rh dissolution extraction rate (■) and Pt dissolution extraction rate (-).

なお、比較のために比較例1として、上述と同様の触媒
に、La(Nos)iを含浸せずに上述と同様の処理を
おこなりたものにつき、 UCZおよびH2O2混合液
でロジウムおよび白金の溶解抽出をおこな染、それぞれ
の溶解抽出率−を測定し、その結果を第2#Iに併記し
九。
For comparison, as Comparative Example 1, the same catalyst as above was treated in the same manner as above without being impregnated with La(Nos)i. Perform dissolution and extraction, measure the dissolution and extraction rate of each dye, and record the results in 2nd #I.9.

第  2  表 上表の結果から明らかのように、実施例1〜5の方法に
よるRh溶解抽出率は、La(NO3)、5を用いない
比較例1の方法によるRh溶解抽出率にくらべて高いも
のであった。なお、Pt溶解抽出率も、La(NO,)
3を用い九場合(実施例1〜5)は、用いない場合(比
較例1)にくらべて若干増大したが、Rh溶解抽出率の
場合はどの増大は認められなかった。
As is clear from the results shown in Table 2, the Rh dissolution and extraction rate by the methods of Examples 1 to 5 is higher than the Rh dissolution and extraction rate by the method of Comparative Example 1, which does not use La(NO3),5. It was something. In addition, the Pt dissolution and extraction rate is also La(NO,)
In the cases where Rh 3 was used (Examples 1 to 5), there was a slight increase compared to the case where Rh was not used (Comparative Example 1), but no increase was observed in the Rh dissolution extraction rate.

実施例6〜10 実施例1〜5と同様の触媒に、添加化合物として、La
(No、)、を1.0モル/l触媒の割合で含浸し、空
気中で第3表に示すように600℃〜1300℃の温度
で1時間焼成し九のち、実施例1〜5と同様の処理をお
こなったものにつき、実施例1〜5と同様の方法でロジ
ウムの溶解抽出をおこなった。なお、比較例6〜10と
して、上述と同様の触媒にLa(No、)、を含浸させ
ずK、上記実施例6〜10にそれぞれ、対応する処現条
件にて処理をおこない、これら処理物につき同様にロジ
ウムの溶解抽出をおこなった。第31!に1これら実施
例および比較例についてのRh溶解抽出率−を示した。
Examples 6 to 10 La was added to the same catalyst as in Examples 1 to 5 as an additive compound.
(No.) was impregnated at a ratio of 1.0 mol/l catalyst and calcined in air at a temperature of 600°C to 1300°C as shown in Table 3 for 1 hour. For those treated in the same manner, rhodium was dissolved and extracted in the same manner as in Examples 1 to 5. In addition, as Comparative Examples 6 to 10, the same catalysts as those described above were treated with K without being impregnated with La (No, ), and the treatment conditions were conducted under the treatment conditions corresponding to Examples 6 to 10, respectively, and these treated products were Rhodium was similarly dissolved and extracted. 31st! 1 shows the Rh dissolution and extraction rates for these Examples and Comparative Examples.

第3表 第3表の結果か6明らかのように1.同一焼成温度で比
較し九場合、I、a(No、)、を用いた場合のはうが
、用いない場合にくらべてRh溶解抽出率が大となった
。とくに、800℃以上の温度になると、Ll(NO,
)、を用いた場合のほうがはるかに大となった。
Table 3 The results of Table 3 are as follows: 1. When compared at the same firing temperature, the Rh dissolution and extraction rate was higher when I, a (No, ) was used than when it was not used. In particular, when the temperature exceeds 800°C, Ll(NO,
), the result was much larger.

実施例11〜25 粒状r −At20.担体に、ロジウムを0.016重
tcs含有させた自動車排ガス浄化用触媒に、添加化合
物として、NaNO3、ca(No、)、、Pb(No
s)、およびH,BO,をそれぞれ0.0.2モル/l
触媒〜2モル/l触媒の割合で含浸し、空気中1200
℃の温度で1時間焼成したのち、水素中300℃の温度
で1時間還元処理し九、この処理物について、HClお
よびH2O2混合液にてロジウムの溶解抽出をおこなっ
てRhの溶解抽出率(4)を測定した。第4表に、添加
化合物の種類および含浸量とこれに対応するRh溶解抽
出率(イ)を示した。なお、比較のために、比較例7と
して、上記と同様の触媒に、添加化合物を含浸せずに、
上述と同様の処理をおこない、この処理物につき、HC
lおよびH2O2混合液にてロジウムの溶解抽出をおこ
ない、Rh溶解抽出率(至)を測定した。
Examples 11-25 Granular r-At20. An automobile exhaust gas purification catalyst containing 0.016 tcs of rhodium in the carrier was added with NaNO3, ca (No, ), Pb (No.
s), and 0.0.2 mol/l each of H, BO,
Impregnated with catalyst ~ 2 mol/l catalyst, 1200 in air
After firing at a temperature of 300°C for 1 hour, reduction treatment was performed in hydrogen at a temperature of 300°C for 1 hour.This treated product was subjected to dissolution extraction of rhodium with a mixed solution of HCl and H2O2 to obtain a Rh dissolution extraction rate (4 ) was measured. Table 4 shows the type and impregnated amount of the added compound and the corresponding Rh dissolution and extraction rate (a). For comparison, as Comparative Example 7, the same catalyst as above was used without impregnating the additive compound.
The same treatment as above was carried out, and for this treated product, HC
Rhodium was dissolved and extracted using a mixture of H2O2 and H2O2, and the Rh dissolution and extraction rate (maximum) was measured.

その結果を第4表に併記した。The results are also listed in Table 4.

第  4  表 第4表の結果から明白のように、添加化合物を用いない
場合(比較例7)にくらべて、この発明の方法の場合(
実施例11〜25)では、Rhの溶解抽出率が大となっ
た。
Table 4 As is clear from the results in Table 4, compared to the case where no additive compound is used (Comparative Example 7), the method of this invention (
In Examples 11 to 25), the dissolution and extraction rate of Rh was high.

実施例26〜30 ロジウム0.051重量%、白金0.53重量−および
ノ4ラジウム1.03重量−を含有するγ−Aj20.
粉末1011に、添加化合物として、LaCl3、La
(No、)、、H,BO,、Ca (OH)2およびC
aCO5をそれぞれ1.0モル/1kg粉末の割合で添
加混合し、水を加えてスラリー化した後、乾燥し、空気
中1200℃の温度で1時間焼成した。焼成物を冷却後
、NaBH4溶液を加えて還元し、さらに王水にて溶解
抽出してロジウム、白金および/9ラジウムの溶解抽出
率(4)゛を測定した。その結果を第5表に示した。な
お、比較のために、比較例8として、上述と同様の粉末
□に、上記の添加化合物を添加せずに上述と同様の処理
をおこない、この処理物につき王水にて溶解抽出をおこ
ない、ロジウム、白金および/奢うジウムについての溶
解抽出率−をそれぞれ測定した。その結果を併せて第5
表に示した。
Examples 26-30 γ-Aj20. containing 0.051% by weight of rhodium, 0.53% by weight of platinum and 1.03% by weight of radium.
Powder 1011 contains LaCl3 and La as additive compounds.
(No,),,H,BO,,Ca(OH)2 and C
aCO5 was added and mixed at a ratio of 1.0 mol/1 kg powder, water was added to form a slurry, and the mixture was dried and calcined in air at a temperature of 1200° C. for 1 hour. After cooling the calcined product, a NaBH4 solution was added to reduce the product, and the solution was extracted with aqua regia to measure the dissolution/extraction ratio (4) of rhodium, platinum, and /9 radium. The results are shown in Table 5. For comparison, as Comparative Example 8, the same powder □ as above was treated in the same manner as above without adding the above additive compound, and this treated product was dissolved and extracted with aqua regia. The dissolution and extraction rates of rhodium, platinum and/or nickel were measured. Combined with the results, the fifth
Shown in the table.

鯖5表 第5表の結果から明らかのように、添加化合物を添加し
ない場合(比較例8)にくらべて、各種の添加化合物を
添加したこの発明の方法の場合(実施例26〜30)に
は、Rh溶解抽出率は格段にすぐれていた。また、Pt
およびPd溶解抽出率について亀、各種添加化合物を用
いたほうが、用いない場合にくらべて溶解抽出率が増大
したが、Rhの場合t1どには増大しなかった。
As is clear from the results in Table 5, compared to the case where no additive compound was added (Comparative Example 8), the method of the present invention in which various additive compounds were added (Examples 26 to 30) The Rh dissolution and extraction rate was significantly superior. Also, Pt
Regarding the dissolution and extraction rate of Pd, the dissolution and extraction rate increased when various additive compounds were used compared to when they were not used, but in the case of Rh, it did not increase to t1.

“ 実施例31〜32 コージライト質に、r−アル建すを被覆したハニカム構
造状の担体に、ロジウム0.031iJllチおよび白
金0.13重量−を含有させた自動車排ガス浄化用触媒
から直径30箇、長さ50■のピースにくシ抜き、この
ものIc、 La(NOx)iおよびc a (No 
s )2をそれぞれ1.0モル/j触媒の割合で担持し
、800℃の温度で1時間空気中で焼成した。焼成物に
冷却後、H,BO,を0.05モル/!触媒の割合で担
持させたのち、空気中で1200℃の温度で1時間焼成
し、さらに水素中300℃の温度で1時間還元した。
“Examples 31 to 32 A catalyst for purifying automobile exhaust gas containing 0.031 iJll of rhodium and 0.13 wt of platinum on a honeycomb structure carrier coated with r-aluminum on cordierite. A piece with a length of 50 cm is punched out, and this one Ic, La (NOx) i and c a (No
s)2 were each supported at a ratio of 1.0 mol/j catalyst and calcined in air at a temperature of 800° C. for 1 hour. After cooling the fired product, H, BO, 0.05 mol/! After being supported at the same proportion as the catalyst, it was calcined in air at a temperature of 1200°C for 1 hour, and further reduced in hydrogen at a temperature of 300°C for 1 hour.

この還元物についてHCAおよびHCtoの混合液を用
いてロジウムおよび白金の溶解抽出をおこない、それぞ
れの溶解抽出率(4)を測定し、その結果を第6表に示
した。なお、比較のために、比較例9として、上述と同
様のピースに上記の添加化合物を添加せずに、1200
℃の温度で1時間焼成し、さらに水素中300℃の温度
で1時間還元処理したのち、上記と同様に溶解抽出をお
こない、ロジウムおよび白金の溶解抽出率−を測定した
。その結果を第6表に併記した。
Regarding this reduced product, rhodium and platinum were dissolved and extracted using a mixed solution of HCA and HCto, and the respective dissolution and extraction rates (4) were measured, and the results are shown in Table 6. For comparison, as Comparative Example 9, 1200
℃ temperature for 1 hour, and further reduced in hydrogen at 300℃ temperature for 1 hour, dissolution extraction was performed in the same manner as above, and the dissolution extraction rate of rhodium and platinum was measured. The results are also listed in Table 6.

第  6  表 第6表の結果から明らかのように、RhおよびPtの溶
解抽出率の何れも添加化合物を用いた本発明の方法の場
合(実施例31〜32)は、添加化合物を用いない場合
(比較例9)にくらべてすぐれたものであつ九、とくに
、Rh溶解抽出率については前者の添加化合物を用いた
場合、後者の用いない場合にくらべて格段にすぐれたも
のであった。
Table 6 As is clear from the results in Table 6, both the dissolution and extraction rates of Rh and Pt were lower in the case of the method of the present invention using an additive compound (Examples 31 to 32) than in the case of not using an additive compound. (Comparative Example 9) In particular, the Rh dissolution and extraction rate was much better when the former additive compound was used than when the latter was not used.

実施例33〜37 実施例11〜25と同様の触媒に、添加化合物としてL
a(CH,C00)、およびPb(CH,C00)2を
それぞれ0.01モル/l触媒〜0.5モル/l触媒の
割合で含浸し、実施例11’−25と同様の処理をおこ
なったものにつき、実施例11〜25と同様の方法でロ
ジウムの溶解抽出をおこない、Rh溶解抽出率(%)を
測定した。その結果を第7表に示した。なお、比較のた
めに前記した比較例/θXの結果をも第7表に併記した
Examples 33 to 37 The same catalyst as in Examples 11 to 25 was added with L as an additive compound.
a(CH,C00) and Pb(CH,C00)2 were each impregnated at a ratio of 0.01 mol/l catalyst to 0.5 mol/l catalyst, and the same treatment as in Example 11'-25 was performed. Rhodium was dissolved and extracted using the same method as in Examples 11 to 25, and the Rh dissolution and extraction rate (%) was measured. The results are shown in Table 7. For comparison, the results of the comparative example/θX described above are also listed in Table 7.

第7表 ない場合(比較例、r)にくらべてRh溶解抽出率がす
ぐれたものであった。
The Rh dissolution and extraction rate was superior to that in Table 7 (comparative example, r).

出願人代理人  弁理士 鈴 江 武 彦、)IApplicant's agent: Patent attorney Suzue Takehiko,)I

Claims (1)

【特許請求の範囲】 (1)  アルミナ質系担体に、ロジウムを含有させた
触媒よりロジウムを溶解抽出して回収する方法において
、ロジウムと化合物を生成してロジウムのアルミナへの
固溶を防止する元素の化合物を触媒に添加含有させ、こ
れを焼成および還元し、しかるのちロジウムを溶解抽出
することを%像とするロジウムの回収方法。 (2ン  元素の化合物が、ランタン、カルシウム、鉛
またはナトリウムの塩化物、硝酸塩、炭酸塩または酢酸
塩である特許請求の範囲第1項記載の方法。 (3)元素の化合物が、硼素の酸素酸である特許請求の
範囲第1項記載の方法。 (4)焼成管600℃〜1300℃の温度にておこなう
特許請求の範囲第1項記載の方法。 (5)元素の化合物の添加蓋が触媒1ノにつさ0.01
モル〜2モルである特許請求の範囲第1寝記載の方法。
[Claims] (1) In a method for dissolving and extracting rhodium from a catalyst containing rhodium in an alumina-based carrier, a compound with rhodium is generated to prevent solid solution of rhodium in alumina. A method for recovering rhodium, which involves adding a compound of the element to a catalyst, firing and reducing the compound, and then dissolving and extracting rhodium. (2) The method according to claim 1, wherein the compound of the element is a chloride, nitrate, carbonate or acetate of lanthanum, calcium, lead or sodium. (3) The compound of the element is boron and oxygen. The method according to claim 1, wherein the acid is an acid. (4) The method according to claim 1, which is carried out at a temperature of 600° C. to 1300° C. in the firing tube. (5) The addition lid of the compound of the element is Catalyst 1 no. 0.01
The method according to claim 1, wherein the amount is mol to 2 mol.
JP57083849A 1982-05-18 1982-05-18 Method for recovering rhodium Granted JPS58199832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57083849A JPS58199832A (en) 1982-05-18 1982-05-18 Method for recovering rhodium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57083849A JPS58199832A (en) 1982-05-18 1982-05-18 Method for recovering rhodium

Publications (2)

Publication Number Publication Date
JPS58199832A true JPS58199832A (en) 1983-11-21
JPS6140287B2 JPS6140287B2 (en) 1986-09-08

Family

ID=13814142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57083849A Granted JPS58199832A (en) 1982-05-18 1982-05-18 Method for recovering rhodium

Country Status (1)

Country Link
JP (1) JPS58199832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023919A1 (en) 2008-08-27 2010-03-04 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method using same
CN103041809A (en) * 2013-01-04 2013-04-17 中山大学 Method for preparing organic waste gas combustion catalyst with platinum spent catalyst
JP2013249494A (en) * 2012-05-30 2013-12-12 National Institute Of Advanced Industrial Science & Technology Method and apparatus for recovering noble metal by route of compound oxide
JP2014176848A (en) * 2008-08-27 2014-09-25 Umicore Shokubai Japan Co Ltd Exhaust gas purification catalyst and exhaust gas purification method using the same
CN110684905A (en) * 2019-11-29 2020-01-14 西安凯立新材料股份有限公司 Method for leaching metal platinum in platinum alumina catalyst by wet method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010023919A1 (en) 2008-08-27 2010-03-04 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method using same
KR20110050676A (en) 2008-08-27 2011-05-16 아이씨티 코., 엘티디. Exhaust gas purification catalyst and exhaust gas purification method using same
US8465711B2 (en) 2008-08-27 2013-06-18 Umicore Shokubai Japan Co., Ltd. Exhaust gas purification catalyst and method for purifying exhaust gas by using same
JP2014176848A (en) * 2008-08-27 2014-09-25 Umicore Shokubai Japan Co Ltd Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2013249494A (en) * 2012-05-30 2013-12-12 National Institute Of Advanced Industrial Science & Technology Method and apparatus for recovering noble metal by route of compound oxide
CN103041809A (en) * 2013-01-04 2013-04-17 中山大学 Method for preparing organic waste gas combustion catalyst with platinum spent catalyst
CN110684905A (en) * 2019-11-29 2020-01-14 西安凯立新材料股份有限公司 Method for leaching metal platinum in platinum alumina catalyst by wet method

Also Published As

Publication number Publication date
JPS6140287B2 (en) 1986-09-08

Similar Documents

Publication Publication Date Title
JP4165661B2 (en) Ammonia oxidation catalyst
JP6381131B2 (en) Ammonia decomposition catalyst, method for producing the catalyst, and method for decomposing ammonia using the catalyst
JP5277732B2 (en) Method for producing regenerated catalyst for working solution used for hydrogen peroxide production
RU2003133445A (en) CATALYST FOR THE FISHERAP-TROPSH PROCESS, HAVING A STRONGLY DEVELOPED SURFACE AND CONSISTING OF SMALL SIZE CRYSTALS
WO1989004210A1 (en) Catalyst for decomposing ammonia
JP2841411B2 (en) How to get hydrogen from ammonia
JPS60147244A (en) Modified copper and zinc-containing catalyst and production of methanol using said catalyst
JP2002052341A (en) Catalytic ammonia production method and production and recovery method for ammonia synthesis catalyst
RU2684908C2 (en) Nitrous oxide decomposition catalyst
CN112774674A (en) Supported ruthenium cluster catalyst for ammonia synthesis, and preparation method and application thereof
JP3273820B2 (en) Cerium-containing composite oxide having oxygen absorbing / releasing ability and method for producing the same
JPS58199832A (en) Method for recovering rhodium
JP3943648B2 (en) Methanol synthesis method
JPH11292539A (en) Production of zirconia-ceria composition
JP5858572B2 (en) Method for producing regenerated catalyst metal-supported carbon catalyst using spent catalyst metal-supported carbon catalyst
JPH11179204A (en) Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production
JP2013237045A (en) Catalyst converting ammonia to nitrogen and hydrogen, method for manufacturing the catalyst, and method for converting ammonia using the catalyst
JP2005262126A (en) Catalyst carrier, its preparation method and preparation method of catalyst
JP3636912B2 (en) Method for producing catalyst for producing ethylene oxide
JPS60257837A (en) Catalyst for decomposing/reforming methanol and its preparation
JP2009254979A (en) Method of manufacturing ammonia decomposing catalyst
US4287096A (en) Process for producing supported skeletal catalytic materials
JPH0144647B2 (en)
JP3275027B2 (en) Method for producing copper-based catalyst
JP2003093878A (en) Catalyst for manufacturing hydrogen and manufacturing method for hydrogen using the same