JP2003093878A - Catalyst for manufacturing hydrogen and manufacturing method for hydrogen using the same - Google Patents

Catalyst for manufacturing hydrogen and manufacturing method for hydrogen using the same

Info

Publication number
JP2003093878A
JP2003093878A JP2001292451A JP2001292451A JP2003093878A JP 2003093878 A JP2003093878 A JP 2003093878A JP 2001292451 A JP2001292451 A JP 2001292451A JP 2001292451 A JP2001292451 A JP 2001292451A JP 2003093878 A JP2003093878 A JP 2003093878A
Authority
JP
Japan
Prior art keywords
catalyst
iron
hydrogen
hydrocarbon
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001292451A
Other languages
Japanese (ja)
Other versions
JP3837482B2 (en
Inventor
Kazuhisa Murata
和久 村田
Hitoshi Inaba
仁 稲葉
Masahiro Saito
昌弘 斉藤
Isao Takahara
功 高原
Naoki Mimura
直樹 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001292451A priority Critical patent/JP3837482B2/en
Publication of JP2003093878A publication Critical patent/JP2003093878A/en
Application granted granted Critical
Publication of JP3837482B2 publication Critical patent/JP3837482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an improved iron based catalyst which is stable for a decomposition reaction of a hydrocarbon even in co-presence of oxidative gas and in which a catalytic activity is maintained for a long period of time; and to provide a manufacturing method for hydrogen using the catalyst. SOLUTION: In the catalyst for manufacturing hydrogen used for the decomposition reaction of the hydrocarbon, an iron-containing substance and a substance containing at least one kind of metal selected from the group IIa metals and group VIIa metals and rare earth metals in the periodic table are carried on an alumina based carrier. In the method for manufacturing hydrogen, the hydrocarbon is decomposed by using this catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素の分解に
用いる水素製造用触媒及びそれを用いた水素の製造方法
に関するものである。
TECHNICAL FIELD The present invention relates to a catalyst for hydrogen production used for cracking hydrocarbons and a method for producing hydrogen using the same.

【0002】[0002]

【従来の技術】水素はアンモニアやメタノールの原料等
として化学工業で広く使われており、今後は、燃料電池
等のエネルギー源としても大量に使われる方向にある。
最近、炭化水素の分解により水素を製造する触媒とし
て、鉄系触媒を用いることが報告されている(M.A.Ermak
ova, D.Y.Ermakov, A.L.Chuvilin, and G.G.Kuvshinov,
J.Catal., 201, 183-197 (2001); 芹沢道夫、竹中壮、
山中一郎、大塚潔、第86回触媒討論会3I05(2000))。こ
の鉄系触媒は、酸素等の酸化性ガスの存在しない純粋な
炭化水素の分解反応系では、Ni系触媒と遜色のない活
性を示している。また、反応条件下で金属鉄/炭化鉄が
反応に関与することを推定している(上記Ermakovaらの
報告)。
2. Description of the Related Art Hydrogen is widely used in the chemical industry as a raw material for ammonia and methanol, and in the future, it will be used in large quantities as an energy source for fuel cells and the like.
Recently, it has been reported that an iron-based catalyst is used as a catalyst for producing hydrogen by decomposing hydrocarbons (MA Ermak
ova, DYErmakov, ALChuvilin, and GGKuvshinov,
J. Catal., 201, 183-197 (2001); Michio Serizawa, So Takenaka,
Ichiro Yamanaka, Kiyoshi Otsuka, 86th Symposium on Catalysis 3I05 (2000)). This iron-based catalyst exhibits an activity comparable to that of a Ni-based catalyst in a decomposition reaction system of pure hydrocarbons in which an oxidizing gas such as oxygen does not exist. Moreover, it is presumed that metallic iron / iron carbide participates in the reaction under the reaction conditions (report by Ermakova et al., Supra).

【0003】ところが、炭化水素の分解反応における触
媒寿命を延ばすために、反応系内に副生炭素との反応が
期待されるCO、HO等の酸化性ガスを適当量添加
すると、鉄がより一層酸化された状態になり、鉄系触媒
の活性が低下するという欠点があった。そこで、鉄系触
媒を炭化水素の分解反応のみならず、炭化水素の改質反
応等にも活用していくためには、これら酸化性ガスが含
まれる反応系内でも金属鉄/酸化鉄が安定に存在し、高
活性が維持される改良型鉄系触媒の開発が重要となって
いる。
However, in order to prolong the catalyst life in the hydrocarbon decomposition reaction, if an appropriate amount of an oxidizing gas such as CO 2 or H 2 O, which is expected to react with by-product carbon, is added to the reaction system, iron is added. Was further oxidized, and the activity of the iron-based catalyst decreased. Therefore, in order to utilize the iron-based catalyst not only for the decomposition reaction of hydrocarbons but also for the reforming reaction of hydrocarbons, metallic iron / iron oxide is stable even in the reaction system containing these oxidizing gases. It is important to develop an improved iron-based catalyst that exists in the US and maintains high activity.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、酸化
性ガスの共存下でも炭化水素の分解反応に対して安定で
あり、かつ長期にわたり触媒活性が持続する改良型鉄系
触媒を提供すること及びその触媒を用いて炭化水素から
水素を製造する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an improved iron-based catalyst which is stable against a hydrocarbon decomposition reaction even in the presence of an oxidizing gas and has a long-lasting catalytic activity. And a method for producing hydrogen from hydrocarbons using the catalyst.

【0005】[0005]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく炭化水素の接触分解反応に用いる触媒につ
いて鋭意研究を重ねた結果、特定の成分からなる触媒が
良好な特性を有することを見出し、本発明を完成するに
至った。すなわち、本発明によれば、アルミナ系担体
に、鉄含有物質と周期律表第IIa族金属、第VIIa族金
属及び希土類金属から選ばれた少なくとも一種の金属を
含む物質とを担持させたことを特徴とする炭化水素の分
解反応に用いる水素製造用触媒が提供される。また、本
発明によれば、炭化水素を、アルミナ系担体に鉄含有物
質と周期律表第IIa族金属、第VIIa族金属及び希土類
金属から選ばれた少なくとも一種の金属を含む物質とを
担持させた触媒と加熱条件下に接触させて水素を得るこ
とを特徴とする炭化水素の分解反応による水素の製造方
法が提供される。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies as to a catalyst used in a catalytic cracking reaction of hydrocarbons in order to solve the above problems, and as a result, a catalyst composed of specific components has good characteristics. This has led to the completion of the present invention. That is, according to the present invention, an alumina-based carrier is loaded with an iron-containing substance and a substance containing at least one metal selected from Group IIa metal, Group VIIa metal and rare earth metal of the periodic table. Provided is a catalyst for hydrogen production which is used for a characteristic hydrocarbon decomposition reaction. Further, according to the present invention, a hydrocarbon is supported on an alumina-based carrier by supporting an iron-containing substance and a substance containing at least one metal selected from Group IIa metal, Group VIIa metal and rare earth metal of the periodic table. There is provided a method for producing hydrogen by a hydrocarbon decomposition reaction, which comprises contacting the catalyst with a catalyst under heating conditions to obtain hydrogen.

【0006】[0006]

【発明の実施の形態】本発明において、炭化水素の分解
により水素を製造するには、アルミナ系触媒担体に、鉄
含有物質と周期律表第IIa族金属、第VIIa族金属及び
希土類金属から選ばれた少なくとも一種の金属を含む物
質とを活性成分として、担持させた触媒を用いるもので
ある。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, in order to produce hydrogen by decomposing hydrocarbons, an iron-based catalyst carrier is selected from iron-containing substances and Group IIa metals, Group VIIa metals and rare earth metals of the periodic table. And a substance containing at least one metal as an active ingredient.

【0007】本発明に触媒担体として用いるアルミナ系
物質としては、従来より触媒担体として公知の各種アル
ミナ構造体及びそれらの前駆体が挙げられ、それらの製
造法や原材料によっては何ら限定されるものではない。
このようなアルミナ系物質としては、α-アルミナ、β-
アルミナ、γ-アルミナ、活性アルミナ等が例示され
る。また、アルミナ前駆体としては、焼成することによ
りアルミナになるものであって、アルミニウムイソプロ
ポキシド、アルミニウムアセチルアセトナート、トリエ
チルアルミニウム等の有機金属アルミニウム化合物が例
示される。
Examples of the alumina-based substance used as the catalyst carrier in the present invention include various alumina structures and their precursors which have been heretofore known as catalyst carriers, and are not limited in any way depending on their production method and raw materials. Absent.
Such alumina-based materials include α-alumina and β-
Alumina, γ-alumina, activated alumina and the like are exemplified. Further, the alumina precursor is one that becomes alumina by firing, and examples thereof include organometallic aluminum compounds such as aluminum isopropoxide, aluminum acetylacetonate, and triethylaluminum.

【0008】本発明で触媒の活性成分として用いる鉄含
有物質としては、いかなる形態のものも含まれるが、水
や有機溶媒に可溶なものが推奨され、具体的には、硝酸
鉄、硫酸鉄等の無機酸鉄塩類、塩化鉄、臭化鉄等のハロ
ゲン化鉄類、蓚酸鉄、ステアリン酸鉄、酢酸鉄等の有機
酸鉄類、フェロセン、鉄アセチルアセトネート等の有機
金属鉄類等が例示される。これらの鉄含有物質の添加量
は任意であるが、アルミナ系担体に対して、鉄0.01
〜100重量%、好ましくは1〜70重量%である。
The iron-containing substance used as the active component of the catalyst in the present invention includes any form, but those soluble in water or an organic solvent are recommended. Specifically, iron nitrate and iron sulfate are recommended. Inorganic acid iron salts such as iron chloride, iron halides such as iron chloride and iron bromide, organic acid irons such as iron oxalate, iron stearate and iron acetate, and organic metal irons such as ferrocene and iron acetylacetonate. It is illustrated. The addition amount of these iron-containing substances is arbitrary, but 0.01% of iron is added to the alumina-based carrier.
-100% by weight, preferably 1-70% by weight.

【0009】また、上記鉄含有物質と併用される他方の
触媒の活性成分としては、周期律表第IIa族金属、第VI
Ia族金属及び希土類金属から選ばれた少なくとも一種
の金属を含む物質(以下、これを「特定の金属含有物
質」ともいう。)が用いられる。これらは、それ自体が
炭化水素の分解活性を有しない金属であれば制約されな
いが、第IIa族金属としてはマグネシウムが好ましく、
また第VIIa族金属としてはマンガン、レニウムが好ま
しく、また希土類金属としてはランタン、セリウム、ユ
ーロピウム等が好ましい。これらの金属を含む物質は、
いずれも硝酸塩、硫酸塩等の無機酸塩、塩化物、臭化物
等のハロゲン化物、蓚酸塩、酢酸塩等の有機酸塩、シク
ロペンタジエニル金属、アセチルアセトナート金属等の
有機金属化合物等が例示される。これらの添加量は任意
であるが、アルミナ系担体に対して、金属元素0.01
〜80重量%、好ましくは1〜20重量%である。
The active component of the other catalyst used in combination with the iron-containing substance is a metal of Group IIa or VI of the periodic table.
A substance containing at least one metal selected from Group Ia metals and rare earth metals (hereinafter, also referred to as “specific metal-containing substance”) is used. These are not limited as long as they are metals having no hydrocarbon decomposing activity, but magnesium is preferable as the Group IIa metal,
The Group VIIa metal is preferably manganese or rhenium, and the rare earth metal is preferably lanthanum, cerium, europium or the like. Substances containing these metals are
Examples are inorganic salts such as nitrates and sulfates, halides such as chlorides and bromides, organic acid salts such as oxalates and acetates, and organometallic compounds such as cyclopentadienyl metal and acetylacetonate metal. To be done. The amount of these elements added is arbitrary, but 0.01% of metal element is added to the alumina-based carrier.
It is -80% by weight, preferably 1-20% by weight.

【0010】本発明の触媒の調製方法としては、(1)
担体であるアルミナ系物質に鉄化合物および特定の金属
含有物質を含浸させる方法、(2)アルミナ系担体に鉄
および特定の金属含有物質を沈澱させる方法、(3)ア
ルミナ系担体に鉄および特定の金属含有物質の溶液を滴
下する方法(incipient wetness法)、(4)アルミナ系
担体、鉄化合物および特定の金属含有物質を混練する方
法、等が例示される。上記(2)の場合、通常鉄の無機
酸塩および特定の金属含有物質の塩と、塩基性の沈澱剤
の組み合わせが好ましく、その沈澱剤としてはアンモニ
ア水,炭酸カリウム、炭酸ナトリウム等を用いることが
好ましい。
The method for preparing the catalyst of the present invention includes (1)
A method of impregnating an alumina-based material as a carrier with an iron compound and a specific metal-containing material, (2) a method of precipitating iron and a specific metal-containing material on an alumina-based carrier, (3) iron and a specific metal-containing material on an alumina-based carrier Examples thereof include a method of dropping a solution of a metal-containing substance (incipient wetness method), (4) a method of kneading an alumina-based carrier, an iron compound and a specific metal-containing substance. In the case of the above (2), it is usually preferable to combine an inorganic acid salt of iron and a salt of a specific metal-containing substance with a basic precipitant, and as the precipitant, aqueous ammonia, potassium carbonate, sodium carbonate or the like should be used. Is preferred.

【0011】本発明で水素製造原料として使用する炭化
水素としては、通常、常温で気体又は液体の炭化水素で
あって、具体的には、メタン、エタン、エチレン、プロ
パン等の脂肪族炭化水素;シクロヘキサン、シクロペン
タン等の脂環式炭化水素;ベンゼン、トルエン、キシレ
ン等の芳香族炭化水素が好ましいが、パラフィンワック
ス等の常温で固体の炭化水素を使用することもできる。
そして、これらの炭化水素は、単独でも2種以上混合し
て使用しても良い。
The hydrocarbon used as a raw material for producing hydrogen in the present invention is usually a gas or liquid hydrocarbon at room temperature, specifically, an aliphatic hydrocarbon such as methane, ethane, ethylene or propane; Alicyclic hydrocarbons such as cyclohexane and cyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene are preferable, but hydrocarbons that are solid at room temperature such as paraffin wax can also be used.
These hydrocarbons may be used alone or in combination of two or more.

【0012】炭化水素は、そのまま純品で用いることも
できるが、熱力学的に有利に効率良く熱分解させるため
にアルゴン、窒素、ヘリウム等の不活性ガスで希釈して
使うことも可能である。このときの希釈率は任意であ
る。反応温度は200〜1,200℃、好ましくは50
0〜800℃であり、また触媒表面と炭化水素ガスとの
接触時間は0.01〜1000秒、好ましくは0.1〜
50秒とするのが望ましい。更に、その反応系には酸
素、水や二酸化炭素を共存させることも可能であり、こ
れらにより触媒上に付着した炭素や反応時に生成する炭
素は部分的に除去される。この場合の反応式は、次のと
おりである。 C+HO → CO+H C+CO → 2CO C+O → CO 反応系に対するHO、OやCOの供給は、連続的
又は間欠的に行うことができる。また、その添加量は任
意であるが、いずれも原料炭化水素中に含まれる炭素1
モルに対し0.001〜100モル、好ましくは0.0
1〜10モルの割合である。
The hydrocarbon can be used as it is as a pure product, or can be diluted with an inert gas such as argon, nitrogen or helium for thermodynamically and efficiently and efficiently decomposed it. . The dilution rate at this time is arbitrary. The reaction temperature is 200 to 1,200 ° C., preferably 50
The contact time between the catalyst surface and the hydrocarbon gas is 0.01 to 1000 seconds, preferably 0.1 to 800 ° C.
50 seconds is preferable. Further, oxygen, water or carbon dioxide can be allowed to coexist in the reaction system, and carbon partially attached to the catalyst or carbon produced during the reaction is partially removed by these. The reaction formula in this case is as follows. Supply of C + H 2 O → CO + H 2 C + CO 2 → 2CO C + O 2 → CO H 2 O for 2 reaction system, O 2 and CO 2 may be carried out continuously or intermittently. Further, the addition amount thereof is arbitrary, but in each case, carbon 1 contained in the raw material hydrocarbon is
0.001 to 100 mol, preferably 0.0
It is a ratio of 1 to 10 mol.

【0013】本発明の熱分解方法は、バッチ方式或いは
流通方式のいずれも採用できるが、好ましくは流通方式
で実施される。流通方式で行う場合には、固定床方式、
移動床方式、循環流動層方式(上山ら、「ケミカルエン
ジニアリング」P.27、1994年12月号)等を適
宜採用できる。本発明の方法を固定床方式で実施する場
合には、触媒を管状反応器に充填して触媒充填層を設け
ることが好ましい。その際、触媒充填層の上下端部には
炭素質物質の粒径より小さな細孔を有するフィルター層
を積層して触媒層を固定することが望ましい。
The thermal decomposition method of the present invention may employ either a batch system or a distribution system, but the distribution system is preferred. When using the distribution method, the fixed bed method,
A moving bed system, a circulating fluidized bed system (Ueyama et al., "Chemical Engineering" P. 27, December 1994 issue), etc. can be appropriately adopted. When the method of the present invention is carried out in a fixed bed system, it is preferable that the catalyst is packed in a tubular reactor to provide a catalyst packed bed. At this time, it is desirable to fix the catalyst layer by laminating a filter layer having pores smaller than the particle size of the carbonaceous material on the upper and lower ends of the catalyst packed layer.

【0014】本発明の触媒は、鉄含有物質の他に、特定
の金属含有物質を含むことから、反応系中に水等の酸化
性ガスが共存していても、触媒活性種と密接に関連する
金属鉄/炭化鉄(本発明の触媒系において反応後の粉末
X線回折により存在を確認している。)が安定に存在し
ているために、優れた触媒活性及び触媒寿命を有するも
のである。このことは、この触媒が炭化水素の分解によ
る水素の製造に有用であるに止まらず、将来的には改質
反応への利用可能性を示唆するものである。
Since the catalyst of the present invention contains a specific metal-containing substance in addition to the iron-containing substance, it is closely related to the catalytically active species even if an oxidizing gas such as water coexists in the reaction system. Stable presence of metallic iron / iron carbide (the presence of which is confirmed by powder X-ray diffraction after the reaction in the catalyst system of the present invention), which has excellent catalytic activity and catalyst life. is there. This suggests that this catalyst is not only useful for producing hydrogen by decomposing hydrocarbons, but that it can be used for reforming reactions in the future.

【0015】[0015]

【実施例】次に、本発明を実施例によって更に具体的に
説明する。 実施例1 硝酸鉄3.62g(アルミナに対する鉄の担持率10wt%)
および硝酸マグネシウム5.27g(同10wt%)を蒸留水
50gに溶かし、その後、その水溶液に市販の活性アル
ミナ5gを懸濁させ、金属分をアルミナに担持させる。
次に、蒸留水を蒸発乾固し、100℃で一晩放置した
後、700℃で3時間焼成することにより、鉄/Mg/
アルミナからなる触媒6.30gを得た。こうして得た触
媒1gと粒径100〜1000μmの石英砂5gを良く
混合し、これを内径12mmの石英製反応管の中央に充
填して触媒層を形成した。この場合、反応中に触媒が移
動しないように触媒層両端に石英ウールを充填した。こ
の反応管を電気炉内に装填し、この中に水素を流しなが
ら600℃で2時間触媒の還元処理を行った。
EXAMPLES Next, the present invention will be described more specifically by way of examples. Example 1 3.62 g of iron nitrate (support ratio of iron to alumina: 10 wt%)
And 5.27 g of magnesium nitrate (10 wt% in the same amount) are dissolved in 50 g of distilled water, and then 5 g of commercially available activated alumina is suspended in the aqueous solution to support the metal component on the alumina.
Next, distilled water was evaporated to dryness, left at 100 ° C. overnight, and then calcined at 700 ° C. for 3 hours to obtain iron / Mg /
6.30 g of catalyst consisting of alumina was obtained. 1 g of the catalyst thus obtained was mixed well with 5 g of quartz sand having a particle size of 100 to 1000 μm, and this was filled in the center of a quartz reaction tube having an inner diameter of 12 mm to form a catalyst layer. In this case, both ends of the catalyst layer were filled with quartz wool so that the catalyst did not move during the reaction. This reaction tube was loaded into an electric furnace, and the reduction treatment of the catalyst was performed at 600 ° C. for 2 hours while flowing hydrogen into the electric furnace.

【0016】次に、その反応管にメタン/二酸化炭素/
窒素/酸素(容量比:65/8/4/21)の混合ガス
を40cm/分の速度で通しながら、反応管の内温を
5℃/分の速度で800℃まで昇温させて反応を開始し
た。得られた生成ガス組成を、2、4及び6時間後にガ
スクロマトグラフにて分析したところ、メタン添加率及
び水素生成速度は表1に示す結果を得た。なお、エタ
ン、エチレン、ベンゼン等の有機生成物は全く認められ
なかった。その反応を開始して6時間後には、メタン転
化率95.2%、水素生成速度0.000823モル/時
であり、6時間後でも触媒活性は低下していなかった。
そのメタン転化率(%)は、下式にて計算される。 メタン転化率=〔(分解炭素)+(CO生成量)〕×10
0/〔(分解炭素)+(CO生成量)+(未反応メタン)〕 ここで、 分解炭素=〔(原料メタン)+(原料CO2)〕
−〔(未反応メタン)+(未反応CO2)+(生成CO)〕
Next, methane / carbon dioxide /
While passing a mixed gas of nitrogen / oxygen (volume ratio: 65/8/4/21) at a rate of 40 cm 3 / min, the internal temperature of the reaction tube was raised to 800 ° C at a rate of 5 ° C / min to carry out the reaction. Started. When the obtained produced gas composition was analyzed by gas chromatography after 2, 4 and 6 hours, the results shown in Table 1 were obtained for the methane addition rate and the hydrogen production rate. No organic products such as ethane, ethylene and benzene were observed. Six hours after the reaction was started, the methane conversion was 95.2% and the hydrogen production rate was 0.008233 mol / hour, and the catalyst activity was not lowered even after 6 hours.
The methane conversion rate (%) is calculated by the following formula. Methane conversion rate = [(cracked carbon) + (CO production)] x 10
0 / [(cracked carbon) + (CO production amount) + (unreacted methane)] where, cracked carbon = [(raw material methane) + (raw material CO2)]
-[(Unreacted methane) + (unreacted CO2) + (produced CO)]

【0017】比較例1 硝酸マンガンを用いないこと以外は、実施例1と同様に
して調製した触媒(鉄/アルミナ)を用いて反応させたと
ころ、表1に示すように、メタン転化率79.2%、水
素生成速度0.00064モル/時であり、6時間後の
メタン転化率は14%以上も低かった。
Comparative Example 1 A catalyst (iron / alumina) prepared in the same manner as in Example 1 was used, except that manganese nitrate was not used. As a result, as shown in Table 1, the conversion rate of methane was 79. The hydrogen generation rate was 2% and the hydrogen generation rate was 0.0604 mol / hour, and the methane conversion rate after 6 hours was as low as 14% or more.

【0018】実施例2〜6 実施例1において用いた硝酸マグネシウムの代わりに、
それぞれマンガン、ランタン、セリウム、ユーロピウム
及びイットリウムの硝酸塩を用いて、担持率10%の触
媒(鉄/金属/アルミナ)を調製した触媒を用い、実施例
1と同様にして反応させたところ、表1に示すな結果が
得られた。これらの触媒は、いずれも活性低下が少ない
ことが分かった。
Examples 2 to 6 Instead of the magnesium nitrate used in Example 1,
Catalysts prepared by using nitrates of manganese, lanthanum, cerium, europium and yttrium to prepare a catalyst (iron / metal / alumina) having a supporting rate of 10% were reacted in the same manner as in Example 1, and the results are shown in Table 1. The following results were obtained. It was found that the activity of each of these catalysts was small.

【0019】比較例2〜4 実施例1において用いた硝酸マグネシウムの代わりに、
それぞれクロム、バナジウム、リチウムの各硝酸塩を用
いたこと以外は、実施例1と同様にして調製した触媒を
用い、同様に反応させたところ、6時間後におけるメタ
ン転化率は20%前後と著しく活性低下していた。
Comparative Examples 2 to 4 Instead of the magnesium nitrate used in Example 1,
A catalyst prepared in the same manner as in Example 1 was used, except that chromium, vanadium, and lithium nitrates were used, respectively, and the same reaction was performed. As a result, the methane conversion rate after 6 hours was remarkably active at around 20%. It was falling.

【0020】比較例5 鉄系化合物を用いないで、硝酸マンガンとアルミナのみ
からマンガン10%担持した触媒を調製し、実施例1と
同様に反応させたところ、メタン転化率は2時間後でも
8%程度であり、鉄を含まない触媒では著しく活性が低
かった。
Comparative Example 5 A catalyst supporting 10% of manganese was prepared from only manganese nitrate and alumina without using an iron compound and reacted in the same manner as in Example 1. The methane conversion was 8 even after 2 hours. %, And the activity of the catalyst containing no iron was extremely low.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明によれば、炭化水素類を分解して
水素を製造する反応において、二酸化炭素、水及び酸素
等の酸化性ガス共存下においても、安定した触媒活性を
有すると共に、長時間に亘って触媒寿命が維持される有
用な触媒が提供される。
According to the present invention, in the reaction for decomposing hydrocarbons to produce hydrogen, it has a stable catalytic activity even in the presence of an oxidizing gas such as carbon dioxide, water and oxygen, and has a long life. A useful catalyst is provided that maintains the catalyst life over time.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 38/06 C01B 3/26 38/12 3/40 C01B 3/26 B01J 23/74 301M // C01B 3/40 23/84 311M (72)発明者 高原 功 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 (72)発明者 三村 直樹 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所つくばセンター内 Fターム(参考) 4G040 DA03 DB01 DC02 DC04 DC05 4G069 AA03 AA08 BA01A BA01B BC08A BC10A BC10B BC32A BC38A BC42B BC43B BC44B BC61A BC62B BC64A BC66A BC66B CC40 FA01 FA02 FB14 GA02 GA03 GA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01J 38/06 C01B 3/26 38/12 3/40 C01B 3/26 B01J 23/74 301M // C01B 3 / 40 23/84 311M (72) Inventor Isao Takahara 1-1-1 East, Tsukuba City, Ibaraki Prefecture Independent Administrative Law Institute of Industrial Science and Technology Tsukuba Center (72) Inventor Naoki Mimura 1-1-1, East, Tsukuba City, Ibaraki Prefecture Independent Administrative Law F-Term in Tsukuba Center, National Institute of Advanced Industrial Science and Technology (Reference) 4G040 DA03 DB01 DC02 DC04 DC05 4G069 AA03 AA08 BA01A BA01B BC08A BC10A BC10B BC32A BC38A BC42B BC43B BC44B BC61A BC62B BC64A BC66A BC66B CC40 FA01 GA03 GA06 GA02 GA06 GA02 GA14 GA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルミナ系担体に、鉄含有物質と周期律
表第IIa族金属、第VIIa族金属及び希土類金属から選
ばれた少なくとも一種の金属を含む物質とを担持させた
ことを特徴とする炭化水素の分解反応に用いる水素製造
用触媒。
1. An alumina-based carrier carrying an iron-containing substance and a substance containing at least one metal selected from Group IIa metals, Group VIIa metals and rare earth metals of the periodic table. A catalyst for hydrogen production used in a hydrocarbon decomposition reaction.
【請求項2】 前記第IIa族金属がマグネシウムである
ことを特徴とする請求項1に記載の炭化水素の分解反応
に用いる水素製造用触媒。
2. The catalyst for hydrogen production used in the hydrocarbon decomposition reaction according to claim 1, wherein the Group IIa metal is magnesium.
【請求項3】 前記第VIIa族金属が、マンガン又はレ
ニウムであることを特徴とする請求項1に記載の炭化水
素の分解反応に用いる水素製造用触媒。
3. The catalyst for hydrogen production used in the hydrocarbon decomposition reaction according to claim 1, wherein the Group VIIa metal is manganese or rhenium.
【請求項4】 炭化水素を、アルミナ系担体に鉄含有物
質と周期律表第IIa族金属、第VIIa族金属及び希土類
金属から選ばれた少なくとも一種の金属を含む物質とを
担持させた触媒と加熱条件下に接触させて水素を得るこ
とを特徴とする炭化水素の分解反応による水素の製造方
法。
4. A catalyst in which a hydrocarbon is carried on an alumina-based carrier and an iron-containing substance and a substance containing at least one metal selected from Group IIa metals, Group VIIa metals and rare earth metals of the periodic table. A method for producing hydrogen by a decomposition reaction of hydrocarbon, which comprises contacting under heating to obtain hydrogen.
【請求項5】 前記分解反応中に二酸化炭素および/ま
たは酸素および/または水を共存させることを特徴とす
る請求項1に記載の水素の製造方法。
5. The method for producing hydrogen according to claim 1, wherein carbon dioxide and / or oxygen and / or water are allowed to coexist during the decomposition reaction.
JP2001292451A 2001-09-25 2001-09-25 Catalyst for producing hydrogen and method for producing hydrogen using the same Expired - Lifetime JP3837482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292451A JP3837482B2 (en) 2001-09-25 2001-09-25 Catalyst for producing hydrogen and method for producing hydrogen using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292451A JP3837482B2 (en) 2001-09-25 2001-09-25 Catalyst for producing hydrogen and method for producing hydrogen using the same

Publications (2)

Publication Number Publication Date
JP2003093878A true JP2003093878A (en) 2003-04-02
JP3837482B2 JP3837482B2 (en) 2006-10-25

Family

ID=19114407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292451A Expired - Lifetime JP3837482B2 (en) 2001-09-25 2001-09-25 Catalyst for producing hydrogen and method for producing hydrogen using the same

Country Status (1)

Country Link
JP (1) JP3837482B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142595A (en) * 2006-12-07 2008-06-26 Kitami Institute Of Technology Method for manufacturing catalyst for cracking lower hydrocarbon directly
WO2009054315A1 (en) * 2007-10-23 2009-04-30 Cataler Corporation Exhaust gas purification catalyst
JP2011189347A (en) * 2011-06-24 2011-09-29 Kitami Institute Of Technology Method for producing catalyst for directly cracking lower hydrocarbon
JP2014217793A (en) * 2013-05-01 2014-11-20 三菱化学株式会社 Catalyst for synthesis gas production, regeneration process of the catalyst, and process for producing synthesis gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142595A (en) * 2006-12-07 2008-06-26 Kitami Institute Of Technology Method for manufacturing catalyst for cracking lower hydrocarbon directly
WO2009054315A1 (en) * 2007-10-23 2009-04-30 Cataler Corporation Exhaust gas purification catalyst
US8361925B2 (en) 2007-10-23 2013-01-29 Cataler Corporation Exhaust gas-purifying catalyst
JP5698908B2 (en) * 2007-10-23 2015-04-08 株式会社キャタラー Exhaust gas purification catalyst
JP2011189347A (en) * 2011-06-24 2011-09-29 Kitami Institute Of Technology Method for producing catalyst for directly cracking lower hydrocarbon
JP2014217793A (en) * 2013-05-01 2014-11-20 三菱化学株式会社 Catalyst for synthesis gas production, regeneration process of the catalyst, and process for producing synthesis gas

Also Published As

Publication number Publication date
JP3837482B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
EP0406896B1 (en) Catalyst for reforming hydrocarbon with steam
RU2259988C2 (en) Catalyst and method for preparing hydrocarbons
WO2002078840A1 (en) Catalyst for reforming hydrocarbon and method for preparation thereof, and process for reforming hydrocarbon using said catalyst
JP2012532104A (en) Oxidative coupling method of methane
AU2013203123B2 (en) Treating of catalyst support
WO1998046523A1 (en) Catalyst for preparation of synthesis gas and process for preparing carbon monoxide
JP2002012408A (en) Method of autothermal catalytic steam reforming for hydrocarbon
JP3761947B2 (en) Catalyst composition for producing synthesis gas and method for producing synthesis gas using the same
JP2000000469A (en) Nickel based catalyst for reforming and production of synthetic gas using the same
CS213333B2 (en) Method of making the catalyser
JP2009297715A (en) Catalytic reduction and oxidation method
JP2005255514A (en) Method of manufacturing iodide
KR20220094149A (en) Direct decomposition device and direct decomposition method for hydrocarbon
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
RU2664116C2 (en) Catalyst and process for oxychlorination of ethylene to dichloroethane
JP3837482B2 (en) Catalyst for producing hydrogen and method for producing hydrogen using the same
KR20140028400A (en) The modified catalyst for co2 conversion
KR100912725B1 (en) New catalysts for methane reforming with carbon dioxide to syngas, preparation method thereof and preparation method of syngas using there catalysts and carbon dioxide
JP6089894B2 (en) Catalyst for producing synthesis gas and method for producing synthesis gas
JP4465478B2 (en) Catalyst for hydrogen production
JP2500357B2 (en) Method for producing methane from carbon dioxide
US5334789A (en) Oxychlorination catalyst process for preparing the catalyst and method of oxychlorination with use of the catalyst
EP0100202B1 (en) Process for the production of hydrocyanic acid from carbon monoxide and ammonia
JP4488321B2 (en) Synthesis gas production catalyst and synthesis gas production method
JP3089677B2 (en) How to reduce carbon dioxide with propane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350