JPH0144647B2 - - Google Patents

Info

Publication number
JPH0144647B2
JPH0144647B2 JP17243280A JP17243280A JPH0144647B2 JP H0144647 B2 JPH0144647 B2 JP H0144647B2 JP 17243280 A JP17243280 A JP 17243280A JP 17243280 A JP17243280 A JP 17243280A JP H0144647 B2 JPH0144647 B2 JP H0144647B2
Authority
JP
Japan
Prior art keywords
platinum
catalyst
rhodium
palladium
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17243280A
Other languages
Japanese (ja)
Other versions
JPS5795831A (en
Inventor
Atsushi Kuroda
Fumyoshi Noda
Kazuko Yoshida
Hiroaki Fukui
Yoshinobu Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP17243280A priority Critical patent/JPS5795831A/en
Publication of JPS5795831A publication Critical patent/JPS5795831A/en
Publication of JPH0144647B2 publication Critical patent/JPH0144647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は活性アルミナ質担体に白金族金属元素
(以下、単に白金族金属という)としてロジウム
と少なくとも白金またはパラジウムとを担持して
なる特に使用済の白金系触媒から、これらの金属
を回収する方法に関するものである。 触媒成分として、各種の白金族金属をアルミナ
等の担体に担持させた白金系触媒は、化学工業や
自動車等の排ガス浄化用に広く利用されている。
この触媒に使用する白金族金属は高価であり、資
源的にも不足しているため、使用済触媒から回収
して再利用することが社会的に要求されている。
したがつて、これら金属の回収方法の確立は急務
とされている。 従来、活性アルミナ質担体(以下、単にアルミ
ナ担体という)に、触媒成分として白金、パラジ
ウム等を担持させた触媒からこれらの触媒金属を
回収する方法としては、触媒をそのまま無機酸で
抽出したり、あるいは、先ず1200℃程度の高温で
焼成して担体のアルミナをα化してから酸化物と
なつた白金、パラジウム等を水素または水素化ホ
ウ素ナトリウム等の還元剤で還元し、次いで塩酸
または硝酸のような無機酸により担体から白金、
パラジウム等を高収率で抽出回収する方法が知ら
れている。 しかしながら、上記の従来方法は、白金および
パラジウムのみをアルミナ担体に担持させた触媒
からこれらの金属を回収するためには都合がよい
が、これらの金属とともにロジウムも担持させた
触媒から触媒金属を回収するには使用できない。
何故ならば、上記の従来方法のうち後者の方法
は、空気中で高温焼成したとき、担持されたロジ
ウムが担体のアルミナと反応して無機酸に安定な
固溶体を形成してしまうため、ロジウムを無機酸
で抽出回収することができないという問題がある
からである。この固溶体の形成を防止してロジウ
ムの回収率を高めるには、触媒に担持した金属を
水素化ホウ素ナトリウム等で還元した後、上記従
来方法の前者の方法によつて無機酸でアルミナを
溶解させることにより、ロジウムを高収率で回収
することができる。しかしながら、この方法では
担体のアルミナがα化されず活性を保持している
ため、一旦溶解した白金およびパラジウムが担体
に再担持され、このため白金およびパラジウムを
高収率で回収することができなくなつてしまう。
また、ロジウムと担体アルミナとの固溶体の形成
を防止する別の方法としては、ロジウムを担持さ
せた触媒を水素中で高温焼成すれば、固溶体を形
成せず高収率でロジウムを回収することができ
る。しかしながら、水素中で高温焼成すること
は、工業的な規模では設備およびランニングコス
トが非常に高くなるので、実際上不可能である。 このように、従来方法ではロジウムを白金また
はパラジウム等とともにアルミナ担体に担持させ
た触媒から、白金およびパラジウム等を高収率で
回収しようとすればロジウムの回収率が低下して
しまい、逆にロジウムを高収率で回収しようとす
れば白金およびパラジウムの回収率が低下してし
まうという問題があつた。 本発明は上記の二律背反する問題を解決し、ア
ルミナ担体触媒からロジウムおよび白金、パラジ
ウム等の全ての触媒金属を高収率で回収する方法
を提供するものである。 本発明の方法は、アルミナ担体に触媒成分の白
金族金属として、少なくともロジウムと白金およ
び/またはパラジウムとを担持してなる触媒を、
先ず還元した後白金族金属のうちロジウムの大部
分と白金、パラジウム等の一部を無機酸で溶解し
て一次回収し、次いで該触媒を1100℃以上の温度
で焼成して上記担体をα−アルミナ化した後、該
担体上に残存している白金、パラジウム等の白金
族金属を前記同様の無機酸で溶解して二次回収す
ることを特徴とする。 金属の溶解に用いる無機酸は、例えば硝酸、王
水、過酸化水素を含む塩酸等である。 本発明の方法において、白金、パラジウム等を
高収率で回収するためには、触媒の1100℃以上の
温度での焼成を、α−アルミナ化後の担体表面積
が20m2/g以下になるまで行なうことが望まし
い。 なお、本発明の方法を実施するにあたり、触媒
にカーボン等が付着している時は、予め空気中で
500〜700℃で前処理し、このカーボン等を燃焼除
去してから実施するとよい。但し、前処理の温度
は700℃より高くするとアルミナとロジウムの固
溶体が生じ、ロジウムの回収率が低下するので好
ましくない。本発明の方法は、触媒担体上の白金
族金属が酸化物の状態になつていないときは、最
初の還元処理を省略してもよいが、上記のカーボ
ン除去のための前処理を施した場合は、抽出前に
水素雰囲気中で300〜700℃の低温で還元するか、
水素化ホウ素ナトリウム等の還元剤で還元して、
白金族の貴金属酸化物をもとの非酸化金属状態に
もどしておく必要がある。 次に実施例に基づいて本発明を詳しく説明す
る。 実施例 1 活性アルミナ担体上にパラジウム0.2重量%お
よびロジウム0.02重量%を担持させた触媒6.8g
を空気中で600℃で焼成し、付着カーボンを燃焼
除去し、濃度0.5g/の水素化ホウ素ナトリウ
ム水溶液20mlで還元後、王水でロジウムおよび一
部のパラジウムを回収した。 次に抽出後の触媒を空気中で1200℃で焼成し、
前記同様に水素化ホウ素ナトリウム水溶液で還元
後、王水で残りのパラジウムを抽出した。その結
果、第1表に示すとおり、パラジウムおよびロジ
ウムの両者ともに95%をはるかに上回る高収率で
回収された。なお第1表には後記実施例2および
比較例の結果も合せて示す。
The present invention provides a method for recovering rhodium and at least platinum or palladium as platinum group metal elements (hereinafter simply referred to as platinum group metals) on an activated alumina support, especially from a used platinum-based catalyst. It is related to. Platinum-based catalysts, in which various platinum group metals are supported on carriers such as alumina, are widely used in the chemical industry and for purifying exhaust gas from automobiles and the like.
Since the platinum group metals used in these catalysts are expensive and in short supply, there is a social demand for their recovery and reuse from used catalysts.
Therefore, there is an urgent need to establish a method for recovering these metals. Conventionally, methods for recovering catalyst metals from a catalyst in which platinum, palladium, etc. are supported as catalyst components on an activated alumina support (hereinafter simply referred to as an alumina support) include extracting the catalyst as it is with an inorganic acid, Alternatively, first the alumina of the carrier is pregelatinized by firing at a high temperature of about 1200°C, then the platinum, palladium, etc. that have become oxides are reduced with a reducing agent such as hydrogen or sodium borohydride, and then with a reducing agent such as hydrochloric acid or nitric acid. Platinum is removed from the carrier by an inorganic acid.
A method for extracting and recovering palladium and the like with high yield is known. However, although the above conventional method is convenient for recovering these metals from a catalyst in which only platinum and palladium are supported on an alumina support, it is difficult to recover catalyst metals from a catalyst in which rhodium is also supported along with these metals. It cannot be used to
This is because, in the latter method of the above-mentioned conventional methods, when fired at high temperature in air, the supported rhodium reacts with the alumina support to form a solid solution that is stable in inorganic acids. This is because there is a problem that it cannot be extracted and recovered using an inorganic acid. In order to prevent the formation of this solid solution and increase the recovery rate of rhodium, the metal supported on the catalyst is reduced with sodium borohydride, etc., and then the alumina is dissolved with an inorganic acid by the former method of the above conventional method. By doing so, rhodium can be recovered in high yield. However, in this method, the alumina of the carrier is not pregelatinized and retains its activity, so once dissolved platinum and palladium are re-supported on the carrier, making it impossible to recover platinum and palladium in high yield. I get used to it.
Another method for preventing the formation of a solid solution between rhodium and supported alumina is to calcinate a catalyst supporting rhodium in hydrogen at a high temperature, thereby recovering rhodium in high yield without forming a solid solution. can. However, high-temperature firing in hydrogen is practically impossible on an industrial scale because the equipment and running costs are extremely high. In this way, in the conventional method, if an attempt is made to recover platinum, palladium, etc. with a high yield from a catalyst in which rhodium is supported on an alumina carrier together with platinum or palladium, the recovery rate of rhodium decreases; There was a problem in that if an attempt was made to recover platinum and palladium at a high yield, the recovery rate of platinum and palladium would decrease. The present invention solves the above-mentioned contradictory problems and provides a method for recovering rhodium and all catalytic metals such as platinum and palladium from an alumina-supported catalyst in high yield. The method of the present invention uses a catalyst comprising at least rhodium and platinum and/or palladium as catalyst component platinum group metals supported on an alumina carrier.
First, after reduction, most of the rhodium and some of the platinum, palladium, etc. of the platinum group metals are dissolved in an inorganic acid and recovered primarily, and then the catalyst is calcined at a temperature of 1100°C or higher to transform the carrier into α- After the aluminization, the platinum group metals remaining on the carrier, such as platinum and palladium, are dissolved in the same inorganic acid as described above for secondary recovery. Examples of inorganic acids used to dissolve metals include nitric acid, aqua regia, and hydrochloric acid containing hydrogen peroxide. In the method of the present invention, in order to recover platinum, palladium, etc. in high yield, the catalyst must be calcined at a temperature of 1100°C or higher until the surface area of the carrier after α-aluminaization becomes 20 m 2 /g or less. It is desirable to do so. Note that when carrying out the method of the present invention, if carbon etc. are attached to the catalyst, it should be soaked in air beforehand.
It is preferable to carry out a pretreatment at 500 to 700°C to burn off this carbon, etc. However, if the temperature of the pretreatment is higher than 700°C, a solid solution of alumina and rhodium will be formed, which will reduce the recovery rate of rhodium, which is not preferable. In the method of the present invention, when the platinum group metal on the catalyst carrier is not in an oxide state, the initial reduction treatment may be omitted, but if the above-mentioned pretreatment for carbon removal is performed. is reduced at a low temperature of 300-700℃ in a hydrogen atmosphere before extraction, or
By reducing with a reducing agent such as sodium borohydride,
It is necessary to return the platinum group noble metal oxide to its original non-oxidized metal state. Next, the present invention will be explained in detail based on examples. Example 1 6.8 g of catalyst with 0.2% by weight of palladium and 0.02% by weight of rhodium supported on activated alumina support
was calcined in air at 600° C. to burn off the adhering carbon, and after reduction with 20 ml of an aqueous sodium borohydride solution with a concentration of 0.5 g/region, rhodium and some palladium were recovered with aqua regia. Next, the extracted catalyst is calcined in air at 1200℃,
After reduction with an aqueous sodium borohydride solution in the same manner as above, the remaining palladium was extracted with aqua regia. As a result, as shown in Table 1, both palladium and rhodium were recovered with a high yield of well over 95%. Note that Table 1 also shows the results of Example 2 and Comparative Example described later.

【表】 実施例 2 活性アルミナ担体上に白金0.11重量%およびロ
ジウム0.02重量%を担持させた触媒6.8gを王水
で抽出してロジウムおよび一部の白金を回収し、
その後空気中で1200℃で焼成し、濃度0.5g/
の水素化ホウ素ナトリウム水溶液20mlで還元後、
王水で残りの白金を抽出した。その結果前記第1
表に示したとおり、白金およびロジウムの両者と
もに95%を上回る高収率で回収された。 比較例 実施例2で用いたものと同じ触媒6.8gを、800
℃で3時間焼成後、濃度0.5g/の水素化ホウ
素ナトリウム水溶液20mlで還元し、王水でロジウ
ムおよび白金を抽出した。次いで抽出後の触媒を
水洗した後、1回目と同じ条件で2回目の抽出を
行なつた。その結果、前記第1表に示したとお
り、白金およびロジウムの両者ともに回収率が低
く、95%をはるかに下回つた。このように回収率
が低かつた理由は、ロジウムを抽出する前に800
℃の温度で触媒を加熱したので、ロジウムの一部
がアルミナと固溶体を形成し、抽出されなくなつ
たこと、さらに、800℃の焼成温度ではアルミナ
がα化するには不充分であるため、アルミナ担体
に活性が残存し、一旦抽出された白金が担体に再
吸着され回収されなかつたためと考えられる。 以上説明したとおり、本発明は活性アルミナ担
体にロジウムを含む白金族貴金属を担持させた白
金系触媒から、その貴金属を95%を上回る高収率
で回収しうる方法を提供したものである。本発明
の方法は、触媒を水素雰囲気で高温焼成すること
なくロジウムとその他の白金族金属を効率よく回
収できるので、簡単に実施でき、またランニング
コストも安いので、資源節約に大きく貢献するも
のである。
[Table] Example 2 6.8 g of a catalyst in which 0.11% by weight of platinum and 0.02% by weight of rhodium were supported on an activated alumina carrier was extracted with aqua regia to recover rhodium and some platinum,
After that, it is baked in air at 1200℃, and the concentration is 0.5g/
After reduction with 20 ml of sodium borohydride aqueous solution,
The remaining platinum was extracted with aqua regia. As a result, the first
As shown in the table, both platinum and rhodium were recovered in high yields exceeding 95%. Comparative Example 6.8g of the same catalyst used in Example 2 was
After calcining at ℃ for 3 hours, the mixture was reduced with 20 ml of an aqueous sodium borohydride solution with a concentration of 0.5 g/region, and rhodium and platinum were extracted with aqua regia. Next, after washing the extracted catalyst with water, a second extraction was performed under the same conditions as the first extraction. As a result, as shown in Table 1 above, the recovery rates of both platinum and rhodium were low, far below 95%. The reason for this low recovery rate is that 800
Since the catalyst was heated at a temperature of 10°C, some of the rhodium formed a solid solution with alumina and was no longer extracted, and the calcination temperature of 800°C was insufficient for alumina to gelatinize. This is thought to be because activity remained in the alumina carrier, and platinum once extracted was re-adsorbed onto the carrier and was not recovered. As explained above, the present invention provides a method for recovering precious metals from a platinum-based catalyst in which platinum group noble metals including rhodium are supported on an activated alumina carrier at a high yield of over 95%. The method of the present invention can efficiently recover rhodium and other platinum group metals without sintering the catalyst at high temperatures in a hydrogen atmosphere, so it is easy to implement and has low running costs, making it a major contribution to resource conservation. be.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ質担体に触媒成分の白金族金属とし
て、ロジウムと少なくとも白金またはパラジウム
とを担持してなる触媒を、先ず還元した後白金族
金属を無機酸で溶解して一次回収し、次いで該触
媒を1100℃以上の温度で焼成して上記担体をα−
アルミナ化した後、該担体上に残存する白金族金
属を無機酸で溶解して二次回収することを特徴と
する白金系触媒から白金族金属を回収する方法。
1. A catalyst in which rhodium and at least platinum or palladium are supported as catalyst component platinum group metals on an alumina support is first reduced, and then the platinum group metal is dissolved in an inorganic acid for primary recovery, and then the catalyst is recovered. The above carrier is α-
A method for recovering platinum group metals from a platinum-based catalyst, which comprises dissolving the platinum group metals remaining on the carrier with an inorganic acid after aluminization for secondary recovery.
JP17243280A 1980-12-06 1980-12-06 Recovering method for platinum group metal from platinum base catalyst Granted JPS5795831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17243280A JPS5795831A (en) 1980-12-06 1980-12-06 Recovering method for platinum group metal from platinum base catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17243280A JPS5795831A (en) 1980-12-06 1980-12-06 Recovering method for platinum group metal from platinum base catalyst

Publications (2)

Publication Number Publication Date
JPS5795831A JPS5795831A (en) 1982-06-14
JPH0144647B2 true JPH0144647B2 (en) 1989-09-28

Family

ID=15941860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17243280A Granted JPS5795831A (en) 1980-12-06 1980-12-06 Recovering method for platinum group metal from platinum base catalyst

Country Status (1)

Country Link
JP (1) JPS5795831A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270420A (en) * 1987-04-27 1988-11-08 Tanaka Kikinzoku Kogyo Kk Method for recovering platinum group metals from platinum group metallic oxide electrode
JP2575715B2 (en) * 1987-06-30 1997-01-29 田中貴金属工業株式会社 Method for separating platinum group metal of electrode from electrode substrate
CN104831071A (en) * 2015-04-08 2015-08-12 昆明理工大学 Method for recovering platinum and palladium from waste carrier catalyst by hydrothermal method

Also Published As

Publication number Publication date
JPS5795831A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
JP2841411B2 (en) How to get hydrogen from ammonia
JPH01119341A (en) Catalyst for ammonia decomposition
JP2010269965A (en) Hydrogen production system
CN102405298A (en) Method for recovering ruthenium from spent catalysts containing ruthenium oxide
JPH057068B2 (en)
US3885019A (en) Catalytic reducing decomposition of oxides of nitrogen
JPS62168547A (en) Silver catalyst and its production
US2863762A (en) Recovery of noble metals
JPH0144647B2 (en)
JPH0617160A (en) Method for recovering rhenium from used catalyst
US2830877A (en) Recovery of platinum from alumina base platinum catalyst
US20070183951A1 (en) Method for recovering noble metals from metallic carrier catalytic device
US2710799A (en) Recovery of platinum from alumina base platinum catalyst
JPS6116326B2 (en)
JP4595082B2 (en) Precious metal recovery method
JP2000503886A (en) Metal oxide coated SiC foam catalyst support and corresponding catalyst system
US3947543A (en) Process for recovering copper and noble metals from organic residues
JPS6140287B2 (en)
JPS6259057B2 (en)
JPH1076166A (en) Method for extracting and recovering noble metal from waste catalyst for exhaust gas purifying and extraction solvent therefor
JP3622211B2 (en) Methane oxidation method
JPH02198638A (en) Catalyst for decomposing ammonia
CN108452810A (en) A method of utilizing waste and old palladium catalyst synthesizing dimethyl oxalate catalyst
RU96119021A (en) METHOD FOR EXTRACTING PLATINUM AND RHENIUM FROM THE WASTE PLATINORIUM CATALYST
JPH02209436A (en) Method for recovering platinum group metal from metallic carrier catalyst