JPS6259057B2 - - Google Patents

Info

Publication number
JPS6259057B2
JPS6259057B2 JP6244580A JP6244580A JPS6259057B2 JP S6259057 B2 JPS6259057 B2 JP S6259057B2 JP 6244580 A JP6244580 A JP 6244580A JP 6244580 A JP6244580 A JP 6244580A JP S6259057 B2 JPS6259057 B2 JP S6259057B2
Authority
JP
Japan
Prior art keywords
catalyst
precious metals
recovery rate
alumina
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6244580A
Other languages
Japanese (ja)
Other versions
JPS56160332A (en
Inventor
Atsushi Kuroda
Fumyoshi Noda
Kazuko Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6244580A priority Critical patent/JPS56160332A/en
Publication of JPS56160332A publication Critical patent/JPS56160332A/en
Publication of JPS6259057B2 publication Critical patent/JPS6259057B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は、使用済触媒からの貴金属回収方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering precious metals from spent catalysts.

近時、排ガス規制の強化に伴ない、亜硫酸ガス
や窒素酸化物などの有害物質を大気中に放出させ
ないために種々の方法が採られている。
In recent years, with stricter exhaust gas regulations, various methods have been adopted to prevent harmful substances such as sulfur dioxide gas and nitrogen oxides from being released into the atmosphere.

なかでも、触媒による無害化は有効であり、構
造も簡単で自動車中に容易に装着できることから
多く利用されている。この触媒は、一般にアルミ
ナ等の多孔性無機物質を担体として用い、この担
体に白金族元素等の貴金属を分散担持させたもの
であり、有害物質を触媒に接触させることにより
その浄化を行なつている。
Among these, detoxification using catalysts is effective, has a simple structure, and is often used because it can be easily installed in automobiles. This catalyst generally uses a porous inorganic material such as alumina as a carrier, and noble metals such as platinum group elements are dispersed and supported on this carrier, and purifies harmful substances by bringing them into contact with the catalyst. There is.

この場合、使用される貴金属は非常に高価であ
ることから、経済的及び省資源的立場から通常使
用済の触媒より貴金属だけを回収する操作を施し
ている。この回収方法としては、使用済触媒を酸
素雰囲気にて焼成して、付着している有機性物質
を除去した後、王水などの無機酸により貴金属を
抽出する方法が一般に行なわれている。
In this case, since the precious metals used are very expensive, from the standpoint of economy and resource conservation, an operation is usually performed to recover only the precious metals from the used catalyst. A commonly used method for recovering this catalyst is to sinter the spent catalyst in an oxygen atmosphere to remove attached organic substances, and then extract the precious metal with an inorganic acid such as aqua regia.

しかしながら、触媒の焼成時に、有害物質のみ
ならず貴金属もが酸化されてしまい、次の工程で
の無機酸に溶解され難くなつて回収率が低下する
他、担体として活性アルミナ(γ−アルミナ)を
使用した触媒において、その焼成を比較的低温で
行なつた場合には、無機酸による抽出時にアルミ
ナも多く溶出して回収液がスラリー状になるた
め、その後貴金属だけを回収するためにアルミニ
ウムを分離するデカンテーシヨンなどの操作を行
なわなければならず、工程が複雑となるばかりで
なく、その工程中に貴金属も多少除去されてしま
い、回収率が低下するなどの問題があつた。
However, when the catalyst is fired, not only harmful substances but also precious metals are oxidized, making it difficult to dissolve in the inorganic acid in the next step, resulting in a lower recovery rate, and activated alumina (γ-alumina) is used as a carrier. If the catalyst used is calcined at a relatively low temperature, a large amount of alumina will be eluted during extraction with an inorganic acid and the recovered liquid will become a slurry, so it is necessary to separate the aluminum to recover only the precious metals. This not only complicates the process, but also removes some precious metals during the process, resulting in a lower recovery rate.

本発明者等は、酸素雰囲気下で焼成した使用済
触媒の回収率が低いのは、担持された貴金属が酸
化されているからであると考え、これを水素雰囲
気中で還元すれば貴金属回収率は向上できるもの
と考え、研究を重ねた結果、本発明を完成した。
The present inventors believe that the reason for the low recovery rate of spent catalysts calcined in an oxygen atmosphere is that the supported noble metals are oxidized, and if this is reduced in a hydrogen atmosphere, the recovery rate of the precious metals will be higher. We believe that this can be improved, and as a result of repeated research, we have completed the present invention.

本発明は、このような事情に鑑み、酸化と還元
の温度を調節することにより、担体の溶出を防止
し貴金属だけを効率良く抽出する使用済触媒から
の貴金属回収方法を提供するものである。
In view of these circumstances, the present invention provides a method for recovering precious metals from spent catalysts, which prevents the elution of the carrier and efficiently extracts only the precious metals by controlling the oxidation and reduction temperatures.

本発明は、多孔性無機物質特に活性アルミナに
貴金属を担持させた触媒を、使用後、酸素雰囲気
下にて温度1000℃以上で焼成し、水素気流中にて
温度200℃以上で還元し、無機酸で抽出する貴金
属の回収方法を特徴としている。
The present invention involves the use of a catalyst in which a porous inorganic material, particularly activated alumina, supports a precious metal. It is characterized by the recovery method of precious metals extracted with acid.

以下、実施例に従つて本発明を詳細に説明する
が%は重量%を表わすものとする。
Hereinafter, the present invention will be explained in detail with reference to Examples, where % represents weight %.

実施例 1 活性アルミナ担体にパラジウム0.14%を分散担
持させた使用済触媒34gの各々を、酸素雰囲気に
て温度1000℃で焼成し、水素気流中にて100,
200,300,400及び500℃の各温度で還元した。そ
の後、処理触媒の各々に王水100c.c.を添加し、30
分間加熱して貴金属の回収を行ない、その結果を
第1図に示した。
Example 1 34 g of spent catalysts each containing 0.14% palladium dispersed on an activated alumina carrier were calcined at a temperature of 1000°C in an oxygen atmosphere, and heated to 100°C in a hydrogen stream.
Reduction was carried out at temperatures of 200, 300, 400 and 500°C. Then, add 100 c.c. of aqua regia to each of the treated catalysts and
The precious metal was recovered by heating for a minute, and the results are shown in FIG.

比較例 1 実施例1で用いた触媒同量を、還元処理を行な
わない他は、実施例1と同様の方法で回収を行な
い、その結果も第1図に併示した。
Comparative Example 1 The same amount of catalyst used in Example 1 was recovered in the same manner as in Example 1, except that the reduction treatment was not performed, and the results are also shown in FIG.

実施例 2 活性アルミナ担体にパラジウム0.14%及び白金
0.063%を分散担持させた使用済触媒34gの各々
を、酸素雰囲気にて900,1000,1100,1200及び
1300℃の各温度で焼成し、水素気流中にて温度
500℃で還元した。その後、処理触媒の各々に王
水100c.c.を添加し、30分間加熱して貴金属の回収
を行ない、その結果を第2図に示した(図中、パ
ラジウムの結果を符号Pdで表わし、白金の結果
を符号Ptで表わす。) 比較例 2 実施例2で用いた触媒同量を、還元処理を行な
わない他は実施例1と同様の方法で回収を行な
い、その結果も第2図に併示した(図中、パラジ
ウムの結果を符号Pd′で表わし、白金の結果を符
号Pt′で表わす。) 実施例 3 酸化マグネシウム20%を含有する活性アルミナ
担体にパラジウム0.14%を分散担持させた使用済
触媒35gを、酸素雰囲気にて1200℃で焼成し、水
素雰囲気にて温度500℃で還元した。その後、処
理触媒を前記と同様の方法で更に処理し貴金属の
回収を行なつたところ、回収率は95%であつた。
Example 2 0.14% palladium and platinum on activated alumina support
34g of spent catalyst with 0.063% dispersed support was heated to 900, 1000, 1100, 1200 and
Fired at various temperatures of 1300℃ and heated in a hydrogen stream.
Reduction was performed at 500℃. Thereafter, 100 c.c. of aqua regia was added to each of the treated catalysts and heated for 30 minutes to recover the precious metals. The results are shown in Figure 2 (in the figure, the results for palladium are indicated by the symbol Pd, The results for platinum are indicated by the symbol Pt.) Comparative Example 2 The same amount of catalyst used in Example 2 was recovered in the same manner as in Example 1, except that no reduction treatment was performed, and the results are also shown in Figure 2. (In the figure, the results for palladium are represented by the symbol Pd', and the results for platinum are represented by the symbol Pt'.) Example 3 0.14% palladium was dispersed and supported on an activated alumina carrier containing 20% magnesium oxide. 35 g of the spent catalyst was calcined at 1200°C in an oxygen atmosphere and reduced at a temperature of 500°C in a hydrogen atmosphere. Thereafter, the treated catalyst was further treated in the same manner as described above to recover precious metals, and the recovery rate was 95%.

比較例 3 実施例3で用いた触媒同量を、還元処理を行わ
ない他は実施例1と同様の方法で回収を行なつた
ところ、回収率は28%であつた。
Comparative Example 3 The same amount of catalyst used in Example 3 was recovered in the same manner as in Example 1, except that no reduction treatment was performed, and the recovery rate was 28%.

実施例 4 酸化セリウム5%を含有する活性アルミナ担体
に白金0.14%を分散担持させ使用済触媒34gを、
酸素雰囲気にて温度1200℃で焼成し、水素雰囲気
にて温度500℃で還元した。その後、処理触媒を
前記と同様の方法で更に処理し貴金属の回収を行
なつたところ、回収率は97%であつた。
Example 4 34g of spent catalyst was dispersed and supported with 0.14% of platinum on an activated alumina carrier containing 5% of cerium oxide.
It was fired at a temperature of 1200°C in an oxygen atmosphere and reduced at a temperature of 500°C in a hydrogen atmosphere. Thereafter, the treated catalyst was further treated in the same manner as described above to recover precious metals, and the recovery rate was 97%.

比較例 4 実施例4で用いた触媒同量を、還元処理を行な
わない他は実施例1と同様の方法で回収を行なつ
たところ、回収率は72%であつた。
Comparative Example 4 The same amount of catalyst used in Example 4 was recovered in the same manner as in Example 1, except that the reduction treatment was not performed, and the recovery rate was 72%.

これらの実施例と比較例とからわかるように、
酸素雰囲気下で焼成処理後還元処理を200℃以上
で行なうことにより貴金属の溶解性が上昇して、
回収率が大幅に向上する。また、実施例2によれ
ば、1000℃以上で焼成することによりγ−アルミ
ナがα−アルミナとなつて安定しアルミナ溶出率
が低下している。更に、通常使用される実施例3
又は4のような組成の活性アルミナ担体において
も、還元処理は効果を奏する。
As can be seen from these examples and comparative examples,
By performing reduction treatment at 200℃ or higher after firing in an oxygen atmosphere, the solubility of precious metals increases,
The recovery rate will be significantly improved. Further, according to Example 2, by firing at 1000° C. or higher, γ-alumina becomes stable as α-alumina, and the alumina elution rate is reduced. Furthermore, commonly used Example 3
The reduction treatment is also effective for activated alumina carriers having compositions such as 4.

以上の如く、本発明によれば貴金属回収率を向
上することができ、活性アルミナを担体とする触
媒の場合には、アルミニウムの分離工程を不用と
する程アルミナ溶出率を抑制することが可能とな
り、更には、自動車用触媒は一般の化学プラント
で用いられる触媒と異なり、回収された状態が酸
化状態であつたり、また還元状態であつたりする
が、本発明方法を適用することによつて触媒の状
態に左右されることなく、高い値の且つほぼ一定
の回収率を得ることが可能となる等、本発明は多
くの優れた効果と利点を有する。
As described above, according to the present invention, the recovery rate of precious metals can be improved, and in the case of a catalyst using activated alumina as a carrier, it is possible to suppress the alumina elution rate to the extent that an aluminum separation process is unnecessary. Furthermore, unlike catalysts used in general chemical plants, automotive catalysts are recovered in either an oxidized state or a reduced state; however, by applying the method of the present invention, the catalyst can be recovered. The present invention has many excellent effects and advantages, such as being able to obtain a high and almost constant recovery rate regardless of the state of the material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1及び比較例1の還元温度に
対するパラジウム回収率を示すグラフ、第2図
は、実施例2及び比較例2の焼成温度に対する貴
金属回収率を示すグラフ、第3図は、実施例2
(比較例2)の焼成温度に対するアルミナ溶出率
を示すグラフを表わす。
Figure 1 is a graph showing the palladium recovery rate versus reduction temperature in Example 1 and Comparative Example 1, Figure 2 is a graph showing the precious metal recovery rate versus firing temperature in Example 2 and Comparative Example 2, and Figure 3 is a graph showing the recovery rate of precious metal versus firing temperature in Example 2 and Comparative Example 2. , Example 2
(Comparative Example 2) A graph showing the alumina elution rate versus firing temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 多孔性無機物質に貴金属を担持させた触媒を
酸素雰囲気下にて温度1000℃以上で焼成し、水素
雰囲気中にて温度200℃以上で還元し、無機酸で
抽出することを特徴とする使用済触媒からの貴金
属回収方法。
1 A use characterized in that a catalyst in which a noble metal is supported on a porous inorganic substance is calcined in an oxygen atmosphere at a temperature of 1000°C or higher, reduced in a hydrogen atmosphere at a temperature of 200°C or higher, and extracted with an inorganic acid. Method for recovering precious metals from used catalysts.
JP6244580A 1980-05-12 1980-05-12 Recovering method for noble metal from used catalyst Granted JPS56160332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6244580A JPS56160332A (en) 1980-05-12 1980-05-12 Recovering method for noble metal from used catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244580A JPS56160332A (en) 1980-05-12 1980-05-12 Recovering method for noble metal from used catalyst

Publications (2)

Publication Number Publication Date
JPS56160332A JPS56160332A (en) 1981-12-10
JPS6259057B2 true JPS6259057B2 (en) 1987-12-09

Family

ID=13200407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244580A Granted JPS56160332A (en) 1980-05-12 1980-05-12 Recovering method for noble metal from used catalyst

Country Status (1)

Country Link
JP (1) JPS56160332A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8719840D0 (en) * 1987-08-21 1987-09-30 British Petroleum Co Plc Separation process
JP4522946B2 (en) * 2005-12-07 2010-08-11 田中貴金属工業株式会社 Quantitative analysis of noble metals in noble metal compounds
CN112226621B (en) * 2020-10-15 2022-05-10 江苏欣诺科催化剂有限公司 Method for recovering noble metal from deactivated noble metal catalyst
CN112730726B (en) * 2020-12-29 2023-10-24 中冶建筑研究总院有限公司 Method for measuring content of metal loaded in catalyst

Also Published As

Publication number Publication date
JPS56160332A (en) 1981-12-10

Similar Documents

Publication Publication Date Title
US2704281A (en) Purification of noble metal-metal oxide composite
US3985854A (en) Recovery of PT/RH from car exhaust catalysts
WO2003055598A1 (en) Recovery of rhenium from a spent catalyst via sublimation
JPH08506992A (en) Catalyst used in oxidation
US3578395A (en) Recovery of metals
JPS6259057B2 (en)
JPH0617160A (en) Method for recovering rhenium from used catalyst
CA1250567A (en) Regeneration of phosphorus poisoned automotive catalysts
US2830877A (en) Recovery of platinum from alumina base platinum catalyst
US20070183951A1 (en) Method for recovering noble metals from metallic carrier catalytic device
RU2209843C2 (en) Method of recovering precipitate metals from automobile catalysts
US3016354A (en) Reactivation of platinum catalysts
CN107983344B (en) Preparation method of cerium dioxide modified montmorillonite supported ruthenium catalyst
TW201309378A (en) Method for revitalizing emission gas purification catalyst
JPS6116326B2 (en)
CN114950496A (en) Method for preparing CO removal catalyst from copper anode mud, catalyst and application thereof
JPS6225613B2 (en)
JPH0765121B2 (en) How to reduce precious metals
JP4744691B2 (en) Method for regenerating used precious metal catalyst
JP3550528B2 (en) How to recover platinum from spent catalyst
JPH0144647B2 (en)
JP4560700B2 (en) Catalyst metal loading method and catalyst recycling method
JP2943813B2 (en) Method for recovering platinum group metal from monolith catalyst for exhaust gas purification
KR100238461B1 (en) Method for recovering white gold group metal
JP2961249B2 (en) Method for oxidizing and removing carbon fine particles in exhaust gas of diesel engine and catalyst used therefor