JP4522946B2 - Quantitative analysis of noble metals in noble metal compounds - Google Patents

Quantitative analysis of noble metals in noble metal compounds Download PDF

Info

Publication number
JP4522946B2
JP4522946B2 JP2005353878A JP2005353878A JP4522946B2 JP 4522946 B2 JP4522946 B2 JP 4522946B2 JP 2005353878 A JP2005353878 A JP 2005353878A JP 2005353878 A JP2005353878 A JP 2005353878A JP 4522946 B2 JP4522946 B2 JP 4522946B2
Authority
JP
Japan
Prior art keywords
noble metal
sample
metal compound
analysis
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005353878A
Other languages
Japanese (ja)
Other versions
JP2007155612A (en
Inventor
悦子 前田
知史 市石
裕 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2005353878A priority Critical patent/JP4522946B2/en
Publication of JP2007155612A publication Critical patent/JP2007155612A/en
Application granted granted Critical
Publication of JP4522946B2 publication Critical patent/JP4522946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種貴金属化合物中の貴金属含有量を分析するための方法に関する。詳しくは、工程が簡略化され、従来よりも効率的な分析が可能な方法に関する。   The present invention relates to a method for analyzing the noble metal content in various noble metal compounds. More specifically, the present invention relates to a method in which the process is simplified and analysis can be performed more efficiently than before.

白金、ロジウム、イリジウム等の貴金属の化合物、例えば、ヘキサクロロ白金酸塩、塩化ロジウム等は、燃料電池触媒や浄化触媒等の各種触媒における触媒成分や、装飾材料、電子材料としての貴金属めっきのための貴金属源として広く利用されている。   Compounds of noble metals such as platinum, rhodium, iridium, such as hexachloroplatinate, rhodium chloride, etc. are used for catalyst components in various catalysts such as fuel cell catalysts and purification catalysts, and for precious metal plating as decorative materials and electronic materials. Widely used as a precious metal source.

ここで、貴金属化合物を上記用途へ供する場合においては、その使用量を厳密に規定する必要があることから、貴金属化合物中の貴金属含有量を正確に把握する必要がある。このことは、化合物中の貴金属含有量の正確な定量分析方法の重要性に繋がる。   Here, in the case where the noble metal compound is used for the above-mentioned use, it is necessary to strictly define the amount of use, and therefore it is necessary to accurately grasp the noble metal content in the noble metal compound. This leads to the importance of an accurate quantitative analysis method for the noble metal content in the compound.

従来の貴金属化合物中の貴金属含有量の分析方法としては、貴金属化合物を水溶液とし、これに適宜の沈澱剤(例えば、白金含有量の分析に対しては飽和塩化アンモニウム水溶液等)を添加して沈澱生成し、生成した沈澱をろ過、焼成した後、還元処理をして貴金属単体を得て秤量する方法がある。また、貴金属化合物中の種類によっては、含有する貴金属の価数の関係から複数の還元処理を行いつつ、貴金属単体を得る場合もある。
JISハンドブック 48 試薬、2001、1255ページ、日本規格協会編
As a conventional method for analyzing the noble metal content in the noble metal compound, the noble metal compound is used as an aqueous solution, and an appropriate precipitating agent (for example, a saturated ammonium chloride aqueous solution for the analysis of platinum content) is added thereto for precipitation. There is a method of producing and precipitating a noble metal by weight reduction after filtering and baking the produced precipitate. Moreover, depending on the kind in the noble metal compound, a noble metal simple substance may be obtained while performing a plurality of reduction treatments due to the valence of the noble metal contained.
JIS Handbook 48 Reagents, 2001, 1255 pages, Japanese Standards Association

しかしながら、上記のような従来の分析方法は、沈澱生成工程や、還元剤除去のための洗浄等、分析精度のために必要なものとはいえ、付加的な工程数が多く効率的な分析処理の妨げとなる。また、従来の分析方法では、正確な分析のために熟練を要する工程もあり、作業者の経験により精度が異なるおそれもある。   However, the conventional analysis methods as described above are efficient for an analysis process with many additional steps, although it is necessary for the accuracy of analysis, such as a precipitation generation step and washing for removing a reducing agent. It becomes an obstacle. Further, in the conventional analysis method, there are processes that require skill for accurate analysis, and the accuracy may vary depending on the experience of the operator.

そこで、本発明は、貴金属化合物中の貴金属含有量を定量分析する方法において、簡潔な工程からなり、また、熟練を要せず自動化も可能な分析方法を提供するものである。   Therefore, the present invention provides a method for quantitatively analyzing the content of a noble metal in a noble metal compound, which comprises a simple process, and which can be automated without requiring skill.

本発明者等は、上記課題を解決すべく鋭意検討を行い、貴金属化合物から貴金属単体を抽出する工程として、試料となる貴金属化合物を直接還元する方法の適用を検討した。そして、貴金属化合物を直接還元する際の還元剤として、還元力が比較的低い少量の水素を含むガスを適用することが好適であるとして本発明に想到した。   The present inventors have intensively studied to solve the above-mentioned problems, and examined the application of a method of directly reducing a noble metal compound as a sample as a step of extracting a noble metal simple substance from the noble metal compound. Then, the present inventors have conceived the present invention that it is preferable to apply a gas containing a small amount of hydrogen having a relatively low reducing power as a reducing agent when directly reducing the noble metal compound.

即ち、本発明は、貴金属化合物中の貴金属含有量を定量分析する方法において、固体状の貴金属化合物、又は、貴金属化合物水溶液を濃縮したものを試料とし、前記試料を1〜4%の水素を含む還元性ガス中で、300〜500℃、0.5〜1時間還元処理した後、貴金属単体を回収して秤量する工程を含む方法である。   That is, the present invention provides a method for quantitatively analyzing the noble metal content in a noble metal compound, wherein a solid noble metal compound or a concentrated noble metal compound aqueous solution is used as a sample, and the sample contains 1 to 4% hydrogen. This is a method including a step of reducing a precious metal element in a reducing gas at 300 to 500 ° C. for 0.5 to 1 hour and then weighing it.

以下、本発明につきより詳細に説明する。本発明に係る分析方法において、分析試料となる貴金属化合物は、固体状態の貴金属化合物、又は、貴金属化合物の水溶液いずれも適用可能である。但し、貴金属化合物水溶液を試料として還元する場合には、還元の効率を確保するため溶液を濃縮したものを試料とする。溶液の濃縮は、加熱により行なうことが好ましいが、その加熱方法としては貴金属水溶液を縦横各方向から均一に加熱することが好ましい。濃縮自体は、ホットプレート等による一方向の加熱によっても可能であるが、この場合、溶液全体を均一に濃縮することが困難となり、場合により貴金属化合物の析出、飛散が生じることがあるからである。濃縮のための加熱方法の具体的な態様としては、サンドバス、乾燥器等に溶液を収容する容器を導入して加熱する。   The present invention will be described in detail below. In the analysis method according to the present invention, as the noble metal compound to be an analysis sample, either a solid noble metal compound or an aqueous solution of a noble metal compound can be applied. However, when reducing a noble metal compound aqueous solution as a sample, a sample obtained by concentrating the solution is used to ensure the reduction efficiency. Concentration of the solution is preferably performed by heating, but as the heating method, it is preferable to uniformly heat the noble metal aqueous solution from each direction. Concentration itself is also possible by one-way heating with a hot plate or the like, but in this case, it becomes difficult to concentrate the entire solution uniformly, and in some cases, precipitation and scattering of noble metal compounds may occur. . As a specific aspect of the heating method for concentration, a container for storing the solution is introduced into a sand bath, a dryer or the like and heated.

還元処理に供するための濃縮は、試料の量にもよるが、120〜200℃で15分間〜3時間加熱し、水分が完全になくなるまで行なうことが好ましい。   Concentration for the reduction treatment is preferably performed at 120 to 200 ° C. for 15 minutes to 3 hours until the water is completely removed, depending on the amount of the sample.

試料の還元処理は、1〜4%の水素を含む還元性ガスにより行う。還元剤として、かかる還元力の比較的弱い還元剤を使用するのは、化合物中の全ての貴金属を均一且つ確実に還元して貴金属単体とするためである。この点、還元力の強い還元剤を使用すると、化合物全体を均一還元できないおそれがあり、また、急激な還元反応を制御するための調節を要し作業に熟練を要することがあるからである。また、ガス状の還元剤を用いるのは、還元後の副生成物の除去を不要とするためである。この水素ガスを含む還元性ガスとしては、バランスとして窒素を含むものが好ましい。   The reduction treatment of the sample is performed with a reducing gas containing 1 to 4% hydrogen. The reason why such a reducing agent having a relatively low reducing power is used as the reducing agent is that all noble metals in the compound are uniformly and reliably reduced to a single noble metal. In this respect, if a reducing agent having a strong reducing power is used, the entire compound may not be uniformly reduced, and adjustment for controlling a rapid reduction reaction may be required, which may require skill in the work. Moreover, the gaseous reducing agent is used because it is not necessary to remove the by-product after the reduction. The reducing gas containing hydrogen gas preferably includes nitrogen in balance.

そして、還元条件は、温度を300〜500℃とし、還元時間を0.5〜1時間とすることが好ましい。温度、処理時間をかかる範囲に規定するのは、還元処理を穏やかに、かつ完全に行うためであり、これにより還元処理の途中で試料より発生する副生成物及び添加剤を除去することができるである。また、還元処理は、還元性ガスの気流下で行なうことが好ましく、その流量は、2〜10L/minとするのが好ましい。   And as for reduction conditions, it is preferable that temperature shall be 300-500 degreeC and reduction time shall be 0.5 to 1 hour. The reason why the temperature and the processing time are defined in such a range is to perform the reduction treatment gently and completely, and thereby, by-products and additives generated from the sample during the reduction treatment can be removed. It is. The reduction treatment is preferably performed under a reducing gas stream, and the flow rate is preferably 2 to 10 L / min.

以上の還元処理により、貴金属単体が生成される。ここで、貴金属化合物中の貴金属以外の元素は還元処理の際の加熱により消失することとなる。そして、この貴金属単体を回収して、必要に応じて洗浄等し秤量することで、化合物中の含有量を算出することができる。   By the above reduction treatment, a single noble metal is generated. Here, the elements other than the noble metal in the noble metal compound disappear by heating during the reduction treatment. And the content in a compound is computable by collect | recovering this noble metal single-piece | unit, wash | cleaning as needed, and weighing.

ところで、貴金属化合物水溶液を用いる場合の濃縮処理及び還元処理の際には、濃縮時の突沸や加熱に伴う水分蒸発への同伴、更に、雰囲気中の気流によって、試料が飛散するおそれがある。かかる試料の飛散は、ニトロ基を含む貴金属化合物(例えば、ジアンミンジニトロ白金)や塩化物(例えば、塩化パラジウム)で生じる傾向にあるが、分析精度の低下の要因となる。そこで、本発明においては、必要に応じて還元処理前の試料に塩化アンモニウムを添加剤として試料に添加して試料を被覆することが好ましい。試料の被覆は、固体の貴金属化合物については還元処理の直前に行なうことが好ましい。また、貴金属化合物水溶液を試料とする場合には、濃縮処理中と濃縮処理後還元処理直前の2段階で添加剤を加えることが好ましい。濃縮処理及び還元処理の双方において試料の飛散を防止するためである。添加剤の添加量は、試料が雰囲気に曝される表面を覆うことができる程度であれば良いが、具体的には、濃縮処理中に添加する場合には液の粘度が上がり、シロップ状になった時点で添加剤を液量0.3〜1mLに対して0.5〜1g添加する。また、濃縮処理後還元処理前に添加する場合や当初から固体状の試料に添加する場合には、1〜2gの添加剤で試料表面を被覆するのが好ましい。尚、添加剤として上記化合物を選定したのは、貴金属化合物と反応することなく、また、還元処理の加熱により除去可能であり余計な残留物を生じさせることがないからである。   By the way, at the time of concentration treatment and reduction treatment in the case of using a noble metal compound aqueous solution, there is a possibility that the sample may be scattered due to bumping at the time of concentration or moisture evaporation accompanying heating, and further due to airflow in the atmosphere. Such scattering of the sample tends to occur in a noble metal compound containing a nitro group (for example, diammine dinitroplatinum) or a chloride (for example, palladium chloride), but causes a decrease in analysis accuracy. Therefore, in the present invention, it is preferable to coat the sample by adding ammonium chloride as an additive to the sample before the reduction treatment as necessary. The sample coating is preferably performed immediately before the reduction treatment for the solid noble metal compound. In addition, when a noble metal compound aqueous solution is used as a sample, it is preferable to add an additive in two stages during the concentration treatment and after the concentration treatment and immediately before the reduction treatment. This is to prevent scattering of the sample in both the concentration process and the reduction process. The additive may be added as long as the sample can cover the surface exposed to the atmosphere. Specifically, when the sample is added during the concentration process, the viscosity of the liquid increases, and the syrup shape is increased. At that time, 0.5 to 1 g of the additive is added to 0.3 to 1 mL of the liquid amount. Moreover, when adding to a solid sample from the beginning, when adding after a concentration process and before a reduction process, it is preferable to coat | cover the sample surface with 1-2g of additives. The reason why the above compound was selected as an additive is that it does not react with the noble metal compound and can be removed by heating in the reduction treatment, so that no extra residue is generated.

また、貴金属化合物の種類によっては、還元処理による加熱によっても貴金属以外の元素が残留する場合がある。この残留物発生の傾向は、白金の化合物ではあまり見られないが、ロジウム、イリジウム、ルテニウムの塩化物において塩素が残留することがある。かかる残留物は、放置すると分析精度を低下させる。そこで、残留物発生のおそれのある貴金属化合物を試料とする場合においては、還元処理後に高温熱処理による焼成及び水素炎での還元処理を行なうことが好ましい。高温熱処理を行なうのは、残留物を除去するためであるが、この熱処理条件としては、600〜800℃で0.5〜1時間とするのが好ましい。また、水素炎による還元処理は、高温熱処理により貴金属単体の酸化が生じることがあるためである。水素炎による還元は、15〜60秒行なうことが好ましい。そして、これらの焼成処理及び水素炎還元処理により残留物が除去された高純度の貴金属単体を得ることができる。   In addition, depending on the type of the noble metal compound, elements other than the noble metal may remain even by heating by reduction treatment. This tendency of residue generation is rarely observed in platinum compounds, but chlorine may remain in chlorides of rhodium, iridium, and ruthenium. If such a residue is left unattended, the analysis accuracy is lowered. Therefore, in the case where a noble metal compound that may cause a residue is used as a sample, it is preferable to perform baking by high-temperature heat treatment and reduction treatment with a hydrogen flame after the reduction treatment. The high temperature heat treatment is performed in order to remove residues, but the heat treatment conditions are preferably 600 to 800 ° C. and 0.5 to 1 hour. Further, the reduction treatment with hydrogen flame is because oxidation of the noble metal itself may occur due to the high temperature heat treatment. The reduction with hydrogen flame is preferably performed for 15 to 60 seconds. And the high purity noble metal simple substance from which the residue was removed by these baking processes and hydrogen flame reduction processes can be obtained.

以上説明したように、本発明による定量分析方法は、試料となる貴金属化合物を直接還元して貴金属単体を得るものであり、従来よりも効率的な分析が可能である。本発明は、固体状の貴金属化合物の他、適宜に濃縮処理を施すことで貴金属化合物の水溶液の分析も可能である。本発明によれば、貴金属化合物中の貴金属含有量を分析に要する時間を従来法より大幅に短縮することができ(例えば、ジアンミンジニトロ白金(II)溶液の分析に関して言えば、1/4程度にすることができる)、また、廃液、副生成物の発生も抑制されている。そして、本発明に係る分析方法は、熟練を要せず、自動化も可能である。   As described above, the quantitative analysis method according to the present invention directly reduces a noble metal compound serving as a sample to obtain a noble metal simple substance, and enables more efficient analysis than before. The present invention can analyze an aqueous solution of a noble metal compound by appropriately performing a concentration treatment in addition to a solid noble metal compound. According to the present invention, the time required for analyzing the noble metal content in the noble metal compound can be significantly shortened compared to the conventional method (for example, about 1/4 for the analysis of diammine dinitroplatinum (II) solution). Generation of waste liquid and by-products is also suppressed. The analysis method according to the present invention does not require skill and can be automated.

以下に本発明の好適な実施の形態を説明する。本実施形態では、貴金属化合物として、ヘキサクロロ白金(IV)酸溶液、ジアンミンジニトロ白金(II)溶液、塩化ロジウム結晶を分析試料とし、それぞれについて分析を行い貴金属含有量の分析精度を検討した。   Hereinafter, preferred embodiments of the present invention will be described. In the present embodiment, hexachloroplatinum (IV) acid solution, diammine dinitroplatinum (II) solution, and rhodium chloride crystals were used as analysis samples as the noble metal compounds, and each was analyzed to examine the analysis accuracy of the noble metal content.

実施例1:ヘキサクロロ白金(IV)酸溶液の分析
図1は、本実施例におけるヘキサクロロ白金(IV)酸溶液の分析工程の概略を説明する図である。図1において、まず、試料となるヘキサクロロ白金(IV)酸溶液を磁製ルツボに5g秤量し、これをサンドバスにて150℃で30分間濃縮した。溶液濃縮後の試料は、水分のない結晶状のものであった。
Example 1: Analysis Figure 1 hexachloroplatinic (IV) acid solution is a schematic diagram for explaining the analysis process of hexachloroplatinic (IV) acid solution in the present embodiment. In FIG. 1, first, 5 g of a hexachloroplatinum (IV) acid solution serving as a sample was weighed in a magnetic crucible, and concentrated in a sand bath at 150 ° C. for 30 minutes. The sample after concentration of the solution was crystalline without water.

次に、濃縮した溶液を磁製ルツボに収容した状態で、電気炉中で還元処理した。図2は、本実施例で使用した還元処理用電気炉を示すものである。この電気炉は、本発明に係る分析方法の簡潔さを考慮して、その自動化を図るべく専用設計されたものである。電気炉1は、試料を収容するルツボ10を複数載置可能な炉室100と、還元処理のために炉室100へ試料を挿入するための試料室101と、炉室100と試料室101とを隔離するシャッター102と、炉室の炉体103への給電を制御し温度を調整する温度制御部104及び炉室100へのガス供給を制御するガス制御部105を備える電気炉本体106と、からなる。還元処理に際しては、試料室101へ所定数のルツボ10を載置した後、シャッター102を開けてルツボをスライドさせて炉室100へ導入する。還元処理工程中は、予め設定した還元条件となるように温度制御部104及びガス制御部105が炉室内の雰囲気を調整する。そして、還元処理終了後は、逆に炉室100から試料室101へとルツボ10がスライドされて取り出し可能となっている。本実施例では、電気炉1による還元条件として、還元性ガスを4%水素/窒素ガスを流量6L/minで導入し、温度400℃で1時間加熱した。   Next, the concentrated solution was reduced in an electric furnace in a state of being housed in a magnetic crucible. FIG. 2 shows an electric furnace for reduction treatment used in this example. This electric furnace is designed exclusively for the purpose of automation in consideration of the simplicity of the analysis method according to the present invention. The electric furnace 1 includes a furnace chamber 100 in which a plurality of crucibles 10 for storing samples can be placed, a sample chamber 101 for inserting a sample into the furnace chamber 100 for reduction treatment, a furnace chamber 100 and a sample chamber 101 An electric furnace main body 106 including a shutter 102 for isolating the gas, a temperature control unit 104 for controlling power supply to the furnace body 103 in the furnace chamber and adjusting a temperature, and a gas control unit 105 for controlling gas supply to the furnace chamber 100, Consists of. In the reduction process, after a predetermined number of crucibles 10 are placed in the sample chamber 101, the shutter 102 is opened and the crucible is slid to be introduced into the furnace chamber 100. During the reduction process, the temperature control unit 104 and the gas control unit 105 adjust the atmosphere in the furnace chamber so that the reduction conditions set in advance are satisfied. After the reduction process, the crucible 10 is slid from the furnace chamber 100 to the sample chamber 101 and can be taken out. In this example, as reducing conditions by the electric furnace 1, reducing gas was introduced at 4 L hydrogen / nitrogen gas at a flow rate of 6 L / min and heated at a temperature of 400 ° C. for 1 hour.

還元処理後には試料を冷却し、磁製ルツボ内の白金単体を回収した。そして、これを秤量し、貴金属化合物中の白金含有量を計算した。本実施例では、3つのサンプルについて、それぞれn=2の分析を行い各サンプルの分析値のばらつきを検討した。また、比較のため従来の分析方法(図3参照)による分析を行った。表1はその結果を示す。   After the reduction treatment, the sample was cooled, and platinum alone in the magnetic crucible was collected. And this was weighed and the platinum content in a noble metal compound was calculated. In this example, n = 2 was analyzed for each of the three samples, and the variation in the analysis value of each sample was examined. For comparison, an analysis by a conventional analysis method (see FIG. 3) was performed. Table 1 shows the results.

Figure 0004522946
Figure 0004522946

この結果、本実施例による分析法は、繰り返しのばらつきも小さく、また、分析値も従来法により得られるものと略等しいことが確認された。   As a result, it was confirmed that the analysis method according to the present example has a small repetition variation, and the analysis value is substantially equal to that obtained by the conventional method.

実施例2:ジアンミンジニトロ白金(II)溶液の分析
図4は、本実施例におけるジアンミンジニトロ白金(II)溶液の分析工程の概略を説明する図である。図4の分析工程は、基本的に実施例1の分析工程と同様であるが、濃縮工程の途中及び還元工程の直前に添加剤として塩化アンモニウムを添加している。
Example 2: Analysis of diammine dinitroplatinum (II) solution FIG. 4 is a diagram for explaining the outline of the analysis process of diammine dinitroplatinum (II) solution in this example. The analysis process of FIG. 4 is basically the same as the analysis process of Example 1, but ammonium chloride is added as an additive during the concentration process and immediately before the reduction process.

この実施例では、試料となるジアンミンジニトロ白金(II)溶液を磁製ルツボに3g秤量し、これをサンドバスにて150℃で濃縮した。この濃縮工程開始から液量が0.1〜1mL程度になるまで濃縮した後に0.5g添加し、溶液が乾燥するまで濃縮を継続した。そして、濃縮した試料に塩化アンモニウムを1g添加して試料を被覆し、これを図2の電気炉中で還元処理した。このときの還元条件としては、還元性ガスを4%水素/窒素ガスを流量6L/minで導入し、温度400℃で1時間加熱した。還元処理後には試料を冷却し、磁製ルツボ内の白金単体を回収してこれを秤量し、貴金属化合物中の白金含有量を計算した。また、比較のため従来の分析方法(図5参照)による分析を行った。表2はその結果を示す。   In this example, 3 g of a diamine dinitroplatinum (II) solution serving as a sample was weighed into a magnetic crucible and concentrated at 150 ° C. in a sand bath. After concentration until the liquid volume became about 0.1 to 1 mL from the start of the concentration step, 0.5 g was added, and concentration was continued until the solution was dried. Then, 1 g of ammonium chloride was added to the concentrated sample to coat the sample, and this was reduced in the electric furnace of FIG. As reducing conditions at this time, reducing gas was introduced at 4 L hydrogen / nitrogen gas at a flow rate of 6 L / min and heated at a temperature of 400 ° C. for 1 hour. After the reduction treatment, the sample was cooled, platinum simple substance in the magnetic crucible was collected and weighed, and the platinum content in the noble metal compound was calculated. For comparison, an analysis by a conventional analysis method (see FIG. 5) was performed. Table 2 shows the results.

Figure 0004522946
Figure 0004522946

この結果、本実施例による分析法は、繰り返しのばらつきも小さく、また、分析値も従来法により得られるものと略等しいことが確認された。   As a result, it was confirmed that the analysis method according to the present example has a small repetition variation, and the analysis value is substantially equal to that obtained by the conventional method.

ところで、この実施例では、溶液の濃縮及び還元工程において塩化アンモニウムを添加して試料の飛散を抑制している。この添加剤の効果につき、図4の分析工程において塩化アンモニウムの添加を行なわずに、分析を行なったところ以下の結果が得られた。   By the way, in this Example, the scattering of the sample is suppressed by adding ammonium chloride in the concentration and reduction steps of the solution. When the effect of this additive was analyzed without adding ammonium chloride in the analysis step of FIG. 4, the following results were obtained.

Figure 0004522946
Figure 0004522946

この結果からわかるように、添加剤として塩化アンモニウムを加えることなく濃縮、還元を行なった場合、繰り返しによる分析値の偏差が比較的大きくなる。これは、濃縮、還元工程中における試料の飛散が要因と考えられる。従って、試料の飛散が予測されるような貴金属化合物について分析を行なう場合には、添加剤の添加を行なうことが分析精度を確保する上で好ましいといえる。   As can be seen from this result, when concentration and reduction are performed without adding ammonium chloride as an additive, the deviation of the analytical value due to repetition becomes relatively large. This is considered to be caused by scattering of the sample during the concentration and reduction processes. Therefore, when analyzing a noble metal compound for which scattering of the sample is predicted, it can be said that it is preferable to add an additive in order to ensure analysis accuracy.

実施例3:塩化ロジウム結晶の分析
図6は、本実施例における塩化ロジウムの分析工程の概略を説明する図である。図6の分析工程においては、実施例1の分析工程と比較すると、試料の濃縮工程がない点が相違する。また、この実施例では、還元処理後の試料について焼成処理及び水素炎還元がなされている。
Example 3: Analysis Figure 6 rhodium chloride crystals is a schematic diagram for explaining the analysis process of the rhodium chloride in this embodiment. The analysis process of FIG. 6 is different from the analysis process of Example 1 in that there is no sample concentration process. In this example, the sample after the reduction treatment is subjected to a firing treatment and a hydrogen flame reduction.

この実施例では、試料となる塩化ロジウムを磁製ルツボに1g秤量し、これを図2の電気炉中で還元処理した。このときの還元条件としては、還元性ガスを4%水素/窒素ガスを流量6L/minで導入し、温度400℃で1時間加熱した。そして、還元処理後に試料を冷却し、大気中、750℃で30分焼成した。そして、焼成後の試料を水素炎で30秒還元した後、再度冷却して磁製ルツボ内のロジウム単体を回収して秤量し、貴金属化合物中のロジウム含有量を計算した。また、比較のため従来の分析方法(図7参照)による分析を行った。表4はその結果を示す。   In this example, 1 g of rhodium chloride as a sample was weighed into a magnetic crucible, and this was reduced in the electric furnace of FIG. As reducing conditions at this time, reducing gas was introduced at 4 L hydrogen / nitrogen gas at a flow rate of 6 L / min and heated at a temperature of 400 ° C. for 1 hour. Then, after the reduction treatment, the sample was cooled and baked in the atmosphere at 750 ° C. for 30 minutes. Then, the fired sample was reduced with a hydrogen flame for 30 seconds, then cooled again, and rhodium alone in the magnetic crucible was collected and weighed, and the rhodium content in the noble metal compound was calculated. For comparison, an analysis by a conventional analysis method (see FIG. 7) was performed. Table 4 shows the results.

Figure 0004522946
Figure 0004522946

この結果、本実施例による分析法は、繰り返しのばらつきも小さく、また、分析値も従来法により得られるものと略等しいことが確認された。   As a result, it was confirmed that the analysis method according to the present example has a small repetition variation, and the analysis value is substantially equal to that obtained by the conventional method.

この実施例では、還元工程後の試料について、高温での焼成及び水素炎で加熱することで残留する塩素の除去を行なっている。この分析方法により得られたロジウムの塩素濃度は100ppmであった。そこで、この焼成及び水素炎の効果につき、図4の分析工程において焼成及び水素炎の加熱を行なわずに分析を行ない、回収されたロジウム中の残留塩素濃度を測定したところ、700ppmであった。従って、塩素の残留が懸念される貴金属化合物においては、焼成及び水素炎還元を行なうことが好ましい。   In this example, residual chlorine is removed by baking the sample after the reduction step at a high temperature and heating with a hydrogen flame. The chlorine concentration of rhodium obtained by this analysis method was 100 ppm. Therefore, the effect of the calcination and hydrogen flame was analyzed in the analysis step of FIG. 4 without heating and heating the hydrogen flame, and the residual chlorine concentration in the recovered rhodium was measured and found to be 700 ppm. Therefore, it is preferable to perform calcination and hydrogen flame reduction in the noble metal compound in which the residual chlorine is concerned.

実施例1のキサクロロ白金(IV)酸溶液の分析工程を示す図。The figure which shows the analysis process of the xachloroplatinum (IV) acid solution of Example 1. 本実施形態における還元処理で使用した専用電気炉の構成を示す図。The figure which shows the structure of the exclusive electric furnace used by the reduction process in this embodiment. 従来のキサクロロ白金(IV)酸溶液の分析工程を示す図。The figure which shows the analysis process of the conventional xachloroplatinum (IV) acid solution. 実施例2のジアンミンジニトロ白金(II)溶液の分析工程を示す図。The figure which shows the analysis process of the diammine dinitro platinum (II) solution of Example 2. FIG. 従来のジアンミンジニトロ白金(II)溶液の分析工程を示す図。The figure which shows the analysis process of the conventional diammine dinitro platinum (II) solution. 実施例3の塩化ロジウム結晶の分析工程を示す図。The figure which shows the analysis process of the rhodium chloride crystal | crystallization of Example 3. FIG. 従来3の塩化ロジウム結晶の分析工程を示す図。The figure which shows the analysis process of the conventional rhodium chloride crystal | crystallization.

Claims (5)

貴金属化合物中の貴金属含有量を定量分析する方法において、
固体状の貴金属化合物を試料とし、前記試料に、塩化アンモニウムからなる添加剤を添加して試料を被覆し、1〜4%の水素を含む還元性ガス中で、300〜500℃、0.5〜1時間還元処理した後、貴金属単体を回収して秤量する工程を含む方法。
In the method of quantitatively analyzing the noble metal content in the noble metal compound,
A solid noble metal compound was used as a sample, and an additive composed of ammonium chloride was added to the sample to cover the sample. In a reducing gas containing 1 to 4% hydrogen, 300 to 500 ° C., 0.5 A method including a step of recovering and weighing a precious metal simple substance after reduction treatment for ˜1 hour.
貴金属化合物中の貴金属含有量を定量分析する方法において、In the method of quantitatively analyzing the noble metal content in the noble metal compound,
貴金属化合物水溶液を濃縮したもの試料とし、濃縮の途中及び還元処理前の試料に、塩化アンモニウムからなる添加剤を添加して試料を被覆して試料を濃縮及び還元処理する方法であって、A method of concentrating and reducing a sample by adding an additive composed of ammonium chloride to a sample obtained by concentrating an aqueous solution of a noble metal compound and adding an additive consisting of ammonium chloride to the sample during concentration and before the reduction treatment,
前記還元処理は、1〜4%の水素を含む還元性ガス中で、300〜500℃、0.5〜1時間処理するものであり、The reduction treatment is performed at 300 to 500 ° C. for 0.5 to 1 hour in a reducing gas containing 1 to 4% hydrogen,
前記還元処理の後、貴金属単体を回収して秤量する工程を含む方法。A method comprising a step of collecting and weighing a precious metal simple substance after the reduction treatment.
貴金属化合物水溶液の濃縮は、貴金属化合物水溶液を水分がなくなるまで均一加熱するものである請求項2記載の定量分析法。 The quantitative analysis method according to claim 2 , wherein the concentration of the aqueous noble metal compound solution is performed by uniformly heating the aqueous noble metal compound solution until water is exhausted. 貴金属化合物水溶液の濃縮をサンドバス又は乾燥器にて行なう請求項2又は請求項3記載の定量分析法。 The quantitative analysis method according to claim 2 or 3 , wherein the aqueous noble metal compound solution is concentrated in a sand bath or a drier. 還元処理後の試料を、600〜800℃で加熱して焼成し、更に、水素炎で還元する工程を含む請求項1〜請求項4のいずれか1項記載の定量分析法。
The sample after the reduction treatment, and fired by heating at 600 to 800 ° C., further, the quantitative analysis of any one of claims 1 to 4 including the step of reduction with hydrogen flame.
JP2005353878A 2005-12-07 2005-12-07 Quantitative analysis of noble metals in noble metal compounds Active JP4522946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005353878A JP4522946B2 (en) 2005-12-07 2005-12-07 Quantitative analysis of noble metals in noble metal compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005353878A JP4522946B2 (en) 2005-12-07 2005-12-07 Quantitative analysis of noble metals in noble metal compounds

Publications (2)

Publication Number Publication Date
JP2007155612A JP2007155612A (en) 2007-06-21
JP4522946B2 true JP4522946B2 (en) 2010-08-11

Family

ID=38240174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005353878A Active JP4522946B2 (en) 2005-12-07 2005-12-07 Quantitative analysis of noble metals in noble metal compounds

Country Status (1)

Country Link
JP (1) JP4522946B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160332A (en) * 1980-05-12 1981-12-10 Toyota Motor Corp Recovering method for noble metal from used catalyst
JPS5782435A (en) * 1980-11-13 1982-05-22 Kiyataraa Kogyo Kk Recovering method for noble metal
JPH05239567A (en) * 1991-11-19 1993-09-17 Bayer Ag Method for recovering noble metals
JP2004099975A (en) * 2002-09-10 2004-04-02 Tanaka Kikinzoku Kogyo Kk Process for recovering ruthenium and/or iridium
JP2005256164A (en) * 2004-02-10 2005-09-22 Mitsubishi Materials Corp Recovery method for rhodium and production method for metal rhodium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160332A (en) * 1980-05-12 1981-12-10 Toyota Motor Corp Recovering method for noble metal from used catalyst
JPS5782435A (en) * 1980-11-13 1982-05-22 Kiyataraa Kogyo Kk Recovering method for noble metal
JPH05239567A (en) * 1991-11-19 1993-09-17 Bayer Ag Method for recovering noble metals
JP2004099975A (en) * 2002-09-10 2004-04-02 Tanaka Kikinzoku Kogyo Kk Process for recovering ruthenium and/or iridium
JP2005256164A (en) * 2004-02-10 2005-09-22 Mitsubishi Materials Corp Recovery method for rhodium and production method for metal rhodium

Also Published As

Publication number Publication date
JP2007155612A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
US10544481B2 (en) Method for the recovery of precious metal
KR101557216B1 (en) Method for producing highly pure platinum powder, as well as platinum powder that can be obtained according to said method, and use thereof
Atia et al. Microwave chloride leaching of valuable elements from spent automotive catalysts: Understanding the role of hydrogen peroxide
CN111896418A (en) Method for measuring sulfur content in ferrosulfur alloy
JP4522946B2 (en) Quantitative analysis of noble metals in noble metal compounds
Atia et al. Fast microwave leaching of platinum, rhodium and cerium from spent non-milled autocatalyst monolith
JPH09316560A (en) Recovering method of platinum
RU2288288C1 (en) Method of assay determination of content of gold in ores and in products of their processing
CN102393427B (en) Analyzing method of Ni content in melted steel ingot
JP4363494B2 (en) Aqueous solution for pickling, method for producing the same and resource recovery method
CN105074023A (en) Extraction agent for precious metals and rhenium, and extraction method for precious metals and rhenium using same
Aktas et al. Recovery of ruthenium via zinc in the presence of accelerator
JP5131245B2 (en) Method for analyzing metal impurities in silicon powder
TW201617459A (en) Method for the processing of precious metal-containing materials
JP2009102722A (en) Method for obtaining precious metal from strongly acidic wastewater containing precious metal and metal other than precious metal
US6337056B1 (en) Process for refining noble metals from auriferous mines
CN114317997A (en) Novel process for purifying high-purity platinum
JP2008082975A (en) Separation method for au contained in au containing cyano solution, and quantitative determination method for au contained in au containing cyano solution
JPH0765121B2 (en) How to reduce precious metals
Shneider et al. Determination of macroconcentrations of platinum by combined application of gravimetry and inductively coupled plasma—Atomic emission spectrometry
JP5542378B2 (en) Platinum separation solution and platinum separation and recovery method
RU2391419C1 (en) Processing method for platinum-group metal concentrates based on iron and nickel for platinum-group metal recovery
JP2020196921A (en) Chlorination leaching method
JP5835579B2 (en) Method for treating aqueous bromic acid solution containing platinum group elements
Malyutina et al. Determination of high concentrations of palladium by combined use of gravimetric and spectral analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100526

R150 Certificate of patent or registration of utility model

Ref document number: 4522946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250