JPS58197274A - Electric discharge coating device - Google Patents

Electric discharge coating device

Info

Publication number
JPS58197274A
JPS58197274A JP7845182A JP7845182A JPS58197274A JP S58197274 A JPS58197274 A JP S58197274A JP 7845182 A JP7845182 A JP 7845182A JP 7845182 A JP7845182 A JP 7845182A JP S58197274 A JPS58197274 A JP S58197274A
Authority
JP
Japan
Prior art keywords
electrode
coating
contact
workpiece
electric discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7845182A
Other languages
Japanese (ja)
Other versions
JPS6127469B2 (en
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP7845182A priority Critical patent/JPS58197274A/en
Publication of JPS58197274A publication Critical patent/JPS58197274A/en
Publication of JPS6127469B2 publication Critical patent/JPS6127469B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide an electric discharge coating device which is constituted to form a thick and dense coating layer with small surface roughness and smoothness of the coating surface, by applying rotating motion around a shaft in the attaching and detaching directions to an electrode of a coating material during the period from the stage of attaching until detaching. CONSTITUTION:As an electrode 1 of a coating material descends and approaches the work 2 and the spacing therebetween attains a breakdown spacing, electric discharge is generated by the voltage applied on the electrode 1. The forward end of the electrode 1 is melted by the electric discharge heating and the contact electrical heating in the state of the contact upon the contact of the electrode with the work 2 that takes place next to the discharge heating. The molten electrode is transferred and welded to the work 2. Since the electrode 1 is kept rotated around the shaft thereof during said time, the welded part by electric discharge is torn off by the rotation of the electrode so as to rub off the welded part prior to detaching. The surface of the work 2 is formed to a smooth finish surface by the breakdown or the control of the coated surface by the rubbing as well as the electric discharge generated upon starting of the contact by the oscillation with the rotation, whereby the electric discharge coating having less cavities and weak parts of the coating is obtained.

Description

【発明の詳細な説明】 本発明は被加工体表面に対して近接接触と開離の振動が
繰り返し与えられる被覆材電極を配置し前記電極と被加
工体間に接触開離振動を行なうとともに、その近接接触
、開離に伴なって放電を行なわせ、被加工体表面に被覆
材電極の先端接触部の溶融部分を転移溶着により被覆す
る放!被覆万法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves arranging a coating electrode that repeatedly applies close contact and separation vibrations to the surface of a workpiece, and performing contact and separation vibration between the electrode and the workpiece, As the close contact and separation occur, an electric discharge is generated, and the molten portion of the tip contact portion of the coating material electrode is coated on the surface of the workpiece by transfer welding! Concerning the improvement of covering methods.

従来この種放電液種では通常電磁石と反撥バネ等により
構成される振動装置、又は回転偏倚軸を有する偏倚体を
回転手段により回転させる振動装置等のi動装置に被覆
材電極を取り付けて被加工体表面に対向させ、上記電磁
石を発振器や商用交流、或いはさらに放電用蓄電器の充
放電電流や電圧等により励振させることにより、その対
向方向に上下運動を行なわせて被覆材電極の先端を被加
工体表面に接触開離振動を繰返し、近接接触時に同期し
て間隙にパルス放電を行なわせ、或いは近接時から所定
開離時までに高周波電圧パルスを供給して微小パルス放
電及び通電を複数回行なわせ接触時に加熱された被覆材
電極の先端溶融部が被加工体と溶着した状態から離隔時
に被加工体表面に溶着接着して残置することにより被覆
が行なわれるもので、電極と被加工体間に相対的な走査
移動又は走査加工送りを行うこ□Aにより被加工体の表
面全体、もしくは必要部分に被覆層を形成させることか
できるものである。
Conventionally, with this type of discharge liquid, the coating material electrode is attached to an i-motion device such as a vibrating device composed of an electromagnet and a repulsion spring, or a vibrating device that rotates a biased body having a rotational bias axis using a rotating means. The electromagnet is placed facing the body surface and excited by an oscillator, a commercial alternating current, or even a charging/discharging current or voltage of a discharge capacitor, so that it moves up and down in the opposite direction to machine the tip of the coating material electrode. Repeat contact and release vibrations on the body surface, synchronize with the time of close contact to cause a pulse discharge in the gap, or supply high frequency voltage pulses from the time of close contact to the time of predetermined release to perform minute pulse discharge and energization multiple times. The coating is performed by the melted part of the tip of the coating material electrode that is heated during contact with the workpiece being welded to the workpiece, and then remaining welded and bonded to the workpiece surface when separated, and there is no gap between the electrode and the workpiece. By performing relative scanning movement or scanning processing feed □A, a coating layer can be formed on the entire surface of the workpiece or a necessary portion.

しかして、このように被擬材電極を被加工体表面に対し
て単に対向方向に上下運動により軽打するように接触開
離させて被覆を行なっただけでは、被覆材電極の先端溶
融部分が軽打接触時に被加工体表面に溶着し、被覆材電
極の引上げ開離時には溶融溶着部分が被加工体表面側と
被覆材電極先端との、例えばほぼ中間部で破断して電極
材が被加工体表面に溶着残置することにより被覆が行な
われるため、その破断面、即ち、被覆面が大きな凹凸状
のギザギザ面になり、被覆面がきれいに仕上らない欠点
があった。 また!棒先端による接触開離の軽打で、波
力ロエ体表面は凹凸状となり、被覆材が被加工体表面に
均一に着かず、被椎面が凹凸状G、Tなるとともに、被
覆層にピンホールというよりは可成り大きな穴や弱点部
分が多数あり、また被覆量、厚さも薄くて、かつ被覆層
の密度も小さいものであった。
However, if the workpiece electrode is simply tapped against the workpiece surface by vertical movement in the opposite direction to make contact and release, the melted portion of the coating electrode will not melt. It is welded to the surface of the workpiece during light contact, and when the coating electrode is pulled up and separated, the molten welded part is broken, for example, approximately at the midpoint between the surface of the workpiece and the tip of the coating electrode, and the electrode material is removed. Since the coating is carried out by welding and leaving it on the body surface, the fractured surface, that is, the coated surface, has a jagged surface with large irregularities, which has the disadvantage that the coated surface cannot be finished neatly. Also! Due to the light contact and separation with the tip of the rod, the wave force Loe body surface becomes uneven, the covering material does not adhere to the workpiece surface uniformly, the vertebral surface becomes uneven G, T, and the covering layer becomes pinned. There were many rather large holes and weak points rather than holes, and the amount and thickness of the coating were small, and the density of the coating layer was also low.

本発明はこのように点に鑑みて、種々研究を重ねた結果
開発されたもので、近接接触開離の運動による少くとも
近接接触したときから開離までの期間中被覆材電極に前
記接触開離方向の軸の廻りに回転運動を与えておくこと
により被覆面を面粗さの少いなめらかにしてきれいな仕
上り面とし、被覆厚さが厚くでき、被覆層がより緻密で
、穴や弱点部分がなく、また被覆層の下の被加工体表面
もあまり凹凸状とならなくて被覆を行うことができるも
のである。
In view of these points, the present invention was developed as a result of various studies, and the present invention has been developed as a result of various researches, and the present invention has been developed as a result of conducting various researches. By applying rotational motion around the axis in the away direction, the coated surface can be smoothed with less surface roughness, resulting in a clean finished surface, allowing the coating to be thicker, making the coating layer more dense, and eliminating holes and weak points. In addition, the surface of the workpiece under the coating layer does not become very uneven and can be coated.

又更ニ本発明はアルゴンのような不活性気体もしくは水
素のような還元性気体またはこれらの混合気体や、これ
と同等のガス、蒸気中、或はさらに液体中で被加工体に
対し被覆材電極を接触開離の振動運動と回転運動を同時
に与えて行なわせることを特徴とするものである。
Furthermore, the present invention provides a coating material for a workpiece in an inert gas such as argon, a reducing gas such as hydrogen, or a mixture thereof, an equivalent gas, vapor, or even a liquid. This method is characterized in that the electrodes are subjected to vibrational movement and rotational movement of contact and separation at the same time.

以下図面の実施例装装置により本発明を説明する。The present invention will be explained below with reference to the embodiments shown in the drawings.

第1図は本発明による1実施例装置の側断面図で、1は
例えば6%Co−残部Wa焼結体の如き棒状。
FIG. 1 is a side sectional view of a device according to an embodiment of the present invention, in which numeral 1 is a rod-shaped body such as a 6% Co-balance Wa sintered body.

短い円柱状又はパイプ状の被覆材電極、2は例え−5〜 ば鉄材等の被加工体で前記電極1と対向し、両者間に加
工用電源5が接続され、間けつ的な電圧パルスが供給さ
れる。  4は被覆材電極1の固定取付支持チャック4
aを有する支持軸で、本体6部に設けられたモータ6の
回転がプーリ3a、ベルト3b、及びブーIJ3cを弁
して支持軸4へ与えられる。 一方6は振動ヘッドを構
成する装置本体で6aは本体乙にその他端が振動可能に
一端が固定され、ばね材で構成された振動片であり、振
動片6aには一部に電磁振動鉄片6bが固定して設けら
れる。  7は電磁鉄芯で、前記鉄片6bが間隔を置い
て対向して位置するように設けられ、又励磁用線輪7a
がその一部に巻回して設けられていの る。  8は振動片6aの図示の場合上下振動運動を支
持軸4を介して被覆材電極1に与えるための振動端結合
部で、該支持軸4はボールベアリング8aにより振動片
6aに回転自在に保持されてりる。 また、被加工体2
を被覆材電極1に対向した位置に設けて加工用電源5・
より間けつ的な高岡 6− 波の電圧パルスを印加しておくか、近接接触開離に伴っ
て1電圧パルスによる1放電が同期して生ずるようにし
ておく。 一方、被覆材電極1は。
A short cylindrical or pipe-shaped covering material electrode 2 is a workpiece made of iron material, for example, and faces the electrode 1, and a machining power source 5 is connected between the two to apply intermittent voltage pulses. Supplied. 4 is a fixed mounting support chuck 4 for the covering material electrode 1;
The rotation of the motor 6 provided in the main body 6 is applied to the support shaft 4 through the pulley 3a, the belt 3b, and the boot IJ3c. On the other hand, 6 is a device main body constituting a vibrating head, and 6a is a vibrating piece made of a spring material, the other end of which is fixed to the main body B so that it can vibrate. is fixedly provided. Reference numeral 7 denotes an electromagnetic iron core, which is provided so that the iron pieces 6b are opposed to each other at intervals, and an excitation wire ring 7a.
is wrapped around a part of it. In the illustrated case of the vibrating piece 6a, reference numeral 8 denotes a vibrating end coupling portion for imparting vertical vibrating motion to the covering material electrode 1 via the support shaft 4, and the support shaft 4 is rotatably held on the vibrating piece 6a by a ball bearing 8a. It's been done. In addition, the workpiece 2
is provided at a position opposite to the covering material electrode 1, and a machining power source 5.
Either more intermittent Takaoka 6-wave voltage pulses are applied, or one voltage pulse causes one discharge to occur synchronously with close contact separation. On the other hand, the covering material electrode 1 is.

支持軸4に連結保持されて一体に動くようになっており
、また、支持軸4はモータ3によりプーリ3a、ベル)
31)、及びプーリ3cを介して軸の廻りの回転運動が
与えられるとともに、電磁振動装置7の励磁用線輪7a
に所定周波数等の間けつ的に励磁を与えることにより鉄
片6bの吸引、開放を行い、鉄片6bと一体の振動片6
aはばね材で作られ、本体6に弾性振動可能に保持され
ているので、鉄片6bの吸引開放Gこともなって振動し
、この振動?振動出力端に設けられている結合部8Pへ
て支持軸4に与えることにより、支持軸4.即ち電極1
はその軸の廻りに回転自転しつつ上下振動運動による接
触開離を被加工体2に対して行なうことになる。
It is connected and held to a support shaft 4 so that it moves together, and the support shaft 4 is connected to a pulley 3a and a bell by a motor 3.
31) and a rotational motion around the shaft via the pulley 3c, and the excitation wire 7a of the electromagnetic vibration device 7.
By intermittently applying excitation at a predetermined frequency or the like, the iron piece 6b is attracted and released, and the vibrating piece 6 integrated with the iron piece 6b is
Since a is made of a spring material and is held in the main body 6 so that it can vibrate elastically, the suction release G of the iron piece 6b also vibrates, and this vibration? By applying it to the support shaft 4 through the coupling portion 8P provided at the vibration output end, the support shaft 4. That is, electrode 1
While rotating around its axis, it contacts and separates from the workpiece 2 by vertical vibration motion.

従って、被覆材電極1が被加工体2に対して下降して近
接するにともない、その間隙が絶縁破壊間隙以下になる
と加工用電源の印加電圧により放電が発生し、被覆材電
極1の先端が放′e加熱と、次いで被加工体2と接触し
、接触した状態での接触通電加熱とにより溶融して被加
工体2に転移溶着する。 このとき被覆材電極1はその
軸の廻りに回転運動を行なっているから、開離前に回転
により、さらにはこすりつけるような状態で放電溶着部
がヴ1きちぎられ、従って従来のようにギザギザな面を
残して破断するのとは相異して、この破断又は被恍面は
回転こすりつけにより調整され、このような回転分伴う
振動の接触開離放電により被加工体2表面をなでるよう
に順次に走査することにより滑かな仕上り面を作成する
こと゛ができ、被秒の穴や弱点部分が少なく、被覆厚さ
も厚くて被覆層の密度も大であるから被覆量も多く、被
覆下地の被加工体表面の凹凸が少なく、耐剥離強度が優
れたものとなる。
Therefore, as the covering material electrode 1 descends and approaches the workpiece 2, when the gap becomes less than the dielectric breakdown gap, an electric discharge occurs due to the applied voltage of the machining power supply, and the tip of the covering material electrode 1 The material is melted by radiation heating, then brought into contact with the workpiece 2, and contact current heating while in contact, and is transferred and welded to the workpiece 2. At this time, since the covering material electrode 1 is rotating around its axis, the discharge welded portion is torn off by rotation or even rubbing before separation, and therefore, unlike the conventional method, Unlike a fracture that leaves a jagged surface, this fracture or the surface to be abraded is adjusted by rotational rubbing, and the surface of the workpiece 2 is stroked by the contact separation discharge of the vibration accompanying such rotation. A smooth finished surface can be created by sequentially scanning the surface, there are fewer holes and weak points to be exposed, and the coating thickness is thick and the density of the coating layer is high, so the amount of coating is large, and it is possible to create a smooth finish on the coating substrate. The surface of the workpiece has less irregularities and has excellent peel resistance.

図面の矛2図は、本発明方法の実施に使用する装置の異
なる実施例の側断面図で、前述牙1図と同−物又は同一
作用物には同一の符号が付されている。
Figure 2 of the drawings is a side sectional view of a different embodiment of the apparatus used for carrying out the method of the present invention, in which the same components or the same working elements as in Figure 1 are given the same reference numerals.

この実施例では、被覆電極1の支持軸4に回転を与える
モータを小型マイクロモータ3Aとして振動出力端の結
合部8に取付部材3Bにより支持軸4に直接又は適宜の
ギヤボックスを介して連結するように構成したもので、
その他の各部の構成は前述矛1図のものと実質上同一で
ある。
In this embodiment, the motor that rotates the support shaft 4 of the covered electrode 1 is a small micromotor 3A, and the motor is connected to the support shaft 4 directly or via an appropriate gear box by a coupling part 8 at the vibration output end by a mounting member 3B. It is configured like this,
The configuration of other parts is substantially the same as that of Figure 1 above.

またこの矛2図の実施例に於て振動出力端の結合部8に
モータ3Aを直接固定して取付け、該モータ3Aの回転
出力軸に、前記支持軸4又は電極1取付チヤツク4aを
取り付けるように構成すると、前記実施例に於ける振動
片6aに対する支持軸40回転自在取付ベアリング8a
を省略することができる。
In the embodiment shown in Figure 2, the motor 3A is directly fixed and attached to the coupling part 8 of the vibration output end, and the support shaft 4 or the electrode 1 attachment chuck 4a is attached to the rotational output shaft of the motor 3A. When configured as follows, the support shaft 40 rotatably mounted bearing 8a for the vibrating piece 6a in the above embodiment
can be omitted.

このような矛2@及び該矛2図変更構成の場合電源3か
らの電極1への通電は、マイクロモー夕3Aの回転軸、
支持軸4.チャック4a、又は電極1に対する適宜の構
成のプラツシ通電となる。
In the case of such a spear 2 @ and the configuration with a changed figure of the spear 2, electricity is supplied from the power source 3 to the electrode 1 through the rotating shaft of the micromotor 3A,
Support shaft 4. The chuck 4a or the electrode 1 is energized by the appropriate configuration of the plug.

 9− 以下本発明を実施例により説明する。9- The present invention will be explained below with reference to Examples.

前述第1図又は矛2図に於て電極1又は支持軸4に回転
手段を有しない従来型の電磁振動装置を用い、電源5と
して直流電圧をトランジスタスイッチング素子で断続さ
せて休止時間を有する電圧パルスを発生させるパルス電
源(従来慣用のものはコンデンサ充放電型パルス電源が
多かった。)を用いるようにすると、種々の組合せ条件
が考えられるが、振動装置の機械的振動特性等の関係か
らどのような設定加工条件でも良好な被覆加工が行なわ
れると言ったものでもなく1例えば電圧パルスの無負荷
電圧を約50V 前後とすると、電圧パルス幅(r□N
)約80μS前後、休止幅(τ0FF)約20μ8前後
、放電電流′幅(工p)約7’OA  前後に放電被覆
に良い1つの電気条件があるが、この場合接触開離の振
動装置の振動周波数が約300Hz前後の所で、被覆厚
さ又は単位面積当りの被覆量が最大となって良好な被覆
が行なわれる所があり、例えば10%C0−残部we焼
結体の約5mm角の被覆材−10− 1!極を用いてBKH9焼人材被加工体を被覆処理をす
ると、10mtの領域を約5分間の走査被覆処理時間で
被覆量(厚さ)はほぼ飽和に達し、最大約18〜20 
m y/ a m” (平均被覆厚さ約12〜13μm
)被咎面粗さは約80μmRmax前後、被覆面硬度約
12DDHv前後で、断面を視ると、被横母材の被加工
体表面は電極で叩かれたことによって大きなうねりのあ
る凹凸面となっており、また被覆は局部的に小さな山や
丘状等に厚く着いている部分と、薄くしか着いてない部
分、或いは一部の被覆の山と山の間のような部分では殆
んど着いていないと思われるような部分とが混存してい
る一種の多孔質状態で、被覆の一部の突出部は脱落し易
いものであった。 なお、上記の振動及び電圧パルス条
件によれば、電極が被加工体表面に近接して最初の放電
が行なわれてから開離するまでの一振動の間に少くとも
約3個以上の電圧パルスによる放電1:′ 及び接触部でのパルス通電が行なわれているものと考え
られる。
In Fig. 1 or Fig. 2, a conventional electromagnetic vibration device having no rotating means is used for the electrode 1 or the support shaft 4, and a DC voltage is intermittent by a transistor switching element as the power source 5, so that the voltage has a rest time. If a pulse power source that generates pulses (conventionally used pulse power sources were often capacitor charge/discharge type), various combinations of conditions can be considered, but it is difficult to determine which one is best based on the mechanical vibration characteristics of the vibration device. This is not to say that a good coating will be achieved even under such set machining conditions.1For example, if the no-load voltage of the voltage pulse is approximately 50V, the voltage pulse width (r□N
) Approximately 80 μS, pause width (τ0FF) approximately 20 μ8, discharge current width (engine p) approximately 7'OA There is one electrical condition that is good for discharge coating, but in this case, the vibration of the vibration device for contact/release. There are places where the frequency is around 300 Hz, where the coating thickness or coating amount per unit area becomes maximum and good coating is performed. Material-10-1! When coating a BKH9 fired human workpiece using a pole, the coating amount (thickness) reaches almost saturation after scanning a 10 mt area for about 5 minutes, and the coating amount (thickness) reaches a maximum of about 18 to 20 mm.
m y/am” (average coating thickness approximately 12-13 μm
) The roughness of the surface to be processed is approximately 80μmRmax, and the hardness of the coated surface is approximately 12DDHv.When looking at the cross section, the surface of the workpiece of the lateral base material has an uneven surface with large undulations due to being struck by the electrode. In addition, the coating is locally thickly deposited in the form of small mountains or hills, and in areas where it is only thinly deposited, or in areas between some peaks of the coating, there is almost no deposit. The coating was in a kind of porous state with some parts that appeared not to be covered, and some of the protruding parts of the coating were likely to fall off. According to the above vibration and voltage pulse conditions, at least three or more voltage pulses are generated during one vibration from when the electrode approaches the surface of the workpiece and the first discharge occurs until it separates. It is thought that the discharge 1:' and the pulse energization at the contact area are occurring.

しかして、上記の放電液I条件に於て本発明により電極
を軸の廻りに回転させるようにした所回転数約100O
R,P、M  (電極が近接、接触してから開離するま
でのほぼ接触または之に近い状態で、約1回転速度〕で
、被覆量は、約2分以内で、約30〜36mp/am”
(平均被覆厚さ約20μmで、全体的な均一性が高く)
2面粗さ約15μmRmax前後、被覆面硬度約120
0Hz前後で、断面を見ると、全体的に一様な厚さで、
厚くかつ密で、平坦に被覆が形成されており、被加工体
表面に凹凸は殆んどなく、被覆の一部の脱落や剥離の問
題がない被覆状態であった。 そして、上記被覆条計の
場合、上記電極の回転速度は、遅すぎても、または速す
ぎても良い結果は得られないようで、近接接触状態で半
回転前後以上数回以内の回転数(1振動当り数〜数1 
OR,P、M以内〕が好ましいようである。
Therefore, under the above-mentioned discharge liquid I condition, the electrode is rotated around the axis according to the present invention at a rotational speed of about 100O.
R, P, M (approximately 1 rotational speed when the electrodes are close to each other, in a state where the electrodes are in close contact or close to this until they are separated), the coating amount is approximately 30 to 36 mp/m within approximately 2 minutes. am”
(The average coating thickness is approximately 20 μm, and the overall uniformity is high.)
Roughness on two surfaces is approximately 15μmRmax, hardness of the coated surface is approximately 120
When looking at the cross section at around 0Hz, the thickness is uniform throughout,
The coating was thick, dense, and flat, with almost no irregularities on the surface of the workpiece, and there was no problem with part of the coating falling off or peeling off. In the case of the above-mentioned coated strip gauge, it seems that good results cannot be obtained if the rotation speed of the electrode is too slow or too fast; Number to number 1 per vibration
within OR, P, M] seems to be preferable.

また、上記の如き電極回転方式とした場合の各種加工条
件を、接触開離振動数(約300Hz )、及び回転数
(約1. OOOR,P、M)を一定として種々検討し
た所電極径は少し大きくした方が良いようで、また放電
被覆加工の放電条件は電圧パルスの幅な大きくした方が
好ましいようであった。 その例を記すと下記の通りで
ある。 電極及び被加工体の材料、材質は前述の場合と
同一で、電極を径約15mmで加工面を半径的80mm
の球面とした。
In addition, various machining conditions were examined when using the electrode rotation method as described above, with the contact separation frequency (approximately 300 Hz) and rotation speed (approximately 1.OOOR, P, M) being constant. It seemed better to make the voltage pulse a little larger, and it seemed preferable to increase the voltage pulse width for the discharge conditions for electrical discharge coating. Examples are as follows. The materials of the electrode and the workpiece were the same as in the previous case, with the electrode having a diameter of approximately 15 mm and the machining surface having a radius of 80 mm.
It is assumed to be a spherical surface.

τON   τOFF   工p   被覆量  被覆
面粗さくμE3)   (μB)   (A)  、 
 (m7/m1n)  (μmRmax)A、5[]0
   2o     72      20     
  8B、1000   40    72     
 21〜24   7〜80.2000   40  
  7.2      22       11上記A
、 B、 O何れの場合も被覆層は全体的に均一な厚さ
で、多孔質状態でなく被覆速度は、従来の振動方式の約
2倍前後であるが、被覆量及び厚さは犬きく(約4倍前
後)、被覆面粗さが良好なものであった。また、上記の
場合ではBの被覆加工の電圧パルス条件が最も好ましい
条件のようであったが、上記A及びCの加工電圧パルス
条件の−13− 場合も含めて、従来の振動方式では電極材のwC。
τON τOFF Work p Coverage amount Coated surface roughness μE3) (μB) (A) ,
(m7/m1n) (μmRmax)A, 5[]0
2o 72 20
8B, 1000 40 72
21~24 7~80.2000 40
7.2 22 11A above
, B, and O, the coating layer has a uniform thickness throughout, is not porous, and the coating speed is about twice that of the conventional vibration method, but the amount and thickness of the coating are very different. (approximately 4 times), and the coated surface roughness was good. In addition, in the above case, the voltage pulse condition for coating B seems to be the most preferable condition, but in the conventional vibration method, the electrode material wC.

或いはさらに被加工体中の炭素が分解遊離するのか、直
ぐに電極が真赤に焼けて被覆表面は真黒となり、目的と
する超硬合金の被&は殆んど全く行なられない条件であ
る。
Or perhaps the carbon in the workpiece is decomposed and liberated, and the electrode immediately burns bright red and the coated surface turns black, making it almost impossible to coat the target cemented carbide at all.

また本発明は、さらにこのように被覆材電極1を、被加
工体2に対して接触開離すると同時に自転の回転を与え
る構成に於てアルゴン、窒素、炭酸ガスのような不活性
気体や、水素、アンモニア。
Further, the present invention further provides a structure in which the coating material electrode 1 is brought into contact with and released from the workpiece 2 and simultaneously rotated on its own axis, using an inert gas such as argon, nitrogen, or carbon dioxide gas, hydrogen, ammonia.

−酸化炭素等のような還元性気体、或いはこれらの混合
気体、或いは又それ等の液体の噴霧中または液体中に於
て被覆加工するもので、その結果を被覆速度m y/m
in、 cm”を縦軸に、加工時間minを横軸にとっ
たyp6図の特性曲線図により示すと、曲線Aはコンデ
ンサ充放電方式の加工電源を使用した場合、Bは前述ス
イッチング素子でオン、オフされる電圧パルス方式の加
工電源を使用した場合で、いずれも特定のガスがない9
久中で行なった場合、曲線C及びDは水素ガスとアルゴ
ンガス−14− の混合気体雰囲気の場合で、曲線Cではアルゴンガスの
方が水素ガスより多く(約7:3)、曲線りでは水素ガ
スの方がアルゴンガスより多い〔約7:3〕場合である
。 曲線A、Bと、曲線C1Dとを比較すれば明らかな
ように、同じ被覆加工処理時間に対し、被覆速度は倍前
後以上となる。
- Coating processing is carried out during spraying or in a reducing gas such as carbon oxide, or a mixture thereof, or a liquid thereof, and the result is calculated as a coating speed m y/m.
In, cm" is shown on the vertical axis and the machining time min is on the horizontal axis. Curve A is when a capacitor charge/discharge type machining power source is used, and curve B is when the switching element is turned on as described above. , when using a voltage pulse type machining power source that is turned off, and there is no specific gas in either case 9
Curves C and D are for a mixed gas atmosphere of hydrogen gas and argon gas.In curve C, there is more argon gas than hydrogen gas (approximately 7:3), and in curves This is a case where the amount of hydrogen gas is greater than that of argon gas (approximately 7:3). As is clear from a comparison between curves A and B and curve C1D, the coating speed is approximately twice as high for the same coating processing time.

図の曲線B、 O,Dの電流パルス条件は工p:6OA
The current pulse conditions for curves B, O, and D in the figure are p: 6OA.
.

τON:80μs、τ0FF=20μsで、6%Co−
残部WCの電極で、振動300H2,回転数約100O
R0P。
τON: 80μs, τ0FF=20μs, 6%Co-
With the remaining WC electrode, vibration 300H2, rotation speed approximately 100O
R0P.

Mの場合であり、被覆加工厚さが0.02mm〜[1,
1mrrに加工することができる。 またアルゴンガス
雰囲気中で、アルゴンガスを約10 Q c/min 
被a加丁部に噴出させながら回転電極(約1.5mmφ
の6%co−weワイヤを12本結束して約300OR
M, and the coating thickness is 0.02 mm to [1,
It can be processed to 1mrr. Also, in an argon gas atmosphere, argon gas is applied at a rate of about 10 Q c/min.
A rotating electrode (approximately 1.5 mmφ
Bundle 12 pieces of 6% co-we wire to make approximately 300 OR
.

P、M、で回転させる。)を用いて被覆加工した所加工
面荒さがきわめてよくなった。
Rotate with P and M. ), the roughness of the machined surface was extremely improved.

矛4図はかかる場合の従来方法によるものと、本発明方
法によるものとの加工面荒さを比較した図で、従来方法
によるものでは約46μmRmax に対し、本発明に
よる加工面荒さは約5μmRmaxまた従来方法を空気
中で行なったものは約95μmRmaxであった。
Figure 4 is a diagram comparing the machined surface roughness between the conventional method and the present invention method in such a case.The conventional method has a machined surface roughness of about 46 μmRmax, while the present invention has a machined surface roughness of about 5 μmRmax and the conventional method. When the method was run in air, the Rmax was approximately 95 μm.

尚不活性もしくは還元性、或はこれらの混合気体、若し
くは液体を、直接放電被覆部分に噴出させるようにして
もよく、かかる雰囲気ガス中に収納してもよい。
Incidentally, an inert or reducing gas, or a mixture thereof, or a liquid may be injected directly onto the discharge coating portion, or may be stored in such an atmospheric gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の1実施例概略構成図、牙2図は他の
実施例装置の概略構成図、矛3図及び才4図は混合ガス
と従来方法による被覆速度、並びに加工面荒さの比較特
性図である。 図で1は被覆材電極、2は被加工体、5は加工用電源、
4は被覆材電極1の支持軸、5は電極回転用モータ、6
aは振動片、7は振動装置、8は結合部。 第1図 馬2図 吊3図 min加工時間 第4図
Fig. 1 is a schematic block diagram of one embodiment of the present invention, Fig. 2 is a schematic block diagram of another embodiment of the apparatus, and Figs. It is a comparative characteristic diagram. In the figure, 1 is a covering material electrode, 2 is a workpiece, 5 is a processing power source,
4 is a support shaft of the covering material electrode 1; 5 is a motor for rotating the electrode; 6
a is a vibrating piece, 7 is a vibrating device, and 8 is a coupling portion. Fig. 1 Horse 2 Fig. Hanging 3 Fig. min Processing time Fig. 4

Claims (4)

【特許請求の範囲】[Claims] (1)被加工体表面に対して接触開離の振動が与えられ
る被覆材電極を配置し、前記電極と被加工体間に加工用
電源号接続して間けっ的な電圧パルスを印加し発生する
放電により被加工体表面に被覆材電極を溶着被覆する装
置に於て、前記被覆材電極を前記接触開離方向の軸の廻
りに回転させながら前記接触開離を行なわせる回転手段
を振動装置の振動部に備えせしめてなることを特徴とす
る放電被覆装置。
(1) Place a covering material electrode that gives vibration of contact and separation on the surface of the workpiece, connect the machining power supply signal between the electrode and the workpiece, and apply intermittent voltage pulses. In an apparatus for welding and coating a coating material electrode on the surface of a workpiece by electric discharge, a rotating means for performing the contact and separation while rotating the coating material electrode around an axis in the contact and separation direction is a vibration device. A discharge coating device, characterized in that it is provided in a vibrating part of.
(2)  前記振動装置が電磁振動装置であって該振動
装置の振動片に被櫟材電極の支持軸が回転自在に支承さ
れ、該支持軸に回転手段が結合されている特許請求の範
囲矛1項記載の放電被覆装置。
(2) The vibrating device is an electromagnetic vibrating device, and a supporting shaft of a material electrode is rotatably supported by a vibrating piece of the vibrating device, and a rotating means is coupled to the supporting shaft. The discharge coating device according to item 1.
(3)  被加工体表面に対して接触開離の振動が与え
られる被覆材電極を配置し、前記電極と被加工体間に加
工用電源を接続して間けつ的な電圧パルスを印加し発生
する放電により被加工体表面に被覆材電極を溶着被覆す
る装置に於て、前記被覆材電極を前記接触開離方向の軸
の廻りに回転させながら前記接触開離を行う回転手段を
備えるとともに被加工体表面を不活性もしくは還元性、
或はこれらの混合気体、液体中雰囲気とする手段を備え
たことを特徴とする放電被覆方法。
(3) Placing a covering material electrode that applies contact/separation vibrations to the surface of the workpiece, connecting a machining power source between the electrode and the workpiece, and applying intermittent voltage pulses. An apparatus for welding and coating a covering material electrode on the surface of a workpiece by electric discharge, the apparatus comprising a rotating means for performing the contact and separation while rotating the covering material electrode around an axis in the contact and separation direction, and Make the surface of the processed object inert or reducible,
Alternatively, a discharge coating method characterized by comprising means for creating an atmosphere in a mixed gas or liquid.
(4)  不活性もしくは還元性、或はこれら混合気体
もしくは液体を放電被覆部分に直接噴出せしめるように
したことを特徴とする特許請求の範囲牙3項記載の放電
被覆方法。
(4) The discharge coating method according to claim 3, characterized in that an inert or reducing gas or liquid, or a mixture thereof, is ejected directly onto the discharge coating portion.
JP7845182A 1982-05-12 1982-05-12 Electric discharge coating device Granted JPS58197274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7845182A JPS58197274A (en) 1982-05-12 1982-05-12 Electric discharge coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7845182A JPS58197274A (en) 1982-05-12 1982-05-12 Electric discharge coating device

Publications (2)

Publication Number Publication Date
JPS58197274A true JPS58197274A (en) 1983-11-16
JPS6127469B2 JPS6127469B2 (en) 1986-06-25

Family

ID=13662396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7845182A Granted JPS58197274A (en) 1982-05-12 1982-05-12 Electric discharge coating device

Country Status (1)

Country Link
JP (1) JPS58197274A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860025A (en) * 1971-11-27 1973-08-23
JPS5528314A (en) * 1978-08-15 1980-02-28 Inoue Japax Res Inc Coating apparatus by electric discharge
JPS5655568A (en) * 1980-07-24 1981-05-16 Inoue Japax Res Inc Working method utilizing electric discharge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4860025A (en) * 1971-11-27 1973-08-23
JPS5528314A (en) * 1978-08-15 1980-02-28 Inoue Japax Res Inc Coating apparatus by electric discharge
JPS5655568A (en) * 1980-07-24 1981-05-16 Inoue Japax Res Inc Working method utilizing electric discharge

Also Published As

Publication number Publication date
JPS6127469B2 (en) 1986-06-25

Similar Documents

Publication Publication Date Title
JPS5955362A (en) Electric discharge coating device
US3832514A (en) Device for local electric-spark layering of metals and alloys by means of rotating electrode
US4346281A (en) Method of and apparatus for discharge-surfacing electrically conductive workpieces
JPS58197274A (en) Electric discharge coating device
US3523171A (en) Method of and apparatus for the sparkdischarge deposition of conductive materials on a conductive surface
JPH0985439A (en) Consumable electrode gas shielded metal-arc welding method and equipment therefor
JP2759095B2 (en) Sliding member
JPS62243778A (en) Electrode for coating
JPS63166977A (en) Electrode for discharge coating
JPH0558074B2 (en)
JP5636838B2 (en) Thermal spraying method
JPS58197275A (en) Electric discharge coating device
JPH0112547B2 (en)
RU9410U1 (en) DEVICE FOR ELECTRIC SPARK ALLOYING INTERNAL SURFACES OF CYLINDRICAL DETAILS
JPS62243779A (en) Electrode material for coating
JP3852583B2 (en) Discharge surface treatment apparatus and discharge surface treatment method
RU78453U1 (en) MULTI-ELECTRODE TOOL FOR ELECTROEROSION ALLOYING
JP2004122316A (en) Electric discharge machining device
JP2700926B2 (en) Manufacturing method of short metal fiber flocking metal sheet
GB2068811A (en) Method of and apparatus for discharge-surfacing electrically conductive workpieces
JPH0237224B2 (en) HYOMENHIFUKUSOCHI
JPS5832231B2 (en) Surface coating equipment
JPS5913044A (en) Electrode material for electric spark coating
RU2072282C1 (en) Coat applying method
JPS6092485A (en) Electric discharge coating device