JP2589976B2 - Electrode for discharge coating - Google Patents

Electrode for discharge coating

Info

Publication number
JP2589976B2
JP2589976B2 JP61086809A JP8680986A JP2589976B2 JP 2589976 B2 JP2589976 B2 JP 2589976B2 JP 61086809 A JP61086809 A JP 61086809A JP 8680986 A JP8680986 A JP 8680986A JP 2589976 B2 JP2589976 B2 JP 2589976B2
Authority
JP
Japan
Prior art keywords
electrode
coating
discharge
workpiece
discharge coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61086809A
Other languages
Japanese (ja)
Other versions
JPS62243779A (en
Inventor
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP61086809A priority Critical patent/JP2589976B2/en
Publication of JPS62243779A publication Critical patent/JPS62243779A/en
Application granted granted Critical
Publication of JP2589976B2 publication Critical patent/JP2589976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は放電被覆用電極に係り、特に高硬度性及び
耐摩耗性付与のための放電による複合放電被覆用電極で
ある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for electric discharge coating, and more particularly to an electrode for composite electric discharge coating by electric discharge for imparting high hardness and wear resistance.

従来の技術 従来この種放電被覆では、通常電磁石と反撥バネ等に
より構成される振動装置,又は回転偏倚軸を有する偏倚
体を回転手段により回転させる振動装置等の振動装置に
放電被覆用電極を取り付けて被加工体表面に対向させ、
上記電磁石を所定の発振器や商用交流,或いは更に放電
用蓄電器の充放電電流や電圧等により励磁させることに
より被加工体との対向方向を上下運動を行なわせて放電
被覆用電極の先端を被加工体表面に接触開離振動を繰返
し、近接接触時に同期して間隙にパルス放電を行なわせ
或いは近接時から所定開離時までに高周波電圧パルスを
供給して微小パルス放電及びパルス通電を複数回行なわ
せ、接触時に加熱された放電被覆用電極の先端溶融部が
被加工体と溶着した状態から離隔時に被加工体表面に溶
着接着して残置することにより、被覆が行なわれるもの
で、電極と被加工体間に相対的な走査移動又は走査加工
送りを行うことにより、被加工体の表面全体若しくは必
要部分に被覆層を形成させることができるものである。
2. Description of the Related Art Conventionally, in this kind of discharge coating, an electrode for discharge coating is attached to a vibration device such as a vibration device which usually includes an electromagnet and a repulsion spring or a vibration device which rotates a biasing body having a rotation biasing shaft by a rotating means. To face the workpiece surface,
The electromagnet is excited by a predetermined oscillator or commercial alternating current, or further by a charging / discharging current or voltage of a discharging capacitor, so as to move up and down in a direction facing the workpiece to process the tip of the discharge coating electrode. Repeats contact-separation vibration on the body surface, and performs pulse discharge in the gap in synchronization with close contact, or supplies high-frequency voltage pulse from close proximity to a predetermined separation to perform micro-pulse discharge and pulse conduction multiple times The coating is performed by welding and bonding to the surface of the workpiece at the time of separation from the state in which the melted tip of the electrode for discharge coating heated at the time of contact is welded to the workpiece, and leaving the electrode. By performing relative scanning movement or scanning processing feed between the workpieces, a coating layer can be formed on the entire surface of the workpiece or on a necessary portion.

発明が解決しようとする問題点 更に本件の発明者は上記近接接触開離の運動による少
くとも近接接触したときから開離までの期間中放電被覆
用電極に前記接触開離方向の軸の廻りに回転運動を与え
ておくことにより被覆面を面粗さの小さいなめらかにし
てきれいな仕上り面となり被覆厚さが厚くでき、被覆層
がより緻密で、穴や弱点部分がなく、また被覆層の下の
被加工体表面もあまり凹凸状とならなくて被覆が行なわ
れることを発見し、先に提案した。
Problems to be Solved by the Invention Further, the present inventor has proposed that the electrode for discharge coating is rotated around the axis in the contact / separation direction during a period from at least close contact by the movement of the close contact / separation to separation. By giving a rotary motion, the coating surface becomes smooth with a small surface roughness and becomes a clean finished surface, the coating thickness can be thickened, the coating layer is more dense, there are no holes and weak spots, and the bottom of the coating layer It has been discovered that the coating is performed without the surface of the workpiece being very uneven, and has been proposed earlier.

即ち被加工体に対し放電被覆用電極を接触開離の振動
運動と回転運動を同時に与えて行なわせることにより、
従来の単なる振動方式に比し、被覆層が全体的に均一な
厚さで多孔質状態でなく、被覆速度が大となり、被覆量
及び厚さが大きく、又被覆面粗さが小さく良好なものが
得られるようになつた。
In other words, by causing the electrode for discharge coating to be applied to the workpiece by simultaneously applying the vibration motion and the rotational motion of the contact separation,
Compared to the conventional simple vibration method, the coating layer is not porous with a uniform thickness overall, the coating speed is high, the coating amount and thickness are large, and the coating surface roughness is small and good. Can be obtained.

しかしながら、かかる放電被覆方法及び機器の改善に
よつても、主として被覆の厚さ及び被覆の硬度、或いは
さらに被覆の均一性,弱点部分の解消及び面粗さ等未だ
満足すべきものではない。
However, even with the improvement of the discharge coating method and equipment, the thickness and hardness of the coating, or the uniformity of the coating, the elimination of weak spots, and the surface roughness are still not satisfactory.

また本発明の適用分野の如く、被処理体金属の表面に
主として高硬度性及び耐摩耗性等を与えるためには、前
記振動放電被覆用電極として主としてタングステンカー
バイト(WC),チタンカーバイト(TiC),若しくはタ
ングステン(W),チタン(Ti)系の超硬合金等を使用
して放電被覆を行うことが行なわれ、又考えられるが、
従来使用されている電極によつては、可能な被覆量(主
として被覆厚み)が少なかつたり、被処理体金属の表面
に均一で緻密な被覆が行なえないとか、被覆表面の面粗
さが大きくて平滑で奇麗な面が得られないとか、或は又
目的とする材料の電極によつては被覆形成が著しく困難
である等の欠点があつた。このため、本発明者は先に放
電被覆用電極の改良としてタングステン(W),チタン
(Ti),タンタル(Ta),ハフニウム(Hf),ニオブ
(Nb),モリブデン(Mo),バナジユーム(V),ジル
コニウム(Zr),硅素(Si),クローム(Cr)または硼
素(B)の炭化物の少くとも一種以上をコバルト(C
o),ニツケル(Ni),または鉄(Fe)の少くとも一種
を結合材として重量百分比で3〜30%加えて焼結してな
る放電被覆用電極材に於て、重量百分比で1〜15%の銅
(Cu)を含有せしめて成る放電被覆用電極を提案して、
特公昭56−9258号公報として既に出願公告済である。
Further, as in the application field of the present invention, in order to mainly impart high hardness and wear resistance to the surface of the metal to be treated, tungsten carbide (WC), titanium carbide (WC) is mainly used as the electrode for the vibration discharge coating. TiC), or tungsten (W), titanium (Ti) based cemented carbide, etc., is used for the discharge coating.
Depending on the electrodes used conventionally, the possible coating amount (mainly the coating thickness) is small, or the metal surface to be processed cannot be uniformly and densely coated, or the surface roughness of the coating surface is large. However, there are disadvantages such as that a smooth and clean surface cannot be obtained, or that a coating is extremely difficult to be formed with an electrode of a target material. For this reason, the present inventor has previously proposed tungsten (W), titanium (Ti), tantalum (Ta), hafnium (Hf), niobium (Nb), molybdenum (Mo), and vanadium (V) as improvements in the electrode for discharge coating. , Zirconium (Zr), silicon (Si), chromium (Cr) or boron (B) at least one carbide of cobalt (C
o), at least one kind of nickel (Ni) or iron (Fe) is used as a binder, and 3 to 30% by weight is added and sintered. % Copper (Cu) containing an electrode for discharge coating,
The application has been published as Japanese Patent Publication No. 56-9258.

即ち、従来公知の金属炭化物系の焼結超硬合金に有効
成分として銅を含有せしめたもので、硬度を大きく犠性
とすることなく被覆厚さを改善しようとしたものである
が、実用的に充分満足すべきものは未だ得られていな
い。
That is, it is a conventionally known metal carbide-based sintered cemented carbide in which copper is contained as an effective component, and it is intended to improve the coating thickness without greatly sacrificing the hardness, but is practical. There is not yet a satisfactory one.

問題点を解決するための手段 しかしてこの発明は被覆電極材についてさらに種々検
討を加えて、柱状乃至棒状の硼素Bを有効成分として含
有する放電被覆用電極材と、同じくタングステンW,炭化
タングステンWC,窒化硼素BN,チタンTi,炭素C,硅素Si
三酸化硼素B2O3,燐P,ニッケルNi,又はコバルトCoの内
の少なくとも1種以上から成る柱状乃至棒状の1種以上
の電極材とを、放電被覆加工処理に際して相対向せしめ
られる被加工体の表面に平行な方向に、前記各電極材が
相互に密着するように隣接並置して一体に結束又は結合
して成ることを特徴とするもので、好ましくはアルゴン
ガス,窒化ガス,シランガス,又は炭化水素ガス等の非
酸化性雰囲気中に於いて、その被覆用電極を回転しなが
ら被加工体との間でパルス放電をして被覆することによ
り従来に比し更に硬度の高い非晶質状の表面被覆をうる
ことができるようにしたものである。尚硼素Bについて
は既に被覆の硬度の向上及び維持に対してより有効に作
用するもので、また一部は酸化,炭化等の結合剤的作用
も属することが種々の実験や試作でえられている。
Means for Solving the Problems However, the present invention has been further studied variously with respect to the coated electrode material, and has been described as a discharge coating electrode material containing columnar or rod-shaped boron B as an active ingredient, and also tungsten W, tungsten carbide WC. , Boron nitride BN, titanium T i , carbon C, silicon S i ,
Boron trioxide B 2 O 3, phosphorus P, nickel N i, or cobalt C o 1 or more electrode material of the columnar or rod comprising at least one or more of, is caused to face each other during discharge cladding process Each of the electrode members is adjacently juxtaposed in a direction parallel to the surface of the workpiece so as to be in close contact with each other, and is united or bonded together. Preferably, argon gas, nitriding gas, In a non-oxidizing atmosphere such as a silane gas or a hydrocarbon gas, the coating electrode is rotated to perform a pulse discharge between the workpiece and the workpiece while the coating is being performed, thereby coating the workpiece with a non-oxidizing atmosphere having a higher hardness than before. This is to provide a crystalline surface coating. In addition, boron B has already been effective in improving and maintaining the hardness of the coating, and it has been obtained through various experiments and trial productions that a part of the boron B also acts as a binder such as oxidation and carbonization. I have.

作用 かくて本発明により従来に比し、更に硬度の高い非晶
質状の表面被覆をうることができる。
According to the present invention, it is possible to obtain an amorphous surface coating having a higher hardness than the conventional one.

実施例 以下この発明を実施例装置について説明すると第1図
はこの発明に係る放電被覆用電極を用いて被覆作業する
のに好適な装置の側断面図で、放電被覆用電極1は、例
えば第2図(a)及び(b)に示すように、全体的にあ
まり長くない柱状体又は棒状体で、(a)図の場合、夫
々柱状乃至は棒状の硼素Bを有効成分として含む電極
材、例えば硼素1aと、合金化や反応等により被覆材とな
る電極材例えばWC−6%Co1b,チタンW11c,グラファイ
トC1dの各柱状体乃至は棒状体の電極材1b〜1dとを、放
電被覆加工処理の際に、相対向せしめられる鉄材(SK
3)等の被加工体2の表面に平行な方向に、前記各電極
材1a〜1dが適宜相互に密着するように成形し、図示の場
合各四分の一円弧断面形状で一体化して円柱状体を形成
するように隣接配置し、結合又は結束したものである。
又(b)の場合は、前記柱状等の各電極材が板状体で、
該板状体の多重重ね合せ結合体から円柱体を切り出した
如き構成のもので、例えば1fがWC−6%Co−0.1%P、1
gが硼素Bとチタン混合体、1hがグラファイトC,1jがチ
タンTi及び1kがグラファイトCの如くである。
FIG. 1 is a side sectional view of an apparatus suitable for performing a coating operation using the electrode for discharge coating according to the present invention. 2 As shown in FIGS. 2 (a) and 2 (b), a columnar or rod-like body that is not very long as a whole, and in the case of FIG. 2 (a), an electrode material containing a columnar or rod-shaped boron B as an active ingredient, for example a boron 1a, alloying, reaction or the like by a coating material electrode material for example WC-6% C o 1b, titanium W 1 1c, and an electrode material 1b~1d of the columnar members to the rod-shaped body of graphite C1d, The iron material (SK
3) In the direction parallel to the surface of the workpiece 2 such as described above, the electrode materials 1a to 1d are molded so as to be in close contact with each other as appropriate, and in the case shown in the drawing, they are integrated in a quarter-arc cross-sectional shape to form a circle. They are arranged adjacent to each other to form a columnar body and combined or bound.
In the case of (b), each electrode material such as the column is a plate-like body,
Those from multiple overlapping conjugates of the plate-like body structure, such as a cut out cylinder, for example, 1f the WC-6% C o -0.1% P, 1
g boron B and titanium mixture, 1h graphite C, 1j is titanium T i and 1k is as graphite C.

このような放電被覆用電極1の作り方は、例えば上記
第2図(a)のものの場合、第3図に示すように、円柱
状の焼結材充填の孔11を有する焼結用ダイ10の前記孔11
に、各所望とする電極材1a〜1dの粉末を、所望とする断
面形状に充填し、之れを孔の両側からグラファイトポン
チで加圧しつつ通電し、例えば約1100〜1200℃に10分間
加熱,加圧して焼結成形することができるものである。
このようにして各層の境界部分で一部は合金となるもの
の大部分は層状等の挿入した各種金属のままで被覆用電
極1を成形する。2は鉄材等の被覆被加工体で前記放電
被覆用電極1と対向し、両者間に加工用電源5が接続さ
れ、間けつ的な電圧パルスが供給される。又4は放電被
覆用電極1の固定取付支持チヤツク4aを有する支持軸
で、マイクロモータ3の回転軸に連結されている。また
支持軸4はベアリング8aを有する結合部8により、後述
振動片6aに結合保持されている。6は手持ヘツド又は機
械装置ヘツドに取付けられる装置本体で、振動励磁用線
輪7aを有する電磁振動装置7と振動片6aとが取りつけら
れており、ばね材で作られた振動片6aには前記装置7の
磁極と対向して振動片6aと一体に振動する鉄片6bが設け
られる。電磁振動装置7による鉄片6bの吸引開放にとも
なう振動は、振動片6aをへてその自由端に設けられた前
記マイクロモータ3へ、従つて該マイクロモータ3の回
転軸につながる支持軸4に与えられ、電極1はその軸好
ましくは偏心軸のまわりに回転自転しながら振動による
接触開離を被加工体2に対して行うことになる。従つて
放電被覆用電極1が被加工体2に対して下降して近接す
るにともないその間隙が絶縁破壊間隙以下になると加工
用電源5の印加電圧パルスにより放電が発生し、放電被
覆用電極1の先端が放電加熱と、ついで被加工体2と接
触することにより接触した状態での接触通電加熱とによ
り溶融軟化等し、主として隣接する電極材同志が混合反
応,又は合金化しつつ被加工体2に転移溶着する。この
時放電被覆用電極1をその軸の中心軸又は適宜の偏心軸
のまわりに回転運動を行なわせておけば、開離前に回転
により対向方向と直角方向に相対的に移動してこすりつ
けるような状態で放電溶着部が引きちぎられ、従つて従
来のような凹凸の大きい高い面粗さのギザギザな面を残
して破断するのとは相異して、上記の電極材1回転の場
合の破断又は被覆面は、回転こすりつけにより調整さ
れ、被加工体2の表面をなでるように順次に走査するこ
とになり、全体的に滑らかな面粗さの小さい仕上り面が
得られ、被加工体2の表面が振動の軽打による凹凸面と
なることが極めて少なく、かつ被覆厚さも部分的な弱点
部分なく厚くすることができる。又上述の如き電極1を
偏心軸の回りに回転させながら放電被覆加工の処理の態
様であると、前述した本発明の放電被覆用電極1の構成
と相まって、前記の被覆用電極1を構成する電極材1a〜
1d,1f〜1k間の混合反応又は合金化が多種多様に促進さ
れ、電極材同志の混合反応及び合金化に電極材1a中に有
効成分として配置した硼素Bが、被覆全体の各部にほど
良く行き渡らせることができて、高硬度及び高耐耗性の
被覆形成の確率が高まり、従来の放電被覆に比べて一段
と良質及び好特性の放電被覆を得ることができる。
For example, in the case of the above-mentioned FIG. 2 (a), as shown in FIG. 3, the method of manufacturing such a discharge coating electrode 1 is to form a sintering die 10 having a cylindrical shaped hole 11 filled with a sintering material. The hole 11
Then, each desired electrode material 1a ~ 1d powder is filled into a desired cross-sectional shape, and the two sides of the hole are energized while being pressed with graphite punches, for example, heated to about 1100 ~ 1200 ° C for 10 minutes. , Which can be formed by sintering under pressure.
In this way, the coating electrode 1 is formed with the various metals inserted in the form of layers, etc., although a part thereof becomes an alloy at the boundary between the layers. Reference numeral 2 denotes a workpiece to be coated such as an iron material, which faces the electrode 1 for electric discharge coating, a power supply 5 for processing is connected between the two, and an intermittent voltage pulse is supplied. Reference numeral 4 denotes a support shaft having a fixed mounting support chuck 4a for the discharge coating electrode 1, which is connected to the rotating shaft of the micromotor 3. The support shaft 4 is connected to and held by a later-described vibrating piece 6a by a connecting portion 8 having a bearing 8a. Reference numeral 6 denotes an apparatus main body which is attached to a hand-held head or a mechanical apparatus head. An electromagnetic vibrating apparatus 7 having a vibration exciting wire 7a and a vibrating piece 6a are attached thereto. An iron piece 6b is provided opposite to the magnetic pole of the device 7 and vibrates integrally with the vibrating piece 6a. The vibration accompanying the suction release of the iron piece 6b by the electromagnetic vibrating device 7 is applied to the micromotor 3 provided at the free end of the vibrating piece 6a, and thus to the support shaft 4 connected to the rotation shaft of the micromotor 3. Thus, the electrode 1 performs the contact and separation by vibrations on the workpiece 2 while rotating around its axis, preferably an eccentric axis. Accordingly, when the discharge coating electrode 1 descends and comes close to the workpiece 2 and the gap becomes equal to or smaller than the dielectric breakdown gap, a discharge is generated by a voltage pulse applied from the machining power supply 5, and the discharge coating electrode 1 is discharged. Is melted and softened by the discharge heating at the tip of the electrode 2 and then the contact current heating in the state of contact with the workpiece 2 so that the adjacent electrode materials mainly react with each other while mixing or alloying. Transfer welding. At this time, if the electrode for discharge coating 1 is rotated about the central axis of the axis or an appropriate eccentric axis, the electrode 1 is relatively rotated and rubbed by rotation before separation. In this state, the discharge welded portion is torn apart, thus breaking apart while leaving a jagged surface with a large surface irregularity and a high surface roughness as in the prior art. The fractured or coated surface is adjusted by rotary rubbing, and the surface of the workpiece 2 is sequentially scanned so as to be stroked, so that a smooth finished surface with a small surface roughness can be obtained as a whole. Is very unlikely to have an uneven surface due to light tapping of the vibration, and the coating thickness can be increased without any partial weakness. When the electrode 1 is rotated around an eccentric axis as described above, the mode of the discharge coating process is combined with the above-described configuration of the electrode 1 for discharge coating according to the present invention to constitute the electrode 1 for coating. Electrode material 1a ~
The mixing reaction or alloying between 1d, 1f to 1k is promoted in various ways, and the boron B arranged as an active ingredient in the electrode material 1a for the mixing reaction and alloying of the electrode materials is good for each part of the entire coating. As a result, the probability of forming a coating having high hardness and high abrasion resistance is increased, and a discharge coating having higher quality and better characteristics than conventional discharge coatings can be obtained.

このように被覆用電極1を被加工体2に接触開離振動
しながら被覆する際そこを有効に冷却することも重要な
要素となる。
As described above, when the coating electrode 1 is coated on the workpiece 2 while vibrating in contact with the workpiece 2, effective cooling is also an important factor.

なお、電磁振動装置7の電極,及び放電被覆電源5に
はコンデンサ充放電型パルス電源や直流電圧をトランジ
スタ等の電子スイツチング素子で断続して休止時間を有
する電圧パルスを発生させるようにしたパルス電源を用
いることができる。
The electrode of the electromagnetic vibration device 7 and the discharge coating power supply 5 are connected to a capacitor charge / discharge type pulse power supply or a pulse power supply in which a DC voltage is intermittently generated by an electronic switching element such as a transistor to generate a voltage pulse having a pause. Can be used.

発明の効果 このようにしてこの発明の複合放電被覆用電極1をア
ルゴンArの不活性ガス,Ni窒化ガス,H6C6の炭化水素ガ
スのような非酸化性雰囲気つまり分解して酸素が生じな
い状態において電極1を被加工体2表面に軸方向に相対
向させ、電極棒の中心を軸として回転させながら鋼板2
上を300〜400K/Hz程度の振動を与えながら移動せしめる
ことにより、各種金属を放射状,層状に配した被覆用電
極の場合は各種金属が一様に被覆され、円筒状に配した
被覆用電極では中心近いところは巾が狭く、外周は巾の
広い金属帯となつてそれ等を重ね合せたように被覆され
る。この被覆はいずれも各種金属が非晶質状態で被覆さ
れ、被覆された複合物の硬度がHv5500〜7000ときわめて
高い硬度がえられるものである。X線で調べたところ窒
化ガス雰囲気で被覆をしたときの被覆層はB4C,TiB2,Ti
N,CBN,Fe3N,FeB等の複合化合物で、これは非晶質に近
く、アルゴンガス雰囲気で被覆したときでも各種炭化
物,硼化物,硅化物などの複合化合物が形成され非晶質
状態に近い層を得ることができた。
Effect of the Invention In this manner, the composite discharge coating electrode 1 of the present invention is decomposed into a non-oxidizing atmosphere such as an inert gas of argon Ar, a nitriding gas of Ni, and a hydrocarbon gas of H 6 C 6 , that is, oxygen is generated. The electrode 1 is made to face the surface of the workpiece 2 in the axial direction in a state where no
In the case of a coating electrode in which various metals are arranged radially or in a layer by moving it while applying vibration of about 300 to 400 K / Hz, various metals are uniformly coated, and the coating electrode is arranged in a cylindrical shape In this case, the width near the center is narrow, and the outer periphery is covered with a wide metal band as if they were overlapped. In each of the coatings, various metals are coated in an amorphous state, and the hardness of the coated composite is as high as Hv 5500 to 7000. Examination by X-ray revealed that the coating layer when coated in a nitriding gas atmosphere was B 4 C, TiB 2 , Ti
Composite compounds such as N, CBN, Fe3N , and FeB, which are almost amorphous and form a complex compound such as various carbides, borides, and silicides even when coated in an argon gas atmosphere. Was obtained.

下記の表に本発明放電被覆用電極を用いて被覆加工処
理を行った実験例を実験条件及び被覆処理の結果と共に
示す。
The following table shows examples of experiments in which a coating process was performed using the electrode for discharge coating of the present invention, together with experimental conditions and results of the coating process.

このようにしてこの発明ではきわめて硬度の高い放電
被覆を可能とする。
Thus, the present invention enables discharge coating with extremely high hardness.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の実施に用いて好適の放電被覆装置の
簡略構成図,第2図a,bは異る複合電極斜面図である。
又第3図はダイ10の孔11に第2図a等で示す各種金属を
充填した状態を示す簡略図である。 図で1は放電被覆用電極,2は被加工体,3はモータ,4は支
持軸,5は放電被覆加工電源,6aは振動片,6bは鉄片,7は電
磁振動装置,7aは励磁用線輪。
FIG. 1 is a simplified configuration diagram of a discharge coating apparatus suitable for use in the embodiment of the present invention, and FIGS. 2a and 2b are different composite electrode slope views.
FIG. 3 is a simplified diagram showing a state in which the holes 11 of the die 10 are filled with various metals shown in FIG. In the figure, 1 is an electrode for electric discharge coating, 2 is a workpiece, 3 is a motor, 4 is a support shaft, 5 is a power supply for electric discharge coating, 6a is a vibrating reed, 6b is an iron piece, 7 is an electromagnetic vibrating device, and 7a is for excitation. Wire loop.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】柱状乃至棒状の硼素Bを有効成分として含
有する放電被覆用電極材と、同じくタングステンW,炭化
タングステンWC,窒化硼素BN,チタンTi,炭素C,硅素Si
三酸化硼素B2O3,燐P,ニッケルNi,又はコバルトCoの内
の少なくとも1種以上から成る柱状乃至棒状の1種以上
の電極材とを、放電被覆加工処理に際して相対向せしめ
られる被加工体の表面に平行な方向に、前記各電極材が
相互に密着するように隣接並置して一体に結束又は結合
して成ることを特徴とする放電被覆用電極。
An electrode material for discharge coating containing columnar or rod-like boron B as an active ingredient, and tungsten W, tungsten carbide WC, boron nitride BN, titanium T i , carbon C, silicon S i ,
Boron trioxide B 2 O 3, phosphorus P, nickel N i, or cobalt C o 1 or more electrode material of the columnar or rod comprising at least one or more of, is caused to face each other during discharge cladding process An electrode for discharge coating, wherein the electrode members are arranged side by side so as to be in close contact with each other in a direction parallel to the surface of the workpiece, and are united or bound together.
JP61086809A 1986-04-15 1986-04-15 Electrode for discharge coating Expired - Lifetime JP2589976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61086809A JP2589976B2 (en) 1986-04-15 1986-04-15 Electrode for discharge coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61086809A JP2589976B2 (en) 1986-04-15 1986-04-15 Electrode for discharge coating

Publications (2)

Publication Number Publication Date
JPS62243779A JPS62243779A (en) 1987-10-24
JP2589976B2 true JP2589976B2 (en) 1997-03-12

Family

ID=13897140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61086809A Expired - Lifetime JP2589976B2 (en) 1986-04-15 1986-04-15 Electrode for discharge coating

Country Status (1)

Country Link
JP (1) JP2589976B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020169B2 (en) * 1997-10-03 2007-12-12 株式会社石塚研究所 Electrode rod for spark welding using combustion synthesis reaction, its production method, and spark-welded metal coating method using this electrode
JP4608220B2 (en) * 2004-01-29 2011-01-12 三菱電機株式会社 Discharge surface treatment electrode and discharge surface treatment method
US20150041450A1 (en) * 2013-08-09 2015-02-12 General Electric Company Composite electro-spark electrode and methods of its use

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4938857A (en) * 1972-08-08 1974-04-11
JPS5573869A (en) * 1978-11-28 1980-06-03 Inoue Japax Res Inc Coating apparatus by electric discharge
JPS5913044A (en) * 1982-07-15 1984-01-23 Inoue Japax Res Inc Electrode material for electric spark coating

Also Published As

Publication number Publication date
JPS62243779A (en) 1987-10-24

Similar Documents

Publication Publication Date Title
US20090092845A1 (en) Electrode for Electric Discharge Surface Treatment, Method of Electric Discharge Surface Treatment, and Apparatus for Electric Discharge Surface Treatment
JP5121933B2 (en) Discharge surface treatment method
EP1630255B1 (en) Electrode for discharge surface treatment, and method for manufacturing and storing the same
JP2589976B2 (en) Electrode for discharge coating
WO2001023640A1 (en) Electric discharge surface treating electrode and production method thereof and electric discharge surface treating method
JP5168288B2 (en) Discharge surface treatment method and discharge surface treatment coating block
JPH081437A (en) Electric discharge machining method of electric insulating material
JP4575924B2 (en) Resistance welding electrode, welding resistance electrode manufacturing method, resistance welding apparatus, resistance welding line
US6020568A (en) Electro mechanical process and apparatus for metal deposition
JP2001138141A (en) Method for surface coating treatment using submerged discharge and consumable electrode used therefor
JPS5913044A (en) Electrode material for electric spark coating
JPS63166977A (en) Electrode for discharge coating
JPS62243778A (en) Electrode for coating
JP2759095B2 (en) Sliding member
JP2774990B2 (en) Micro welding method
JP2726869B2 (en) Micro welding method
JP2005002375A (en) Electrode for discharging surface treatment and discharging surface treatment method
JP2005008942A (en) Surface treatment method
JP2018103350A (en) Electrical discharge grinding grind stone
WO2008010263A1 (en) Process for producing electrode for discharge surface treatment and method of discharge surface treatment
RU2732843C1 (en) Method of electrospark alloying of metal products surface
JPH11229160A (en) Surface treatment of collet holder and chuck of collet holder retainer and device therefor
JP2004255517A (en) Consumable electrode member for electrical discharge machining
JP4274337B2 (en) Method for surface hardening of metallic materials using electric discharge phenomenon
CN114196953A (en) Method for increasing surface pulse plasma electric spark alloying depth of metal part