JP2004122316A - Electric discharge machining device - Google Patents

Electric discharge machining device Download PDF

Info

Publication number
JP2004122316A
JP2004122316A JP2002291756A JP2002291756A JP2004122316A JP 2004122316 A JP2004122316 A JP 2004122316A JP 2002291756 A JP2002291756 A JP 2002291756A JP 2002291756 A JP2002291756 A JP 2002291756A JP 2004122316 A JP2004122316 A JP 2004122316A
Authority
JP
Japan
Prior art keywords
rod
electrode
electric discharge
shaped electrode
cylindrical guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291756A
Other languages
Japanese (ja)
Inventor
Sotomitsu Hara
原 外満
Kiyokazu Okamoto
岡本 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2002291756A priority Critical patent/JP2004122316A/en
Publication of JP2004122316A publication Critical patent/JP2004122316A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve electric circuit characteristics by a new electricity feed route. <P>SOLUTION: In the electric discharge machining device, electric discharge machining is carried out by relative movement between an electrode support base 2 and a work 3 while applying a current/voltage of an electric discharge machining power source 4 between a bar-like electrode 1 supported on the electrode support base 2 and the work 3. The device is provided with a conductive cylindrical guide 11 mechanically fitted to a part close to a tip end of the bar-like electrode 1 and electrically bonded to the bar-like electrode. The cylindrical guide 11 is electrically bonded to the bar-like electrode 1 at a part opposite to a tip end of the bar-like electrode, i.e., a discharge position. One lead 5a of two connection leads from the machining power source 4 is connected to the work 3 and the other lead 5b of the connection leads is electrically connected to the other end side of the cylindrical guide 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は放電加工装置に関し、特に、例えばナノ秒オーダの短パルス電流による微細放電加工装置に関する。
【0002】
最近、1回の放電に際して、加工に費やされる電荷量が数マイクロクーロン乃至サブナノクーロンで放電加工を行うと、原子結合サイズが数ナノメートルで、その分布の均一度が優れている緻密かつ均一な被加工物に関しては、従来の放電加工では実現が困難であったような加工面アラサの山、谷の起伏差異で0.1ミクロンメートル以下の鏡面が、一回の放電加工で実現できる成果が得られ始めている。
なお、本明細書において、″微細″とは放電電荷量の微細なことを指称するものとする。
【0003】
【従来の技術】
元来、放電加工は、他の加工方法に比べて、サイズ的に小さくかつ形状が複雑な場合の加工に多く用いられているが、加工面が放電電荷量に応じて定まる溶解クレーターの深さ、バリ、広がりにより、鏡面とは程遠いザラザラの加工面、あるいは、梨地面程度しか得られず、このため、複雑な形状の面の仕上げは手間暇を掛けて別に行うのが常態であった。
放電加工における電極の形状としては、特開平8−229745、または特開平5−301124に示されているように細長い針状(円柱または円筒状)の形状をしており、根本の部分を保持して給電され、先端部分がワークとの間で放電を起こす部分となっている。
このような構造では、給電部分から先端までの長さが長くなり、高周波数かつ短パルスの放電には大変不利となる。すなわち、この長さのもつインダクタンスのために、パルスがなまったり波高値が小さくなったりするという問題がある。
【0004】
しかも、市場要求の高度化に伴い、被加工物のサイズが微細化するにつれて、放電加工後のこのような面仕上げでは対応できない事態も増加している。
被加工物の材料の選択と放電電荷量の微細化による加工面の改善は、上述のように可能であるけれども、実際の放電電荷量の微細化実現には、放電電源の加工電流の時間的波形挙動の制御のみでは到達できず、加工電極に至る給電の電気的回路の特性を示す途中の経路の分布容量、つまり、分布インダクタンスをできる限り極小化することが重要である。
【0005】
また、放電加工装置においては、棒状電極の消耗による幾何学的形状変化の影響を低減するため、棒状電極を回転させることが多いが、このような回転棒状電極による加工では、切削加工におけるフライス加工のような送り運動で、被加工物と棒状電極の相対的位置の連続的制御により所望の加工形状が得られる。
このような回転棒状電極を用いた加工の場合、電極消耗が進み過ぎないうちに、棒状電極を交換することもよく行われる。しかし、このような棒状電極交換の際、チャックに取り付けられた段階では、偏芯して取付けられた場合、棒状電極の芯が出ていないために、このまま回転させると、振れが大きくて、安定した放電加工間隙を確保できないので、しばらく別の被加工面に対して、ドレッシングと等価な操作により、棒状電極の回転時の形状を、回転振れを著しく低減した形状にした上で、実際の放電加工を行うことになる。
【0006】
【発明が解決しようとする課題】
ところで、高精度の放電加工を行う場合、被加工物に比べて棒状電極は構造的に細長く、剛性が低いので振動し易い。このため、回転棒状電極の振動を回避するため、棒状電極を保持する共振周波数の高い高剛性のチャックや電極支持台を使用する必要から、これらの機械的支持部分の幾何学的サイズはある程度大きくなる。
回転時の棒状電極の挙動と幾何学的サイズの増大の関係から、加工電荷の給電経路の電気的回路特性を改善することは、微細放電加工の実現のために非常に重要である。
【0007】
棒状電極に対する給電経路を図4を用いて具体的に説明すると、図4は従来の放電加工装置の給電経路を示し、放電加工用の棒状電極1は全体を2点鎖線で示す電極支持台2の導電性チャック2aに機械的に支持され、棒状電極1は図示を省略する駆動モータにより矢印Aに示すようにチャック2aと共に回転駆動される。
また、放電加工される被加工物3は矢印Bで示すように棒状電極1に対して相対的に送られ、被加工物3と棒状電極1の先端部との間に”放電ギャップG”が形成され、同”放電ギャップG”に生じる放電により微細加工が行われる。
【0008】
図4において、加工電源4からの接続リード5aは端子6により被加工物3に接続され、前記残る接続リード5bはブラシ7を経由して、前記チャック2と一体のスリップリング8に電気的に接続される。つまり、棒状電極1に対してはチャック2aの一部を経て加工電源4から印加された電流が流れる。このため、棒状電極1に対する給電経路は、ブラシ7→スリップリング8→チャック2a→棒状電極1の基端部→棒状電極1の先端部といった長大な経路になる。
つまり、この給電経路が長大であれば、その電気的インダクタンスが大きくなり、高速の立ち上がり、立ち下がりのパルス波形電流や高周波交流波形電流を加工電源4から放電部位に供給しようとしても、棒状電極1に流れる加工電流の変化が同給電経路のインダクタンスと、変化速度(角周波数)の積に比例して阻害されることになる。即ち、棒状電極1の先端部の”放電ギャップG”部位に、所望の微細な放電電荷を所定の短時間に供給することは不可能になり、従って微細な放電加工を実現することは困難となる。
【0009】
また、前述したように、被加工物の加工部位のサイズが小さくても、高精度の放電加工を行うには、棒状電極を支持する構造体の剛性を高めることが必須であるため、前述した構造では、給電経路の回路的構造の幾何学的サイズはある程度の大きさになる。
【0010】
本発明の目的は、相対的に剛性の小さな棒状電極に対して剛性を保つためにある程度の大きさになるならざるを得ない機械的構造体を介した給電経路の問題に鑑み、新たな給電経路により電気的回路特性を改善するにある。
【0011】
【課題を解決するための手段】
この目的を達成するため、本発明は、電極支持台に支持される棒状電極と被加工物との間に放電加工電源の電流電圧を印加しながら、電極支持台と被加工物との間の相対移動により放電加工を行う放電加工装置において、前記棒状電極の先端部寄りの部分に機械的に嵌められかつ同棒状電極に電気的に結合された導電性の筒状ガイドを備え、同筒状ガイドは放電部位である前記棒状電極の先端部とは反対側の部分で同棒状電極に電気的に結合され、前記加工電源からの2本の接続リードの一方は前記被加工物に接続され、前記接続リードの残る他方は前記筒状ガイドの他端側に電気的に接続された放電加工装置を提案するものである。
【0012】
後述する本発明の好ましい実施例の説明においては、
1)前記加工電源からの2本の接続リードの一方は前記被加工物に接続され、前記接続リードの他方は前記筒状ガイドの他端側にブラシによって電気的に接続された放電加工装置、
2)前記加工電源の電流波形は、パルス的若しくは高周波数の交流であり、前記筒状ガイドは装置固定部に固定され、前記棒状電極はその長さ方向中心軸線を中心として回転する回転電極であり、前記加工電源からの前記接続リードの一方は被加工物に直接接続されると共に前記接続リードの他方は固定された前記筒状ガイドに直接接続され、
回転される前記棒状電極と前記筒状ガイドとの前記電気的接続は、放電部位の加工物と回転電極との間の電気的容量に比べて、放電過程に影響しないような大きな容量を有し、放電を発生しない大きな間隙を介して容量結合的に接続された放電加工装置、
3)前記加工電源が供給する電流波形は、パルス的若しくは高周波数の交流であり、
前記棒状電極と前記筒状ガイドとは機械的に固定関係におかれ、前記棒状電極はその長さ方向中心軸線を中心として回転する回転電極であり、前記棒状電極と前記筒状ガイドとは電気的に直接に接続され、前記加工電源からの前記接続リードの一方は被加工物に直接接続され、前記接続リードの他方は、前記筒状ガイドを取り囲んで設けられた容量結合電極に接続され、この容量結合電極の電気的容量は放電過程に影響しないように放電部位の加工物と回転電極との間の電気的容量に比べて大きく、前記容量結合電極と前記筒状ガイドとの間隙は放電を発生しない大きな間隙を有する放電加工装置
が説明される。
【0013】
【発明の実施の形態】
以下、図1から図3について本発明の実施例の詳細を説明する。
【0014】
図1は本発明の第1実施例を示し、棒状電極1は全体を2点鎖線で示す電極支持台2の導電性チャック2aに機械的に支持され、棒状電極1は機械的剛性の高い電極支持台2及びチャック2aにより堅牢に保持される。
【0015】
また、放電加工される被加工物3は矢印Bで示すように棒状電極1に対して相対的に送られ、被加工物3と棒状電極1の先端部との間の”放電ギャップG”に生じる放電により微細加工が行われる。
【0016】
第1実施例の特徴は棒状電極1の先端部寄りの部分に嵌められた導電性筒状ガイド11にあり、この筒状ガイド11の内部には棒状電極1の基部寄りの部分に密着された導電スリーブ12が固定してある。
また、前記筒状ガイドの先端部寄りの部分には筒状ガイド11の外周面の回りに均一なギャップg1を形成された供給リング13が位置され、この供給リング13には加工電源4からのリード線5bの端子14が結合されると共に、加工電源4の他方のリード線5aは被加工物3に直接接続される。
なお、供給リング13と筒状ガイド11との間のギャップg1はこの部位で放電現象が発生しないように、大きな値とする必要があり、そして、結合容量は、放電部位の棒状電極1と被加工物3との結合容量に影響を与えないように、同結合容量の100倍以上程度の容量をもたせる必要がある。
【0017】
第1実施例による放電加工装置は、以上のような構成であるから、加工電源4からの加工電流は、電気的結合部材である供給リング13を介して直接に棒状電極1に接続された状態となる。つまり、加工電源4のリード線5bからの印加電流は供給リング13の位置から右向きに筒状ガイド11→導電スリーブ12→棒状電極1へ流れ、この棒状電極1で左向きに折り返して”放電ギャップG”に到達することになる。
この結果、給電経路の大きさが実質的に省略され、リード線5bの端子14が棒状電極1の先端部の極近くにあるのと同じ状態になる。したがって、供給リング13→筒状ガイド11へ流れる右向きの電流は電磁的には棒状電極1を左向きに流れる電流に打ち消され、これらの間の電気的インダクタンスの影響は等価的になくなる。
【0018】
したがって、給電経路が実質的に省略され、リード線5bの端子14が棒状電極1の先端部の極く近くにあるのと同じ状態になるから、高速のパルス波形電流や高周波交流波形電流を加工電源4から放電部位に供給しても、給電経路のインダクタンスに阻害されることがなくなる。つまり、棒状電極1の先端部の”放電ギャップG”部位に、所望の微細な放電電荷を短時間に供給することが可能になり、微細な放電加工を実現できる。
【0019】
図2は本発明の第2実施例を示し、図1と同一構造部分については同一符号を付して示してある。
第2実施例の場合、図1の供給リング13が除去され、筒状ガイド11に対しては、ブラシ15を介して加工電源4の電流がリード線5bの端子14から印加される。
【0020】
したがって、このような第2実施例の構成によっても、図1の場合と同様に、リード線5bの端子14が棒状電極1の先端部の極く近くにあるのと同じ状態になり、棒状電極1の先端部の”放電ギャップG”部位に、所望の微細な放電電荷を短時間に供給することが可能になり、微細な放電加工を実現できる。
【0021】
図3は本発明の第3実施例を示し、図2の場合と同様に、図1と同一構造部分については同一符号を付して示してある。
第3実施例の場合、棒状電極1Aは全体を2点鎖線で示す電極支持台2Aの導電性チャック2aに機械的に支持され、棒状電極1Aは機械的剛性の高い電極支持台2A及びチャック2aにより堅牢に保持される点では同一であるが、チャック2aは図示を省略する電動モータにより矢印A方向に回転駆動される。
【0022】
また、放電加工される被加工物3Aは矢印Bで示すように回転駆動される棒状電極1Aに対して相対的に送られ、被加工物3Aと棒状電極1Aの先端部との間の”放電ギャップG”に生じる放電により微細加工が行われる。
【0023】
第3実施例においても、棒状電極1Aの先端部寄りの部分に嵌められた導電性筒状ガイド11Aが設けられており、この筒状ガイド11Aの内部には棒状電極1Aの基部寄りの部分に密着された導電スリーブ12Aが固定してある。
この導電スリーブ12Aの外径と筒状ガイド11Aの口径との間には均一なギャップg2が形成される。ギャップg2はこの部位で放電現象が発生しない大きな値とされ、その結合容量が放電部位の棒状電極1Aと被加工物3Aとの結合容量に影響を与えないように、同結合容量の100倍以上程度の容量とされる。
また、前記筒状ガイド11Aの先端部寄りの部分には筒状ガイド11Aに固定された供給リング13Aが位置され、この供給リング13Aには加工電源4からのリード線5bが結合されると共に、加工電源4の他方のリード線5aは被加工物3Aに直接接続される。
【0024】
第3実施例による放電加工装置は、以上のような構成であるから、加工電源4のリード線5bからの印加電流は供給リング13Aの位置から右向きに筒状ガイド11Aへ流れ、この筒状ガイド11Aに容量結合される導電スリーブ12Aから棒状電極1Aを左向きに流れる。
この結果、給電経路の大きさが実質的に省略され、リード線5bの端子14が棒状電極1Aの先端部の極近くにあるのと同じ状態になる。
したがって、供給リング13A→筒状ガイド11Aへ流れる右向きの電流は電磁的には棒状電極1Aを左向きに流れる電流に打ち消され、これらの間の電気的インダクタンスの影響は等価的になくなる。
【0025】
よって、第1実施例及び第2実施例の場合と同様に、給電経路の大きさが実質的に省略され、リード線5bの端子14が棒状電極1Aの先端部の極く近くにあるのと同じ状態になるから、高速のパルス波形電流や高周波交流波形電流を加工電源4から放電部位に供給しても、給電経路のインダクタンスに阻害されることがなくなる。つまり、棒状電極1Aの先端部の”放電ギャップG”部位に、所望の微細な放電電荷を短時間に供給することが可能になり、微細な放電加工を実現できる。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明によれば、放電加工用棒状電極が力学的に剛性を保つようなサイズを有する場合でも、等価的に供給経路の電気的回路特性が大幅に改善されるので、微細放電加工のための微小な放電電荷量を得ることができる。
また、本発明においては、棒状電極が回転する場合でも、機械的接触部を給電経路に持つ場合に比べて、回転の速度に依存せず、極めて安定で、良好な放電加工電流の時間波形を実現でき、安定な微細放電加工を可能になる。
【図面の簡単な説明】
【図1】本発明の第1実施例による放電加工装置の要部拡大断面図である。
【図2】本発明の第2実施例による放電加工装置の要部拡大断面図である。
【図3】本発明の第3実施例による放電加工装置の要部拡大断面図である。
【図4】従来の放電加工装置の要部拡大断面図である。
【符号の説明】
1,1A      棒状電極
2,2A      電極支持台
3,3A      被加工物
4         加工電源
11,11A    筒状ガイド
12,12A    導電スリーブ
13,13A    供給リング
15        ブラシ
g1,g2     ギャップ
G         放電ギャップ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric discharge machine, and more particularly to a fine electric discharge machine with a short pulse current of, for example, nanosecond order.
[0002]
Recently, when electric discharge machining is performed at a time of electric discharge at a time of several microcoulombs or sub-nanocoulombs at the time of one electric discharge, the atomic bond size is several nanometers, and the uniformity of the distribution is excellent. Regarding the work piece, a mirror surface of less than 0.1 micron due to the unevenness of the peaks and valleys of the arasa, which was difficult to achieve with conventional electric discharge machining, has achieved a result that can be realized with one electric discharge machining. Getting started.
In this specification, the term “fine” refers to a fine discharge charge.
[0003]
[Prior art]
Originally, electric discharge machining is often used for machining where the size is small and the shape is complicated compared to other machining methods, but the depth of the melting crater whose machining surface is determined according to the amount of discharge charge Due to the burrs and the spread, only a rough processed surface far from the mirror surface or a pear surface can be obtained, and therefore, it is customary to finish complicatedly shaped surfaces separately with extra time and effort.
As shown in JP-A-8-229745 or JP-A-5-301124, the shape of the electrode in the electric discharge machining is an elongated needle-like (column or cylindrical) shape, and holds the root portion. The tip is a part that causes discharge between the workpiece and the workpiece.
In such a structure, the length from the power supply portion to the tip becomes long, which is very disadvantageous for high frequency and short pulse discharge. That is, due to the inductance having this length, there is a problem that the pulse is rounded or the peak value becomes small.
[0004]
In addition, as the demands on the market become more advanced, as the size of the workpiece becomes finer, situations where such surface finishing after the electric discharge machining cannot cope are increasing.
Although it is possible to improve the machined surface by selecting the material of the workpiece and miniaturizing the amount of discharge charge as described above, the realization of the actual miniaturization of the amount of discharge charge requires time-dependent reduction of the machining current of the discharge power supply. It is important to minimize the distributed capacitance, that is, the distributed inductance of the path in the middle of the path showing the characteristics of the electric circuit for power supply to the processing electrode, which cannot be achieved by controlling the waveform behavior alone.
[0005]
In addition, in an electric discharge machine, the rod-shaped electrode is often rotated in order to reduce the influence of a change in the geometrical shape due to the consumption of the rod-shaped electrode. With such a feed motion, a desired machining shape can be obtained by continuous control of the relative position between the workpiece and the rod-shaped electrode.
In the case of processing using such a rotating rod-shaped electrode, it is often performed to replace the rod-shaped electrode before electrode consumption is excessively advanced. However, when such a rod-shaped electrode is replaced, the rod-shaped electrode is not eccentric when mounted on the chuck at the stage where it is mounted on the chuck. The gap between the rod-shaped electrode and the electrode during rotation was significantly reduced by performing an operation equivalent to dressing on another surface to be machined for a while. Processing will be performed.
[0006]
[Problems to be solved by the invention]
By the way, when performing high-precision electric discharge machining, the rod-shaped electrode is structurally elongated and has low rigidity as compared with the workpiece, so that it is easy to vibrate. Therefore, in order to avoid vibration of the rotating rod-shaped electrode, it is necessary to use a high-rigidity chuck or an electrode support having a high resonance frequency to hold the rod-shaped electrode. Become.
From the relation between the behavior of the rod-shaped electrode during rotation and the increase in the geometric size, it is very important to improve the electrical circuit characteristics of the power supply path of the machining charge in order to realize fine electric discharge machining.
[0007]
The power supply path for the rod-shaped electrode will be specifically described with reference to FIG. 4. FIG. 4 shows the power supply path of a conventional electric discharge machine, and the rod-shaped electrode 1 for electric discharge machining has an electrode support base 2 indicated by a two-dot chain line. The rod-shaped electrode 1 is rotationally driven together with the chuck 2a as shown by an arrow A by a drive motor (not shown).
The workpiece 3 to be subjected to electrical discharge machining is sent relatively to the rod-shaped electrode 1 as shown by an arrow B, and a “discharge gap G” is formed between the workpiece 3 and the tip of the rod-shaped electrode 1. The fine processing is performed by the discharge formed in the “discharge gap G”.
[0008]
In FIG. 4, a connection lead 5a from a processing power source 4 is connected to a workpiece 3 by a terminal 6, and the remaining connection lead 5b is electrically connected to a slip ring 8 integrated with the chuck 2 via a brush 7. Connected. That is, the current applied from the machining power supply 4 flows through the chuck 2 a to the rod-shaped electrode 1. Therefore, the power supply path to the rod-shaped electrode 1 is a long path such as the brush 7 → the slip ring 8 → the chuck 2 a → the base end of the rod-shaped electrode 1 → the tip end of the rod-shaped electrode 1.
In other words, if the power supply path is long, the electrical inductance increases, and even if a high-speed rising and falling pulse waveform current or a high-frequency AC waveform current is supplied from the machining power supply 4 to the discharge site, the rod-shaped electrode 1 Of the machining current flowing through the feed path is hindered in proportion to the product of the inductance of the feed path and the rate of change (angular frequency). That is, it becomes impossible to supply a desired fine discharge charge to the "discharge gap G" portion at the tip of the rod-shaped electrode 1 in a predetermined short time, and it is difficult to realize fine discharge machining. Become.
[0009]
In addition, as described above, even if the size of the processing portion of the workpiece is small, in order to perform high-precision electric discharge machining, it is essential to increase the rigidity of the structure supporting the rod-shaped electrode. In the structure, the geometric size of the circuit structure of the power supply path becomes a certain size.
[0010]
An object of the present invention is to provide a new power supply in view of the problem of a power supply path through a mechanical structure that must be a certain size in order to maintain rigidity for a relatively rigid rod-shaped electrode. The purpose is to improve the electrical circuit characteristics by the route.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the present invention provides a method of applying a current voltage of an electric discharge machining power supply between a rod-shaped electrode supported by an electrode support and a workpiece, while applying a current voltage between the electrode support and the workpiece. An electric discharge machine for performing electric discharge machining by relative movement, comprising a conductive tubular guide mechanically fitted to a portion near the tip of the rod-shaped electrode and electrically coupled to the rod-shaped electrode. The guide is electrically coupled to the rod-shaped electrode at a portion opposite to the tip of the rod-shaped electrode, which is a discharge site, and one of two connection leads from the machining power supply is connected to the workpiece. The other of the remaining connection leads proposes an electric discharge machining apparatus electrically connected to the other end of the cylindrical guide.
[0012]
In the description of the preferred embodiments of the invention described below,
1) an electric discharge machine in which one of two connection leads from the machining power source is connected to the workpiece, and the other of the connection leads is electrically connected to the other end of the cylindrical guide by a brush;
2) The current waveform of the processing power source is a pulsed or high-frequency alternating current, the cylindrical guide is fixed to a device fixing portion, and the rod-shaped electrode is a rotating electrode that rotates around its longitudinal center axis. And one of the connection leads from the processing power supply is directly connected to the workpiece and the other of the connection leads is directly connected to the fixed cylindrical guide,
The electrical connection between the rotating rod-shaped electrode and the cylindrical guide has a large capacity that does not affect the discharging process, compared to the electrical capacity between the workpiece at the discharge site and the rotating electrode. An electric discharge machine connected capacitively through a large gap that does not generate electric discharge,
3) The current waveform supplied by the processing power source is a pulsed or high-frequency alternating current,
The rod-shaped electrode and the cylindrical guide are in a mechanically fixed relationship, the rod-shaped electrode is a rotating electrode that rotates about its longitudinal center axis, and the rod-shaped electrode and the cylindrical guide are electrically connected. One of the connection leads from the machining power supply is directly connected to the workpiece, and the other of the connection leads is connected to a capacitive coupling electrode provided surrounding the cylindrical guide, The electric capacity of the capacitive coupling electrode is larger than the electric capacity between the workpiece at the discharge site and the rotating electrode so as not to affect the discharging process, and the gap between the capacitive coupling electrode and the cylindrical guide is discharged. An electric discharge machining apparatus having a large gap that does not generate the electric discharge is described.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the embodiment of the present invention will be described in detail with reference to FIGS.
[0014]
FIG. 1 shows a first embodiment of the present invention, in which a rod-shaped electrode 1 is mechanically supported by a conductive chuck 2a of an electrode support 2 shown by a two-dot chain line, and the rod-shaped electrode 1 is an electrode having high mechanical rigidity. It is firmly held by the support 2 and the chuck 2a.
[0015]
Further, the workpiece 3 to be subjected to the electric discharge machining is sent relatively to the rod-shaped electrode 1 as shown by an arrow B, and in the “discharge gap G” between the workpiece 3 and the tip of the rod-shaped electrode 1. Micromachining is performed by the generated discharge.
[0016]
The feature of the first embodiment resides in a conductive tubular guide 11 fitted to a portion near the distal end of the rod-shaped electrode 1, and the inside of the cylindrical guide 11 is closely attached to a portion near the base of the rod-shaped electrode 1. The conductive sleeve 12 is fixed.
Further, a supply ring 13 having a uniform gap g1 formed around the outer peripheral surface of the cylindrical guide 11 is located at a portion near the distal end of the cylindrical guide. The terminal 14 of the lead wire 5b is connected, and the other lead wire 5a of the processing power supply 4 is directly connected to the workpiece 3.
The gap g1 between the supply ring 13 and the cylindrical guide 11 needs to be set to a large value so that a discharge phenomenon does not occur at this portion, and the coupling capacity is equal to the rod-shaped electrode 1 at the discharge portion. It is necessary to provide a capacity of about 100 times or more of the coupling capacity so as not to affect the coupling capacity with the workpiece 3.
[0017]
Since the electric discharge machining apparatus according to the first embodiment has the above-described configuration, the machining current from the machining power supply 4 is directly connected to the rod-shaped electrode 1 via the supply ring 13 which is an electrical coupling member. It becomes. That is, the applied current from the lead wire 5b of the machining power supply 4 flows rightward from the position of the supply ring 13 to the cylindrical guide 11, the conductive sleeve 12, and the rod-shaped electrode 1. "Will be reached.
As a result, the size of the power supply path is substantially omitted, and the terminal 14 of the lead wire 5b is in the same state as being very close to the tip of the rod-shaped electrode 1. Therefore, the rightward current flowing from the supply ring 13 to the cylindrical guide 11 is electromagnetically canceled by the current flowing leftward through the rod-shaped electrode 1, and the influence of the electrical inductance therebetween is equivalently eliminated.
[0018]
Accordingly, the power supply path is substantially omitted, and the terminal 14 of the lead wire 5b is in the same state as being very close to the tip of the rod-shaped electrode 1, so that a high-speed pulse waveform current or a high-frequency AC waveform current is processed. Even when the power is supplied from the power supply 4 to the discharge site, the power supply path is not obstructed by the inductance of the power supply path. In other words, it is possible to supply a desired fine discharge charge to the "discharge gap G" portion at the tip of the rod-shaped electrode 1 in a short time, and it is possible to realize fine discharge machining.
[0019]
FIG. 2 shows a second embodiment of the present invention, and the same components as those in FIG. 1 are denoted by the same reference numerals.
In the case of the second embodiment, the supply ring 13 in FIG. 1 is removed, and the current of the processing power supply 4 is applied to the cylindrical guide 11 via the brush 15 from the terminal 14 of the lead wire 5b.
[0020]
Therefore, according to the configuration of the second embodiment, as in the case of FIG. 1, the terminal 14 of the lead wire 5b is in the same state as being very close to the tip of the rod-shaped electrode 1, so that the rod-shaped electrode A desired fine discharge charge can be supplied in a short time to the "discharge gap G" portion at the tip end of No. 1 and fine discharge machining can be realized.
[0021]
FIG. 3 shows a third embodiment of the present invention. As in FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals.
In the case of the third embodiment, the rod-shaped electrode 1A is mechanically supported by the conductive chuck 2a of the electrode support 2A indicated by a two-dot chain line, and the rod-shaped electrode 1A is an electrode support 2A and a chuck 2a having high mechanical rigidity. , But the chuck 2a is driven to rotate in the direction of arrow A by an electric motor (not shown).
[0022]
The workpiece 3A to be subjected to electric discharge machining is sent relatively to the rod-shaped electrode 1A which is rotationally driven as shown by the arrow B, and the "discharge" between the workpiece 3A and the tip of the rod-shaped electrode 1A is performed. Micromachining is performed by the discharge generated in the gap G ″.
[0023]
Also in the third embodiment, a conductive tubular guide 11A fitted to a portion near the distal end of the rod-shaped electrode 1A is provided. Inside the cylindrical guide 11A, a portion near the base of the rod-shaped electrode 1A is provided. The closely adhered conductive sleeve 12A is fixed.
A uniform gap g2 is formed between the outer diameter of the conductive sleeve 12A and the diameter of the cylindrical guide 11A. The gap g2 is set to a large value at which a discharge phenomenon does not occur at this portion. The gap g2 is at least 100 times as large as the coupling capacitance so that the coupling capacitance does not affect the coupling capacitance between the rod-shaped electrode 1A and the workpiece 3A at the discharge portion. About the capacity.
A supply ring 13A fixed to the cylindrical guide 11A is located at a portion near the distal end of the cylindrical guide 11A, and a lead 5b from the machining power supply 4 is coupled to the supply ring 13A. The other lead wire 5a of the processing power supply 4 is directly connected to the workpiece 3A.
[0024]
Since the electric discharge machining apparatus according to the third embodiment is configured as described above, the applied current from the lead wire 5b of the machining power supply 4 flows rightward from the position of the supply ring 13A to the cylindrical guide 11A, and the cylindrical guide 11A The rod-shaped electrode 1A flows to the left from the conductive sleeve 12A capacitively coupled to 11A.
As a result, the size of the power supply path is substantially omitted, and the terminal 14 of the lead wire 5b is in the same state as being very close to the tip of the rod-shaped electrode 1A.
Therefore, the rightward current flowing from the supply ring 13A to the cylindrical guide 11A is electromagnetically canceled by the leftward current flowing through the rod-shaped electrode 1A, and the influence of the electrical inductance therebetween is equivalently eliminated.
[0025]
Therefore, as in the case of the first and second embodiments, the size of the power supply path is substantially omitted, and the terminal 14 of the lead wire 5b is located very close to the tip of the rod-shaped electrode 1A. Since the same state is established, even if a high-speed pulse waveform current or a high-frequency AC waveform current is supplied from the machining power supply 4 to the discharge site, it is not hindered by the inductance of the power supply path. That is, it is possible to supply a desired minute discharge charge to the "discharge gap G" portion at the tip of the rod-shaped electrode 1A in a short time, and it is possible to realize a minute discharge machining.
[0026]
【The invention's effect】
As is apparent from the above description, according to the present invention, even when the rod-shaped electrode for electric discharge machining has a size that mechanically maintains rigidity, the electrical circuit characteristics of the supply path are significantly improved equivalently. Therefore, it is possible to obtain a very small discharge charge amount for fine electric discharge machining.
Further, in the present invention, even when the rod-shaped electrode rotates, the time waveform of the electric discharge machining current is extremely stable and excellent, independent of the rotation speed, as compared with the case where the mechanical contact portion is provided in the power supply path. It can be realized and stable micro-discharge machining is possible.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of a main part of an electric discharge machine according to a first embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a main part of an electric discharge machine according to a second embodiment of the present invention.
FIG. 3 is an enlarged sectional view of a main part of an electric discharge machine according to a third embodiment of the present invention.
FIG. 4 is an enlarged sectional view of a main part of a conventional electric discharge machine.
[Explanation of symbols]
1, 1A Bar-shaped electrode 2, 2A Electrode support 3, 3A Workpiece 4 Machining power supply 11, 11A Cylindrical guide 12, 12A Conductive sleeve 13, 13A Supply ring 15 Brush g1, g2 Gap G Discharge gap

Claims (4)

電極支持台に支持される棒状電極と被加工物との間に放電加工電源の電流電圧を印加しながら、電極支持台と被加工物との間の相対移動により放電加工を行う放電加工装置において、前記棒状電極の先端部寄りの部分に機械的に嵌められかつ同棒状電極に電気的に結合された導電性の筒状ガイドを備え、同筒状ガイドは放電部位である前記棒状電極の先端部とは反対側の部分で同棒状電極に電気的に結合され、前記加工電源からの2本の接続リードの一方は前記被加工物に接続され、前記接続リードの残る他方は前記筒状ガイドの他端側に電気的に接続されたことを特徴とする放電加工装置。In an electric discharge machine that performs electric discharge machining by relative movement between an electrode support and a workpiece while applying a current voltage of an electric discharge machining power supply between a rod-shaped electrode supported by an electrode support and the workpiece. A conductive tubular guide mechanically fitted to a portion near the tip of the rod-shaped electrode and electrically coupled to the rod-shaped electrode, wherein the cylindrical guide is a tip of the rod-shaped electrode serving as a discharge site. The part opposite to the part is electrically coupled to the rod-shaped electrode, one of two connection leads from the processing power supply is connected to the workpiece, and the other of the connection leads is the cylindrical guide. An electric discharge machining device electrically connected to the other end of the electric discharge machine. 前記加工電源からの2本の接続リードの一方は前記被加工物に接続され、前記接続リードの他方は前記筒状ガイドの他端側にブラシによって電気的に接続されたことを特徴とする請求項1記載の放電加工装置。One of two connection leads from the processing power source is connected to the workpiece, and the other of the connection leads is electrically connected to the other end of the cylindrical guide by a brush. Item 10. An electric discharge machine according to Item 1. 前記加工電源の電流波形は、パルス的若しくは高周波数の交流であり、前記筒状ガイドは装置固定部に固定され、前記棒状電極はその長さ方向中心軸線を中心として回転する回転電極であり、前記加工電源からの前記接続リードの一方は被加工物に直接接続されると共に前記接続リードの他方は固定された前記筒状ガイドに直接接続され、回転される前記棒状電極と前記筒状ガイドとの前記電気的接続は、放電部位の加工物と回転電極との間の電気的容量に比べて、放電過程に影響しないような大きな容量を有し、放電を発生しない大きな間隙を介して容量結合的に接続されたことを特徴とする請求項1記載の放電加工装置。The current waveform of the processing power supply is a pulsed or high-frequency alternating current, the cylindrical guide is fixed to a device fixing unit, and the rod-shaped electrode is a rotating electrode that rotates about its longitudinal center axis, One of the connection leads from the processing power source is directly connected to the workpiece and the other of the connection leads is directly connected to the fixed cylindrical guide, and the rod-shaped electrode and the cylindrical guide are rotated. The electrical connection has a large capacity so as not to affect the discharging process and a capacitive coupling through a large gap that does not generate a discharge, as compared with the electrical capacity between the workpiece at the discharge site and the rotating electrode. The electric discharge machining apparatus according to claim 1, wherein the electric discharge machining apparatus is electrically connected. 前記加工電源が供給する電流波形は、パルス的若しくは高周波数の交流であり、前記棒状電極と前記筒状ガイドとは機械的に固定関係におかれ、前記棒状電極はその長さ方向中心軸線を中心として回転する回転電極であり、前記棒状電極と前記筒状ガイドとは電気的に直接に接続され、前記加工電源からの前記接続リードの一方は被加工物に直接接続され、前記接続リードの他方は、前記筒状ガイドを取り囲んで設けられた容量結合電極に接続され、この容量結合電極の電気的容量は放電過程に影響しないように放電部位の加工物と回転電極との間の電気的容量に比べて大きく、前記容量結合電極と前記筒状ガイドとの間隙は放電を発生しない大きな間隙を有することを特徴とする請求項1記載の放電加工装置。The current waveform supplied by the processing power supply is a pulsed or high-frequency alternating current, and the rod-shaped electrode and the cylindrical guide are mechanically fixed in relation to each other. A rotating electrode that rotates about a center, the rod-shaped electrode and the cylindrical guide are electrically directly connected, one of the connection leads from the processing power supply is directly connected to a workpiece, and the connection lead is The other is connected to a capacitive coupling electrode provided surrounding the cylindrical guide, and the electric capacity of the capacitive coupling electrode is set so as not to affect the discharging process. The electric discharge machining apparatus according to claim 1, wherein the gap between the capacitive coupling electrode and the cylindrical guide has a large gap that does not generate electric discharge.
JP2002291756A 2002-10-04 2002-10-04 Electric discharge machining device Pending JP2004122316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291756A JP2004122316A (en) 2002-10-04 2002-10-04 Electric discharge machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291756A JP2004122316A (en) 2002-10-04 2002-10-04 Electric discharge machining device

Publications (1)

Publication Number Publication Date
JP2004122316A true JP2004122316A (en) 2004-04-22

Family

ID=32283221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291756A Pending JP2004122316A (en) 2002-10-04 2002-10-04 Electric discharge machining device

Country Status (1)

Country Link
JP (1) JP2004122316A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263907A (en) * 2005-02-28 2006-10-05 Tokyo Univ Of Agriculture & Technology Electric discharge machine
WO2008026323A1 (en) * 2006-08-31 2008-03-06 Sodick Co., Ltd. Electric discharge machining device
JP2012131028A (en) * 2005-02-28 2012-07-12 Tokyo Univ Of Agriculture & Technology Electric discharge machine
CN106270849A (en) * 2016-09-10 2017-01-04 无锡微研精微机械技术有限公司 A kind of pneumatic normally opened clip of formula wire electrode that rises

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263907A (en) * 2005-02-28 2006-10-05 Tokyo Univ Of Agriculture & Technology Electric discharge machine
JP2012131028A (en) * 2005-02-28 2012-07-12 Tokyo Univ Of Agriculture & Technology Electric discharge machine
WO2008026323A1 (en) * 2006-08-31 2008-03-06 Sodick Co., Ltd. Electric discharge machining device
CN106270849A (en) * 2016-09-10 2017-01-04 无锡微研精微机械技术有限公司 A kind of pneumatic normally opened clip of formula wire electrode that rises

Similar Documents

Publication Publication Date Title
KR0154178B1 (en) Method and apparatus for surface treatment by electrical discharge
JP2000061839A (en) Microdischarge truing device and finely machining method using it
JP4183086B2 (en) Truing method for grinding wheel, truing device and grinding device
JP2009184103A (en) Grinding machine with device for conditioning grinding wheel and method thereof
JP3344558B2 (en) Electric dressing grinding method and apparatus
JP2004122316A (en) Electric discharge machining device
JP4104199B2 (en) Molded mirror grinding machine
JP3463796B2 (en) Plasma discharge truing apparatus and micromachining method using the same
JP2010194614A (en) Shrinkage fit type ultrasonic tool holder
KR20040044778A (en) a micro cutting and grinding machine make use of ultrasonic vibration
JP5827031B2 (en) High frequency vibration / electrolytic hybrid internal grinding machine and grinding method thereof
JP2000167715A (en) Honing method grinding method and device for carrying out these methods
JP2010194613A (en) Shrinkage fit type ultrasonic tool holder
JP2011212834A (en) Discharging and machining method and device using discharging pulse
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JP4215499B2 (en) Electrode fixing jig for internal grinding equipment
JP2009045725A (en) Shrinkage-fitting type ultrasonic tool holder
KR20160109688A (en) Electro-discharge Truing System of Metal-bonded Grinding Wheel
JP3669073B2 (en) Grinding apparatus and grinding method
JPH07328907A (en) Spherical surface creative processing method and device thereof
JPH06114733A (en) Grinding wheel shaping method by on-machine discharge truing method
JP3078404B2 (en) Electrolytic dressing grinding method
JP2022080020A (en) Discharge truing method
JP2004160586A (en) Part machining device and method
JP2684624B2 (en) Grinding cutting device