JPS58195756A - Method of operating cryogenic liquefying refrigerator - Google Patents

Method of operating cryogenic liquefying refrigerator

Info

Publication number
JPS58195756A
JPS58195756A JP7878982A JP7878982A JPS58195756A JP S58195756 A JPS58195756 A JP S58195756A JP 7878982 A JP7878982 A JP 7878982A JP 7878982 A JP7878982 A JP 7878982A JP S58195756 A JPS58195756 A JP S58195756A
Authority
JP
Japan
Prior art keywords
storage tank
refrigeration
liquid
gas
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7878982A
Other languages
Japanese (ja)
Inventor
梶原 博毅
聖 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7878982A priority Critical patent/JPS58195756A/en
Publication of JPS58195756A publication Critical patent/JPS58195756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、極低温液化冷凍装置の運転方法、特に変動し
易い冷凍負荷と組合わされた極低温液化冷凍装置の運転
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a cryogenic liquefaction refrigeration system, particularly in conjunction with a variable refrigeration load.

従来の極低@液化冷凍装置の一例としてヘリウム冷凍装
置を第1図により説明すると、圧縮機1により昇圧され
たヘリウムガスは、高圧配管4よリコールドボックス肋
内に導かれ、jIl熱交換器5で液体窒素配管4より導
かれる液体窒素、低圧配管田および減圧配管冴より導か
れる低温の戻りガスによって冷却された後、タービン系
配管δと液化系配管部に分岐される。タービン系配管δ
に分岐された高圧のヘリウムガスは、タービン人口弁超
な経てl!1タービン3で断熱膨張して温度降下し、j
Ia熱交換s7で低温の戻りガスと熱交換して更に温度
降下した後tJ2タービン4に入り、再び断熱膨張して
温度降下し、低圧配管幻の低温戻りガスに合流する。一
方、液化系配管部に分岐された高圧のヘリウムガスは、
第2熱交換器6゜第3熱交換器’t、!!!4熱交換器
81第5熱交換器9を経て低温の戻りガスにより冷却さ
れた後、JT弁14でほぼ大気圧まで膨張し、一部液化
して貯蔵タンク11に入り、液化しなかったガスは低圧
配管囚を通り、IJS熱交換器9. !J4熱交換器8
゜第3熱交換器7.第2熱交換s6.第1熱交換器5で
寒冷回収された後圧縮機lに戻され、液化した液体ヘリ
ウムは貯蔵タンクll内に貯蔵される。
To explain a helium refrigeration system as an example of a conventional ultra-low @ liquefaction refrigeration system with reference to FIG. 1, helium gas pressurized by a compressor 1 is guided through a high-pressure pipe 4 into a recall box, and is then passed through a JIl heat exchanger. After being cooled by the liquid nitrogen led from the liquid nitrogen pipe 4 and the low-temperature return gas led from the low-pressure pipe and the decompression pipe 5, it is branched into the turbine system pipe δ and the liquefaction system pipe. Turbine system piping δ
The high-pressure helium gas is branched off to the turbine valve. 1 The temperature decreases due to adiabatic expansion in turbine 3, and j
After exchanging heat with the low-temperature return gas in Ia heat exchange s7 and further lowering the temperature, it enters the tJ2 turbine 4, expands adiabatically again, lowers the temperature, and joins the low-temperature return gas in the low-pressure pipe. On the other hand, the high-pressure helium gas branched to the liquefaction system piping is
2nd heat exchanger 6° 3rd heat exchanger't,! ! ! After passing through the fourth heat exchanger 81 and the fifth heat exchanger 9 and being cooled by the low-temperature return gas, it expands to almost atmospheric pressure at the JT valve 14, partially liquefies and enters the storage tank 11, where the unliquefied gas passes through the low pressure piping and passes through the IJS heat exchanger 9. ! J4 heat exchanger 8
゜Third heat exchanger7. Second heat exchange s6. After being cooled and recovered in the first heat exchanger 5, it is returned to the compressor 1, and the liquefied liquid helium is stored in a storage tank 11.

しかして、貯蔵タンク11に貯蔵された液体ヘリウムは
、液化ガス配管19より第6熱交換器10で減圧戻りガ
ス配管部より導かれる低温の戻りガスで冷却され、更に
冷凍負荷人口弁15で減圧され、飽和温度になって冷凍
負荷装置口に供給される1、減圧されて一部ガス化した
ヘリウムガスと、冷凍負荷装置νで熱負荷を受けて蒸発
したヘリウムガスは、減圧戻りガス配管部を通り、第6
熱交換器10で寒交換器6.第1熱交換器5で寒冷回収
された後、1:11 常温のヘリウムガスとなかで冷凍負荷装置1112の圧
1□ 力を減圧に保持する減圧ポ、1.=プ2に導入される。
Thus, the liquid helium stored in the storage tank 11 is cooled by low-temperature return gas guided from the liquefied gas pipe 19 to the sixth heat exchanger 10 from the reduced pressure return gas pipe, and further depressurized by the refrigeration load population valve 15. The helium gas that has been reduced in pressure and partially gasified is supplied to the refrigeration load device port after reaching the saturation temperature, and the helium gas that has evaporated under the heat load in the refrigeration load device ν is transferred to the reduced pressure return gas piping section. through the 6th
Heat exchanger 10 and cold exchanger 6. After being cooled and recovered in the first heat exchanger 5, a 1:11 decompression port is used to maintain the pressure of the refrigeration load device 1112 at a reduced pressure in helium gas at room temperature; = introduced in P2.

冷凍魚荷装Mνは、その 負荷の変動に合わせて、貯蔵
夕/り11からの液体ヘリウムを供給するため、冷凍負
荷人口弁15の開度を調整して冷凍負荷装置12の液体
ヘリウム液面を一定に保持している。しかしながら、冷
凍負荷の変動に対する最終的な変動は、貯蔵タンク11
内の液体ヘリウムの増減となりが現われる。そのため、
冷凍負荷人口弁の6凍負荷が減少すると、貯蔵タンク1
1の液面が所定値以上に上昇するため、冷凍装置の冷凍
能力を減少させなければならず、JT弁14.タービン
人口弁13の開度調整などの運転−作が複雑であり、か
つ、時間的な応答遅れを生ずるといった問題がある。
In order to supply liquid helium from the storage tank 11 according to the fluctuation of the load, the frozen fish loading device Mν adjusts the opening degree of the refrigeration load population valve 15 to adjust the liquid helium level in the refrigeration load device 12. is held constant. However, the final variation with respect to the variation of the refrigeration load is the storage tank 11
The liquid helium inside increases and decreases. Therefore,
Refrigerating load population valve 6 When the freezing load decreases, storage tank 1
Since the liquid level of JT valve 14.1 rises above a predetermined value, the refrigeration capacity of the refrigeration system must be reduced. There are problems in that operations such as adjusting the opening of the turbine valve 13 are complicated, and a time response delay occurs.

本発明は、冷凍負荷が変動しても常時一定の冷凍能力で
運転することができる極低温液化冷凍装置の運転方法を
提供、することを目的としたものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of operating a cryogenic liquefaction refrigeration system that can be operated at a constant refrigeration capacity even when the refrigeration load fluctuates.

本発明は、圧縮機°:で昇圧された6媒ガスを低温き、
The present invention lowers the pressure of the six-component gas by a compressor to a low temperature,
.

戻りガスと熱交換さ;・□せて冷却した後膨張させて液
イ、。、1゜、よ・□・io□2.□□い:1 冷凍負荷装置に供給すると共に、貯蔵タンクからの冷媒
ガスを低温戻りガスとして温度回復させた後圧縮機入口
側に戻すようにした極低温液化冷凍装置において、前記
貯蔵タンクの液面が所定値を越えないように制御するこ
とを特徴としたもので、冷凍負荷が変動して貯蔵タンク
の液面が所定値を越えると、極低温液体を蒸発させて低
温戻りガスとして取出すことにより、貯蔵タンクの液面
を所定値に維持して、冷凍負荷が変動しても冷凍能力の
調整を必要とせず、常時一定の冷凍能力で運転できるよ
うにしたものである。
It exchanges heat with the return gas;・□ Let it cool down, then expand it and turn it into a liquid. , 1°, yo・□・io□2. □□I: 1 In a cryogenic liquefaction refrigeration system in which the refrigerant gas from the storage tank is supplied to the refrigeration load device and is returned to the compressor inlet side after recovering the temperature of the refrigerant gas from the storage tank as low-temperature return gas, the liquid in the storage tank is It is characterized by controlling the liquid level so that it does not exceed a predetermined value, and when the liquid level in the storage tank exceeds a predetermined value due to fluctuations in the refrigeration load, the cryogenic liquid is evaporated and taken out as low-temperature return gas. By this, the liquid level in the storage tank is maintained at a predetermined value, and even if the refrigeration load fluctuates, there is no need to adjust the refrigeration capacity, and the system can be operated at a constant refrigeration capacity at all times.

以下、本発明を実施したヘリウム冷凍装置の一例を第2
図により説明する。第2図において、第1図と同一部分
は同一符号で示し、説明を省略する。16は貯蔵タンク
11の液面調節計、17は貯蔵タンク11内の液体ヘリ
ウムを加熱するヒーターで、貯蔵タンク11内の液面が
液面調節計16の上限値を越えるとON、上限値以下に
なるとOFFとなるように構成されている。
Hereinafter, an example of a helium refrigeration system implementing the present invention will be described as a second example.
This will be explained using figures. In FIG. 2, the same parts as in FIG. 1 are indicated by the same reference numerals, and their explanation will be omitted. 16 is a liquid level controller for the storage tank 11, and 17 is a heater that heats the liquid helium in the storage tank 11. When the liquid level in the storage tank 11 exceeds the upper limit of the liquid level controller 16, it turns on, and when it is below the upper limit. It is configured so that it is turned off when this happens.

冷凍負荷装置112の冷凍負荷が減少して貯蔵タンク1
1内の液体ヘリウムの液面が上昇し、液面調節計16の
上限値を越えるとヒーター17がONとなり、貯蔵タン
ク11内の液体ヘリウムが加熱蒸発される。
The refrigeration load of the refrigeration load device 112 decreases and the storage tank 1
When the liquid level of the liquid helium in the storage tank 1 rises and exceeds the upper limit value of the liquid level controller 16, the heater 17 is turned on and the liquid helium in the storage tank 11 is heated and evaporated.

蒸発した低温のヘリウムガスは低圧配管るを通して取出
され、寒冷回収された後圧縮機1人口側に戻される。貯
蔵タンク11内の液面が液面調節計16の上限値以下に
なると、ヒーター17がOFFとなり、液体ヘリウムの
加熱蒸発は中止される。したがつて、貯蔵タンク11内
の液体ヘリウムを加熱蒸発させて、その液面を常時所定
値以下に保持するようにしたものであるから、冷凍負荷
装置ゼの冷凍負荷が変動しても、これに対応してヘリウ
ム冷凍装置の冷凍能力を調整する必要はなく、ヘリウム
冷凍装置を常時一定の冷凍能力で運転することができる
The evaporated low-temperature helium gas is taken out through a low-pressure pipe, cooled and recovered, and then returned to the compressor 1 side. When the liquid level in the storage tank 11 falls below the upper limit value of the liquid level controller 16, the heater 17 is turned off and heating and evaporation of liquid helium is stopped. Therefore, since the liquid helium in the storage tank 11 is heated and evaporated to maintain the liquid level below a predetermined value at all times, even if the refrigeration load of the refrigeration load device Z changes, this will not change. There is no need to adjust the refrigeration capacity of the helium refrigeration system in response to this, and the helium refrigeration system can be operated at a constant refrigeration capacity at all times.

上述の実施例では、貯蔵タンク11内の極低温液体を加
熱蒸発させて貯蔵タンクll内の液面を常時所定値以下
に保持することについて説明したが、貯蔵タンク11内
の極低温液体を抜き出し、蒸発させて低圧配管田に戻す
ことにより、貯蔵タンク11内の液面を常時規定値以下
に保持することもできる“。
In the above embodiment, the cryogenic liquid in the storage tank 11 is heated and evaporated to maintain the liquid level in the storage tank 11 at all times below a predetermined value. By evaporating the liquid and returning it to the low-pressure piping field, the liquid level in the storage tank 11 can be kept below the specified value at all times.

本発明は以上述べたように、圧縮機で昇圧された冷媒ガ
スを低温戻りガスと熱交換させて冷却した後膨張させて
液化し、液化した極低温液体を貯蔵タンクを介して冷凍
負荷装置に供給すると共に、貯蔵タンクからの冷媒ガス
を低温戻りガスとして温度回復させた後圧縮機入口側に
戻すようにした極低温液化冷凍装置において、前記貯蔵
夕/り内の液面が所定値を越えないように制御するよう
にしたもので、冷凍負荷の変動により貯蔵タンクの液面
が所定値を越えると、極低温液体を蒸発させて低温戻り
ガスとして取出すようにしたものであるから、冷凍黄荷
の変動に対応して極低温液化冷凍装置の冷凍能力を!i
l!!する必要がないため、機構および操作を簡略化す
ることができると共に、冷凍負荷が変動しても常時一定
の冷凍能力で運転することができるため、安定した極低
温液化冷凍1に厘の運転を行なわせることができる。
As described above, in the present invention, the refrigerant gas pressurized by the compressor is cooled by exchanging heat with the low-temperature return gas, then expanded and liquefied, and the liquefied cryogenic liquid is sent to the refrigeration load equipment via the storage tank. In a cryogenic liquefaction refrigeration system in which the refrigerant gas from the storage tank is supplied and returned to the compressor inlet side after recovering the temperature as low-temperature return gas, the liquid level in the storage tank exceeds a predetermined value. When the liquid level in the storage tank exceeds a predetermined value due to fluctuations in the refrigeration load, the cryogenic liquid is evaporated and taken out as low-temperature return gas. Increase the freezing capacity of the cryogenic liquefaction refrigeration equipment in response to changes in cargo! i
l! ! Since there is no need to do this, the mechanism and operation can be simplified, and even if the refrigeration load fluctuates, the operation can always be performed at a constant refrigeration capacity, making stable cryogenic liquefaction refrigeration possible. I can make you do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の極低温液jヒ冷凍装置の一例を示す系統
図、第2図は本発明を実施した極低温液化冷凍装置の一
例を示す系統図である。
FIG. 1 is a system diagram showing an example of a conventional cryogenic liquid refrigeration system, and FIG. 2 is a system diagram showing an example of a cryogenic liquid refrigeration system embodying the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1.圧縮機で昇圧された冷媒ガスを低温戻りガスと熱交
換させて冷却した後膨張させて液化し、液化した極低温
液体を貯蔵タンクを介して冷凍負荷装置に供給すると共
に、貯蔵タンクからの冷媒ガスを低温戻りガスとして温
度回復させた後圧縮機の入口側に戻すようにした極低温
液化冷凍装置において、前記貯蔵夕/りの液面が所定値
を越えないように制御することを特徴とする極低温液化
冷凍装置の運転方法。 2、前記貯蔵タンクの液面が所定値を越えると貯蔵タン
ク内の “   極低温液体を加熱蒸発させるようにし
た特許請求の範囲第1項記載の極低温液化冷凍装置の運
転方法。
1. The refrigerant gas pressurized by the compressor is cooled by exchanging heat with the low-temperature return gas, then expanded and liquefied, and the liquefied cryogenic liquid is supplied to the refrigeration load equipment via the storage tank, and the refrigerant from the storage tank is A cryogenic liquefaction refrigeration system in which gas is returned to the inlet side of the compressor after temperature recovery as a low-temperature return gas, characterized in that the liquid level in the storage tank is controlled so as not to exceed a predetermined value. How to operate cryogenic liquefaction refrigeration equipment. 2. The method of operating a cryogenic liquefaction refrigeration apparatus according to claim 1, wherein the cryogenic liquid in the storage tank is heated and evaporated when the liquid level in the storage tank exceeds a predetermined value.
JP7878982A 1982-05-11 1982-05-11 Method of operating cryogenic liquefying refrigerator Pending JPS58195756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7878982A JPS58195756A (en) 1982-05-11 1982-05-11 Method of operating cryogenic liquefying refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7878982A JPS58195756A (en) 1982-05-11 1982-05-11 Method of operating cryogenic liquefying refrigerator

Publications (1)

Publication Number Publication Date
JPS58195756A true JPS58195756A (en) 1983-11-15

Family

ID=13671642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7878982A Pending JPS58195756A (en) 1982-05-11 1982-05-11 Method of operating cryogenic liquefying refrigerator

Country Status (1)

Country Link
JP (1) JPS58195756A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252458A (en) * 1985-05-02 1986-11-10 株式会社日立製作所 Cryogenic refrigerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634071A (en) * 1979-08-24 1981-04-06 Osaka Oxygen Ind Helium refrigeration equipment
JPS56148566A (en) * 1980-04-18 1981-11-18 Mitsubishi Electric Corp Multistylus electrostatic recording scan system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5634071A (en) * 1979-08-24 1981-04-06 Osaka Oxygen Ind Helium refrigeration equipment
JPS56148566A (en) * 1980-04-18 1981-11-18 Mitsubishi Electric Corp Multistylus electrostatic recording scan system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252458A (en) * 1985-05-02 1986-11-10 株式会社日立製作所 Cryogenic refrigerator

Similar Documents

Publication Publication Date Title
US3375675A (en) Low temperature refrigerating apparatus
JPS6399459A (en) Method and system of obtaining package of plurality of separate discrete low-temperature liquefied co2
US3850004A (en) Cryogenic helium refrigeration system
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
US3307370A (en) Cooling device for helium
JP5783945B2 (en) Liquefaction device and starting method thereof
JPS58195756A (en) Method of operating cryogenic liquefying refrigerator
US20230304731A1 (en) Facility and method for refrigerating a fluid
JP2841955B2 (en) Supercritical helium cooling device and operating method thereof
US20130061607A1 (en) Cooling system
US3282061A (en) Gas liquefier plant with low pressure storage
JP2617172B2 (en) Cryogenic cooling device
WO2024029605A1 (en) Hydrogen gas cooling device, and dispenser
JPS61226904A (en) Very low temperature cooling method and very low temperature cooling device
JPH01159568A (en) Method of controlling operation of cryogenic liquefying refrigerator
JPS636354A (en) Method of controlling cryogenic refrigerator
JPH01244254A (en) Method of controlling auxiliary cold source for cryogenic refrigerating plant
JPH01150759A (en) Method of controlling cryogenic liquefying refrigerator
JPH01150756A (en) Cryogenic cooling device
JPS629171A (en) He liquefying refrigerator
JPH0411784B2 (en)
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPH11132584A (en) Helium liquefaction refrigerating system
JPH01150757A (en) Method and device for precooling cryogenic refrigerator
JPH0498052A (en) Cryogenic cooling device