JPS636354A - Method of controlling cryogenic refrigerator - Google Patents

Method of controlling cryogenic refrigerator

Info

Publication number
JPS636354A
JPS636354A JP14692486A JP14692486A JPS636354A JP S636354 A JPS636354 A JP S636354A JP 14692486 A JP14692486 A JP 14692486A JP 14692486 A JP14692486 A JP 14692486A JP S636354 A JPS636354 A JP S636354A
Authority
JP
Japan
Prior art keywords
controlling
expander
liquefied
pressure
cryogenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14692486A
Other languages
Japanese (ja)
Inventor
松本 孝三
憲治 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14692486A priority Critical patent/JPS636354A/en
Publication of JPS636354A publication Critical patent/JPS636354A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は匝低温冷凍装置の制御方法に係り、特に負荷変
動の大きい装置に好適な極低温冷凍装置の制御方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of controlling a cryogenic refrigeration system, and particularly to a method of controlling a cryogenic refrigeration system suitable for a system with large load fluctuations.

〔従来の技術〕[Conventional technology]

極低温冷凍装置、例えばヘリウム冷凍装置では液化温度
が一269°Cと極低温のため、常温から液化温度まで
の非常に広範囲の温度で運転されている。したがって、
変動する負荷番こ対応した装置の応答時間は非常に遅々
なる。
Cryogenic refrigeration equipment, such as helium refrigeration equipment, has a liquefaction temperature as low as 1,269°C, so it is operated at a very wide range of temperatures from room temperature to liquefaction temperature. therefore,
The response time of the device to accommodate varying load numbers is very slow.

従来の装置は、変動する負荷に対応するために、例えば
、極低温液化ガス容器内に加熱手段(例えばヒータ)を
設は極低温冷凍装置としては常時定負荷状態で運転した
り、例えば、特開昭57−108557号に記載のよう
に、極低71il液化ガス容器内液面、又はガスライン
上の適宜の点の温度に応じて圧縮機の容量制御を行って
いた。
In order to cope with varying loads, conventional equipment has, for example, installed a heating means (e.g., a heater) inside the cryogenic liquefied gas container. As described in Japanese Patent Publication No. 108557/1983, the capacity of the compressor was controlled depending on the liquid level in the ultra-low 71 il liquefied gas container or the temperature at an appropriate point on the gas line.

しかし、負荷の変動に対応し、応答時間が遅いことを考
慮した適正な運転方法については配慮されていなかった
However, no consideration was given to an appropriate operating method that takes into account load fluctuations and slow response times.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は極低温冷凍装置の応答特性を考慮した適
正な運転制御壷二ついて配IKされておらず、ヒータで
負荷調節する場合には、無駄な寒冷を発生し効率が悪い
という問題があり、圧縮機の容量制御を行う場合には、
負荷に対応した応答時間が遅く制御が困難であると共l
こ、圧縮機の1tfiは負荷に必ずしも対応しないこと
があるため制御が困難という問題があった。
The above-mentioned conventional technology does not have an appropriate operation control unit and IK that takes into account the response characteristics of the cryogenic refrigeration equipment, and when adjusting the load with a heater, there is a problem that unnecessary cooling is generated and efficiency is poor. , when controlling the capacity of the compressor,
The response time corresponding to the load is slow and difficult to control.
However, there is a problem in that the 1tfi of the compressor does not necessarily correspond to the load, making it difficult to control.

また、圧縮機の流量は、極低温液化ガスを回収する場合
等によって、必ずしも負荷に対応しないことがるり、極
低′IPA液化ガス液面により直接的に制御することは
問題があった。
Further, the flow rate of the compressor does not necessarily correspond to the load depending on the case where cryogenic liquefied gas is recovered, and there are problems in directly controlling the flow rate based on the liquid level of ultra-low IPA liquefied gas.

本発明の目的は、極低温冷凍装置の応答特性を良りシ逼
正な制御方法を得ることのできる極低温冷凍装置の制御
方法を提供することに島る。
An object of the present invention is to provide a control method for a cryogenic refrigeration system that can provide a method for controlling the response characteristics of a cryogenic refrigeration system with good consistency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、圧縮した高圧ガスの一部を断熱膨張させ、
該断熱膨張1こより得られた低圧低温ガスによって残り
の高圧ガスの冷却を行い、該冷却された高圧ガスをジュ
ールトムソン弁で膨張させて液化させる極低温冷凍装置
の制御方法において、前記ジュールトムソン弁により液
化された液化ガスを貯蔵する極低温液化ガス容器内の液
量調節をう加熱手段の負荷入力値1こより、前記断熱膨
張を行う膨張機へ導入する高圧ガス流量を制御すること
1二より達成される。
The above purpose is to adiabatically expand a part of the compressed high pressure gas,
In a method for controlling a cryogenic refrigeration apparatus, the remaining high pressure gas is cooled by the low pressure low temperature gas obtained from the first adiabatic expansion, and the cooled high pressure gas is expanded and liquefied by a Joule Thomson valve. controlling the flow rate of the high-pressure gas introduced into the expander that performs adiabatic expansion based on the load input value of the heating means, which controls the liquid volume in the cryogenic liquefied gas container that stores the liquefied gas; achieved.

〔作  用〕[For production]

被冷却体の負荷の変動に対応し、極低温液化ガス容器内
の液面が上下する。これに対応し、ヒータでの負荷入力
値を増減させ直接的に調節すると共1こ、ヒータの負荷
入力値により極低温冷凍装置の寒冷発生源である膨張機
に導入する高圧ガス流量を制御することにより、円滑l
こ適正な運転状態に保持することができる。
The liquid level in the cryogenic liquefied gas container rises and falls in response to changes in the load on the object to be cooled. In response to this, the load input value on the heater is directly adjusted by increasing or decreasing it, and the flow rate of high-pressure gas introduced into the expander, which is the source of cold in the cryogenic refrigeration equipment, is controlled by the load input value on the heater. This allows for smooth l
It is possible to maintain this in an appropriate operating state.

〔実 施 例〕〔Example〕

桟 以下、本発明の一実施例を第1図により喰明する。第1
図において、1は中圧タンク、2は圧縮機、3は低圧ラ
イン圧力調節弁、3は高圧ライン圧力調節弁、10はコ
ールドボックス、11 aないし11 eは熱交換器、
認は膨張機人口弁、13a、13bは膨張機、14はジ
ュールトムソン弁(以下、「JT弁」と呼ぶ。)、(9
)は極低温液化ガス容器、21は被冷却体、(9)はヒ
ータ、31は液面計、糞はヒータ制御管、(は負荷入力
信号、肩は膨張機流量制御器、あは第2膨張機入ロ圧力
信号、菫は膨張機人口弁制御信号、ごは圧力計である。
An embodiment of the present invention will be explained below with reference to FIG. 1st
In the figure, 1 is a medium pressure tank, 2 is a compressor, 3 is a low pressure line pressure control valve, 3 is a high pressure line pressure control valve, 10 is a cold box, 11 a to 11 e are heat exchangers,
13a and 13b are expanders, 14 is a Joule-Thomson valve (hereinafter referred to as "JT valve"), (9
) is the cryogenic liquefied gas container, 21 is the object to be cooled, (9) is the heater, 31 is the liquid level gauge, dung is the heater control pipe, ( is the load input signal, the shoulder is the expander flow controller, A is the second The expander inlet pressure signal, violet is the expander artificial valve control signal, and g is the pressure gauge.

次に、上記第1図のように構成された本発明の極低温冷
凍装置の動作について説明する◇圧縮機2により圧縮さ
れた高圧ガスはコールドボックス10に導入され、第1
の熱交換器11 aにて冷却された後、−部の高圧ガス
は膨張機人口弁丘を通り第1の膨張9.13 aにて断
熱膨張して温度降下して、第3の熱交換器11 cに入
り、更に、第2の膨張機13 bで低圧まで断熱膨張し
て低圧ラインに合流する。−方、残りの高圧ガスは第2
から第5の熱交換器11 bないし11 eで冷却され
た後、JT升14で低圧まで膨張し、−部が液化する。
Next, the operation of the cryogenic refrigeration system of the present invention configured as shown in FIG.
After being cooled in the heat exchanger 11a, the high-pressure gas in the - part passes through the expander artificial valve conduit, undergoes adiabatic expansion in the first expansion 9.13a, lowers its temperature, and then enters the third heat exchanger. The liquid enters the vessel 11c, is further adiabatically expanded to a low pressure in the second expander 13b, and joins the low pressure line. - On the other hand, the remaining high pressure gas is
After being cooled in the fifth heat exchangers 11b to 11e, the mixture is expanded to a low pressure in the JT cell 14, and the - part is liquefied.

液化した極低温液化ガスは極低a液化ガス容器加に導入
され、被冷却体乙を冷却してガス化し、コールドボック
ス10に戻り、熱交換器11 eないし11 aで温度
回復した後、圧縮機2の吸入側に戻る。高圧ライン。
The liquefied cryogenic liquefied gas is introduced into an ultra-low a liquefied gas container, cools the object to be cooled and gasifies it, returns to the cold box 10, recovers its temperature in heat exchangers 11e to 11a, and then is compressed. Return to the suction side of machine 2. high pressure line.

低圧ラインの圧力は、中圧タンクlを介して、低圧ライ
ン圧力調節弁3.高圧ライン圧力調節弁4によって制御
される。
The pressure of the low pressure line is controlled via the medium pressure tank 1 by the low pressure line pressure control valve 3. It is controlled by a high pressure line pressure regulating valve 4.

被冷却体乙の負荷の変動によって、極低温液化ガス容器
美白の液面が上下し、液面計31により検知される。検
知された液面に対して、ヒータ制御器支はヒータ美の負
荷入力値を決定すると共に、負荷入力信号おを膨張機流
量制御器あに送信する。
The liquid level of the whitening liquid in the cryogenic liquefied gas container rises and falls due to changes in the load on the object to be cooled (B), which is detected by the liquid level meter 31. In response to the sensed liquid level, the heater controller determines a load input value for the heater and sends a load input signal to the expander flow controller A.

膨張8!流量制御器具は、第2膨張機入ロ圧力信号あと
負荷入力信号おによって、膨張機人口弁毘を制御する膨
張機人口弁制御信号Iを演算出力する。
Expansion 8! The flow control device calculates and outputs an expander artificial valve control signal I that controls the expander artificial valve according to the second expander inlet pressure signal and the afterload input signal.

以上、本−実施例によれば、負荷の変動に対応した直接
的調節を加熱手段により行うと共に、加熱手段での負荷
入力値により寒冷発生源である膨張機流量の制御を行う
ので、円滑、適正な運転制御ができる効果がある。
As described above, according to this embodiment, direct adjustment corresponding to load fluctuations is performed by the heating means, and the flow rate of the expander, which is the source of cold generation, is controlled by the load input value in the heating means, so that the flow rate of the expander, which is the source of cold generation, is smoothly This has the effect of enabling appropriate operation control.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、負荷の変動に対応して極低温冷凍装置
の応答性を良々することができるので、適正な運転制御
を行うことができるという効果がある。
According to the present invention, it is possible to improve the responsiveness of the cryogenic refrigeration system in response to load fluctuations, so there is an effect that appropriate operation control can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である極低温冷凍装置の制御
方法を説明するための極低温冷凍装置を示すブロック図
である。 稔・・・・・・膨張機人口弁、13a、13b・・・・
・・膨張機、(9)・・・・・・ヒータ、31・・・・
・・液面計、!・・・・・・ヒータ制御表 34−一一勢玉磯別tfl岬シ
FIG. 1 is a block diagram showing a cryogenic refrigeration apparatus for explaining a method of controlling the cryogenic refrigeration apparatus according to an embodiment of the present invention. Minoru... Expander artificial valve, 13a, 13b...
... Expander, (9) ... Heater, 31 ...
··Liquid level indicator,!・・・・・・Heater control table 34-Ichisei Tamaisobetsu TFL Misaki

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮した高圧ガスの一部を断熱膨張させ、該断熱膨
張により得られた低圧低温ガスによって残りの高圧ガス
の冷却を行い、該冷却された高圧ガスをジュールトムソ
ン弁で膨張させて液化させる極低温冷凍装置の制御方法
において、前記ジュールトムソン弁により液化された液
化ガスを貯蔵する極低温液化ガス容器内の液量調節を行
う加熱手段の負荷入力値により、前記断熱膨張を行う膨
張機へ導入する高圧ガス流量を制御することを特徴とす
る極低温冷凍装置の制御方法。
1. A part of the compressed high-pressure gas is adiabatically expanded, the remaining high-pressure gas is cooled by the low-pressure low-temperature gas obtained by the adiabatic expansion, and the cooled high-pressure gas is expanded with a Joule-Thomson valve and liquefied. In the method for controlling a cryogenic refrigeration device, the expander that performs adiabatic expansion is controlled by a load input value of a heating means that adjusts the liquid amount in a cryogenic liquefied gas container that stores liquefied gas that has been liquefied by the Joule-Thomson valve. A method for controlling a cryogenic refrigeration system, characterized by controlling the flow rate of high-pressure gas introduced.
JP14692486A 1986-06-25 1986-06-25 Method of controlling cryogenic refrigerator Pending JPS636354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14692486A JPS636354A (en) 1986-06-25 1986-06-25 Method of controlling cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14692486A JPS636354A (en) 1986-06-25 1986-06-25 Method of controlling cryogenic refrigerator

Publications (1)

Publication Number Publication Date
JPS636354A true JPS636354A (en) 1988-01-12

Family

ID=15418648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14692486A Pending JPS636354A (en) 1986-06-25 1986-06-25 Method of controlling cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPS636354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501446B2 (en) 2003-07-01 2019-12-10 Transitions Optical, Inc. Photochromic compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501446B2 (en) 2003-07-01 2019-12-10 Transitions Optical, Inc. Photochromic compounds
US10532998B2 (en) 2003-07-01 2020-01-14 Transitions Optical, Inc. Photochromic compounds
US10532997B2 (en) 2003-07-01 2020-01-14 Transitions Optical, Inc. Photochromic compounds

Similar Documents

Publication Publication Date Title
AU2017373437B2 (en) Raw Material Gas Liquefying Device and Method of Controlling This Raw Material Gas Liquefying Device
US4582519A (en) Gas-liquefying system including control means responsive to the temperature at the low-pressure expansion turbine
JP4563269B2 (en) Refrigeration capacity control device for turbine-type refrigerator
JPS636354A (en) Method of controlling cryogenic refrigerator
CN113778149A (en) Thermostat device capable of carrying out continuous variable temperature control of wide temperature zone
JP3856538B2 (en) Refrigeration equipment
JPS63194163A (en) Cryogenic refrigerator
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JP3465117B2 (en) Helium refrigeration and liquefaction machine and its operation method
CN215450002U (en) Thermostat device capable of carrying out continuous variable temperature control of wide temperature zone
JPH01150759A (en) Method of controlling cryogenic liquefying refrigerator
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPH0579717A (en) Helium refrigerator
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPH01107058A (en) Method of controlling cryogenic device
JP2510637B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPS58195756A (en) Method of operating cryogenic liquefying refrigerator
JPS6179954A (en) Cryogenic liquefying refrigerator
JPH01150756A (en) Cryogenic cooling device
JPH0379623B2 (en)
JPH0381064B2 (en)
JPH01150755A (en) Method of controlling operation of cryogenic refrigerator
JPS5863A (en) Cooling method for ultra-low temperature using he gas