JPH01159568A - Method of controlling operation of cryogenic liquefying refrigerator - Google Patents

Method of controlling operation of cryogenic liquefying refrigerator

Info

Publication number
JPH01159568A
JPH01159568A JP31628587A JP31628587A JPH01159568A JP H01159568 A JPH01159568 A JP H01159568A JP 31628587 A JP31628587 A JP 31628587A JP 31628587 A JP31628587 A JP 31628587A JP H01159568 A JPH01159568 A JP H01159568A
Authority
JP
Japan
Prior art keywords
valve
expander
signal
load
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31628587A
Other languages
Japanese (ja)
Other versions
JP2510637B2 (en
Inventor
Kiyoshi Shibanuma
柴沼 清
Takeyoshi Shibata
柴田 猛順
Kozo Matsumoto
松本 孝三
Hirotake Kajiwara
梶原 博毅
Shigeto Kawamura
河村 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP62316285A priority Critical patent/JP2510637B2/en
Publication of JPH01159568A publication Critical patent/JPH01159568A/en
Application granted granted Critical
Publication of JP2510637B2 publication Critical patent/JP2510637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

PURPOSE: To ensure smooth and efficient operation by controlling the intermediate pressure of an expander at the inlet valve thereof depending on the load of an object to be cooled and controlling the flow rate of high pressure gas being introduced to a cryogenic liquefaction chiller through a Joule-Thomson valve. CONSTITUTION: A refrigeration load signal 27 is delivered from an object 20a-20n to be cooled to a setter 28 and an intermediate pressure set signal 29 of an expander corresponding to the refrigeration load is delivered to a controller 34 for the inlet valve 12 of the expander. At the same time, a high pressure gas flow rate set signal 30 is delivered to a controller 31 for a Joule-Thomson valve(JT valve). The controller 31 controls a JT valve 13 by producing a control signal 33 from a high pressure gas flow rate signal 32 and the signal 30. The controller 34 controls the inlet valve 12 by producing a control signal 36 from an intermediate pressure signal 35 and the signal 29. Consequently, a cryogenic liquefaction chiller can be held easily in a correct operating state for various load conditions of the object 20a-20n resulting in smooth and efficient operation control.

Description

【発明の詳細な説明】 〔作業上の利用分野〕 本発明は極低温液化冷凍装置の運転制御方法に係り、特
に冷凍負荷、液化負荷、冷凍負荷+液化負荷など多様な
負荷条件を有する被冷却体を冷却する極低温液化冷凍装
置の運転制御方法に関するものである。
[Detailed Description of the Invention] [Field of Application] The present invention relates to a method for controlling the operation of a cryogenic liquefaction refrigeration system, and particularly relates to a method for controlling the operation of a cryogenic liquefaction refrigeration system, particularly for cooling equipment having various load conditions such as refrigeration load, liquefaction load, refrigeration load + liquefaction load, etc. The present invention relates to a method for controlling the operation of a cryogenic liquefaction refrigeration system that cools the body.

〔従来の技術〕[Conventional technology]

極低温液化冷凍装置、特にヘリウム液化冷凍装置は、極
低温での冷凍能力を得るために必要な理論動力(最少動
力)は冷凍能力の約70倍にもなる。さらに、機器の効
率、外部からの熱侵入による損失等を考慮すると実用上
は冷凍能力の500倍〜1000倍の動力を必要とする
。従って、装置の効率を向上させることはもとより重要
であるが、装置の運転を円滑、効率的に行うことも又、
重要な課題である。
In cryogenic liquefaction refrigeration equipment, particularly helium liquefaction refrigeration equipment, the theoretical power (minimum power) required to obtain refrigeration capacity at cryogenic temperatures is approximately 70 times the refrigeration capacity. Furthermore, considering equipment efficiency, loss due to heat intrusion from the outside, etc., in practice, a power that is 500 to 1000 times the refrigeration capacity is required. Therefore, it is of course important to improve the efficiency of the equipment, but it is also important to ensure that the equipment operates smoothly and efficiently.
This is an important issue.

一般的に、極低温液化冷凍装置は、ガスを圧縮する圧縮
機と、圧縮された高圧ガスを逆転温度以下゛に冷却する
ための熱交換器と、逆転温度以下に冷却された高圧ガス
を膨張させるこ2により液化ガスを生成させるジュール
・トムソン弁と、上記ジュール・トムソン弁を流れる高
圧ガスを冷却するために必要な寒冷を生成する直列に二
段配設された膨張機と、膨張機に流すガス量の制御を行
う膨張機入口弁とから構成される。
Generally, cryogenic liquefaction refrigeration equipment consists of a compressor that compresses gas, a heat exchanger that cools the compressed high-pressure gas to below the reversal temperature, and an expansion of the high-pressure gas that has been cooled to below the reversal temperature. A Joule-Thomson valve that generates liquefied gas by refrigeration, an expander arranged in two stages in series that generates the refrigeration necessary to cool the high-pressure gas flowing through the Joule-Thomson valve, and an expander. It consists of an expander inlet valve that controls the amount of gas flowing.

これらの構成機器から成る極低温液化冷凍装置の運転制
御は、上記ジュール・トムソン弁と膨張機人口弁の操作
によって行われるが、被冷却体の負荷条件によって、上
記多弁の適正な開度が大きく異なると共に、最大の装置
能力より少い一定の負荷に対しては、上記多弁の開度の
組み合せは無限に存在すること、温度制御を行う場合に
は時定数が大きく応答が遅いと共に一時的に逆応答を示
すなどのために自動制御が困難であった。このために、
従来の極低温液化冷凍装置では運転員が試行錯誤的に操
作を行うとか、負荷条件に対応した操作を行わないとか
、又は直接的に圧縮機の容量制御を行うとかの方法がと
られていた。
Operational control of the cryogenic liquefaction refrigeration system, which consists of these components, is performed by operating the Joule-Thomson valve and the expander valve, but depending on the load conditions of the object to be cooled, the appropriate opening degree of the multivalve may vary. In addition, for a constant load that is less than the maximum equipment capacity, there are an infinite number of combinations of the opening degrees of the multiple valves mentioned above, and when temperature control is performed, the time constant is large, the response is slow, and the Automatic control was difficult because it showed a reverse response. For this,
Conventional cryogenic liquefaction refrigeration systems require operators to perform operations through trial and error, do not perform operations that correspond to load conditions, or directly control the capacity of the compressor. .

なお、この種の極低温液化冷凍装置の制御方法としては
、例えば、特開昭57−108557号公報に開示され
たものがある0本技術は、液溜容器内の液面またはガス
ライン中の温度によって圧縮機の容量制御を行っている
As a control method for this type of cryogenic liquefaction refrigeration equipment, for example, there is a method disclosed in Japanese Patent Application Laid-open No. 108557/1982. Compressor capacity is controlled based on temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の極低温液化冷凍装置、すなわち、前者は運転
操作が繁雑であると共に、負荷条件に対応した適正な運
転操作が困難であった。
The above-mentioned conventional cryogenic liquefaction refrigeration equipment, that is, the former, is complicated to operate and is difficult to operate properly in response to load conditions.

また、後者、すなわち、特開昭57−108557号公
報のものは、膨張機入口弁およびジュールΦトムソン弁
の操作を行っていないために、負荷条件が−モード(例
えば冷凍負荷)のみしか存在しない場合には有効である
が、各種の負荷条件が存在する場合には効率的な制御は
困難であった。
In addition, in the latter, that is, the one disclosed in Japanese Patent Application Laid-Open No. 57-108557, the expander inlet valve and the Joule Φ Thomson valve are not operated, so the load condition only exists in - mode (for example, refrigeration load). However, when various load conditions exist, efficient control is difficult.

本発明の目的は、被冷却体の負荷条件が多様であっても
装置を円滑、効率的に運転できる極低温液化冷凍装置の
運転制御方法を提供することにある。
An object of the present invention is to provide a method for controlling the operation of a cryogenic liquefaction refrigeration system, which allows the system to operate smoothly and efficiently even if the load conditions of the object to be cooled vary.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ガスを圧縮する圧縮機と、圧縮された高圧
ガスを逆転温度以下に冷却する熱交換器と、逆転温度に
冷却された前記高圧ガスを膨張させて液化ガスを生成す
るジュール・トムソン弁と、該弁を流れる前記高圧ガス
を冷却するための寒冷を生成する直列に二段配設された
膨張機と、該膨張機に流れるガス量を制御する膨張機入
口弁とを備えた極低温液化冷凍装置において、被冷却体
の負荷に対応し、前記膨張機の中間圧力を前記膨張機入
口弁で制御し、前記ジュール・トムソン弁で前記極低温
液化冷凍装置に導入する前記高圧ガスの流量を制御する
ことにより、達成される。
The above objects include a compressor that compresses gas, a heat exchanger that cools the compressed high-pressure gas below the inversion temperature, and a Joule-Thomson that expands the high-pressure gas cooled to the inversion temperature to generate liquefied gas. A pole comprising a valve, an expander arranged in two stages in series to generate refrigeration for cooling the high pressure gas flowing through the valve, and an expander inlet valve to control the amount of gas flowing to the expander. In the low temperature liquefaction refrigeration system, the intermediate pressure of the expander is controlled by the expander inlet valve in response to the load of the object to be cooled, and the high pressure gas introduced into the cryogenic liquefaction refrigeration system is controlled by the Joule-Thompson valve. This is achieved by controlling the flow rate.

〔作   用〕[For production]

被冷却体の負荷に対応し、直列に二段配設された膨張機
の中間圧力を膨張機入口弁で制御し、ジュール・トムソ
ン弁で極低温液化冷凍装置に導入する高圧ガスの流量を
制御することにより、被冷却体の負荷条件が多様であっ
ても装置を円滑、効率的に運転することができる。
In response to the load of the object to be cooled, the intermediate pressure of the expanders arranged in two stages in series is controlled by the expander inlet valve, and the flow rate of high-pressure gas introduced into the cryogenic liquefaction refrigeration equipment is controlled by the Joule-Thomson valve. By doing so, the apparatus can be operated smoothly and efficiently even if the load conditions of the object to be cooled are diverse.

〔実 施 例〕〔Example〕

極低温液化冷凍装置では、圧縮機によって圧縮された高
圧ガスをジュール・トムソン弁と膨張機入口弁によって
適正に分配制御することによって、負荷条件に対応した
適正な装置能力を発揮することができる。負荷条件とし
ては液化負荷のみの場合、冷凍負荷のみの場合、液化負
荷+冷凍負荷の場合が存在するが、各々、装置としての
最大能力を発揮するためのジュール・トムソン弁と膨張
機入口弁の適正な開度は異なる6以上の関係を第2図に
よって説明する。
In a cryogenic liquefaction refrigeration system, appropriate distribution and control of high-pressure gas compressed by a compressor is performed using a Joule-Thomson valve and an expander inlet valve, thereby making it possible to demonstrate appropriate equipment capacity in response to load conditions. The load conditions include liquefaction load only, refrigeration load only, and liquefaction load + refrigeration load, but each requires a Joule-Thompson valve and an expander inlet valve to achieve the maximum capacity of the device. The relationships among six or more different appropriate opening degrees will be explained with reference to FIG.

第2図は極低温液化冷凍装置の特性図の一例である。第
2図において、Aoはジュール・トムソン弁と膨張機入
口弁を適正に調節した場合の特性曲線であり、A1は液
化負荷が無いとき最大の冷凍能力を発揮できる弁開度に
ジュール・トムソン弁と膨張機人口弁を固定した場合の
特性曲線であり、A2は冷凍負荷が無いとき最大の液化
能力を発生できる弁開度にジュール・トムソン弁と膨張
機入口弁を固定した場合の特性曲線である。特性曲線A
、は圧縮機の最大容量を使用した場合の最大能力を示す
ものであり、ジュール・トムソン弁と膨張機入口弁の開
度の組み合せは各点に対応し1組のみが存在する。さら
に、特性曲線A。の各点は、膨張機を直列二段に使用す
る極低温冷凍装置においては二段膨張機の中間圧力(二
段目膨張機の入口圧力)と1:1に対応している。これ
に対し、特性曲線A0の内側では各点を実現するための
ジュール・トムソン弁と膨張機入口弁の開度の組み合せ
は無限に存在する。
FIG. 2 is an example of a characteristic diagram of a cryogenic liquefaction refrigeration system. In Figure 2, Ao is the characteristic curve when the Joule-Thompson valve and the expander inlet valve are properly adjusted, and A1 is the Joule-Thompson valve opening at which the maximum refrigerating capacity can be achieved when there is no liquefaction load. is the characteristic curve when the expander artificial valve is fixed, and A2 is the characteristic curve when the Joule-Thomson valve and the expander inlet valve are fixed at the valve opening that can generate the maximum liquefaction capacity when there is no refrigeration load. be. Characteristic curve A
, indicates the maximum capacity when the maximum capacity of the compressor is used, and there is only one combination of opening degrees of the Joule-Thompson valve and the expander inlet valve corresponding to each point. Furthermore, characteristic curve A. Each point corresponds to the intermediate pressure of the two-stage expander (the inlet pressure of the second-stage expander) in a 1:1 ratio in a cryogenic refrigeration system that uses two stages of expanders in series. On the other hand, inside the characteristic curve A0, there are infinite combinations of opening degrees of the Joule-Thompson valve and the expander inlet valve to realize each point.

以上のような極低温液化冷凍装置の特性に基づき、被冷
却体の負荷条件(冷凍負荷または液化負荷)に対応し装
置を円滑、効率的に運転するためには特性曲線Ao上に
装置を制御すればよい。特性曲線Ao上で制御するには
ジュール・トムソン弁開度、膨張機入口弁開度、高圧ガ
ス流量、二段膨張機中間圧力のうち二個を制御すればよ
いが、信頼性、安全性から、膨張機入口弁で二段膨張機
入口圧力の制御を行い、ジュール・トムソン弁で高圧ガ
スの流量制御を行うことが最も良い方法である。
Based on the characteristics of cryogenic liquefaction refrigeration equipment as described above, in order to operate the equipment smoothly and efficiently in response to the load conditions of the object to be cooled (refrigeration load or liquefaction load), it is necessary to control the equipment on the characteristic curve Ao. do it. To control on the characteristic curve Ao, it is sufficient to control two of the following: Joule-Thomson valve opening, expander inlet valve opening, high pressure gas flow rate, and two-stage expander intermediate pressure, but from the viewpoint of reliability and safety. The best method is to control the inlet pressure of the two-stage expander with an expander inlet valve and control the flow rate of high pressure gas with a Joule-Thompson valve.

以上は、特性曲線AO上で装置を制御しようとするもの
であるが、明らかに負荷条件から特性曲線A。の内側で
の運転が可能な場合には、流量制御設定値、又は、流量
制御設定値と二段膨張機中間圧力制御設定値を同時に変
えることによって消費動力を低減した運転制御が可能と
なる。
The above is an attempt to control the device on the characteristic curve AO, but it is clear that the characteristic curve A is based on the load conditions. If it is possible to operate inside the 2-stage expander, it is possible to control the operation with reduced power consumption by changing the flow rate control set value or the flow rate control set value and the two-stage expander intermediate pressure control set value at the same time.

以下、本発明の一実施例を第1図により説明する。第1
図における1は圧縮機、2は中圧タンク、3は高圧ガス
圧力調整弁、4は低圧ガス圧力調整弁、10はコールド
ボックス、lla〜lieは熱交換器、12は膨張機入
口弁、13はジュール・トムソン弁(以下、JT弁と略
称する)、14a及び14bは膨張機、15は気液分離
器、16は液化ガス移送管、17は低温ガス戻り器、1
8は補助寒冷源である液体窒素供給管、20a〜20n
は被冷却体、21は常温ガス戻り管、27は冷凍負荷信
号、28は設定器、29は圧力設定信号、30は流量設
定信号、31はJTTiB2制御器、32は高圧ガス流
量信号、33はJTTiB2制御信号、34は膨張機入
口弁12の制御器、35は膨張機中間圧力信号、36は
膨張機入口弁制御信号、37および39は流量計、38
は圧力計である。
An embodiment of the present invention will be described below with reference to FIG. 1st
In the figure, 1 is a compressor, 2 is a medium pressure tank, 3 is a high pressure gas pressure regulating valve, 4 is a low pressure gas pressure regulating valve, 10 is a cold box, lla to lie are heat exchangers, 12 is an expander inlet valve, 13 1 is a Joule-Thomson valve (hereinafter abbreviated as JT valve); 14a and 14b are expanders; 15 is a gas-liquid separator; 16 is a liquefied gas transfer pipe; 17 is a low temperature gas return device;
8 is a liquid nitrogen supply pipe, 20a to 20n, which is an auxiliary cold source.
is the object to be cooled, 21 is the normal temperature gas return pipe, 27 is the refrigeration load signal, 28 is the setting device, 29 is the pressure setting signal, 30 is the flow rate setting signal, 31 is the JTTiB2 controller, 32 is the high pressure gas flow rate signal, 33 is the JTTiB2 control signal, 34 is a controller for the expander inlet valve 12, 35 is an expander intermediate pressure signal, 36 is an expander inlet valve control signal, 37 and 39 are flow meters, 38
is a pressure gauge.

次に、上記のように構成された極低温液化冷凍装置の動
作について説明する。圧縮機1で圧縮された高圧ガスは
コールドボックスlOに導入され、第1の熱交換器11
aで液体窒素及び低圧ガスと、熱交換して冷却された後
、液化ラインと膨張機ラインに分岐する。膨張機ライン
に分岐した高圧ガスは膨張機人口弁12を通り第1の膨
張機14aで中間圧力まで断熱膨張仕事を行うことによ
り寒冷を発生した後、第3の熱交換器11cで低圧ガス
と熱交換し更に温度降下し第2の膨張機14bで再び断
熱膨張仕事を行い寒冷を発生して、低圧ガスラインに合
流する。一方、第1の熱交換器11aで冷却された後、
液化ラインに分岐した高圧ガスは第2〜第5の熱交換器
11b〜lieで低圧ガスと熱交換し、最終的に逆転温
度以下に冷却されて、JTTiB2膨張することによっ
て一部液化ガスを生成して気液分離器15に導入される
Next, the operation of the cryogenic liquefaction refrigeration system configured as described above will be explained. The high-pressure gas compressed by the compressor 1 is introduced into the cold box IO, and the first heat exchanger 11
After being cooled by heat exchange with liquid nitrogen and low pressure gas at step a, it branches into a liquefaction line and an expander line. The high-pressure gas branched to the expander line passes through the expander population valve 12 and performs adiabatic expansion work to an intermediate pressure in the first expander 14a to generate refrigeration, and then is exchanged with low-pressure gas in the third heat exchanger 11c. The temperature is further lowered through heat exchange, and the second expander 14b performs adiabatic expansion work again to generate refrigeration, and the gas flows into the low pressure gas line. On the other hand, after being cooled by the first heat exchanger 11a,
The high-pressure gas branched into the liquefaction line exchanges heat with the low-pressure gas in the second to fifth heat exchangers 11b to lie, and is finally cooled to below the reversal temperature, and JTTiB2 expands to partially generate liquefied gas. The gas is then introduced into the gas-liquid separator 15.

気液分離器15に導入され気液分離された液化ガスは、
液化ガス移送管16で被冷却体20a〜20nに供給さ
れ熱負荷を吸収してガス化し、低温ガス戻り管17を通
すコールドボックス10に戻り、気液分離器15で分離
された低温ガスと合流し、熱交換器lie〜llaで熱
交換することによって寒冷回収されて圧縮機1の吸入側
に戻る。
The liquefied gas introduced into the gas-liquid separator 15 and separated into gas and liquid is
The liquefied gas is supplied to the objects to be cooled 20a to 20n through the liquefied gas transfer pipe 16, absorbs the heat load and is gasified, returns to the cold box 10 through the low-temperature gas return pipe 17, and joins the low-temperature gas separated by the gas-liquid separator 15. By exchanging heat with the heat exchangers lie to lla, the cooled air is recovered and returned to the suction side of the compressor 1.

一方、被冷却体20a〜20nでガス化した低温ガスの
一部は顕熱によって被冷却体20a〜20nを冷却し常
温ガス戻り管21を通り圧縮機lの吸入側に戻る。。
On the other hand, a part of the low-temperature gas gasified in the objects to be cooled 20a to 20n cools the objects to be cooled 20a to 20n by sensible heat, and returns to the suction side of the compressor l through the normal temperature gas return pipe 21. .

本実施例において、低温ガス戻り管17を戻る低温ガス
は冷凍負荷に対応し、常温ガス戻り管21を戻る常温ガ
スは液化負荷に対応するが、被冷却体20a〜20nが
予冷状態にある時は大部分が常温ガス戻り管21を戻る
のに対し、定常状態の時は大部分が低温ガス戻り管17
を戻る0本実施例のように多数の被冷却体を有し、各冷
却体が独立に運転状態を選択する場合には、非常に多く
の負荷条件が存在することになる。
In this embodiment, the low temperature gas returning through the low temperature gas return pipe 17 corresponds to the refrigeration load, and the normal temperature gas returning through the normal temperature gas return pipe 21 corresponds to the liquefaction load, but when the objects to be cooled 20a to 20n are in a precooled state Most of the gas returns through the normal temperature gas return pipe 21, whereas in steady state, most of the gas returns through the low temperature gas return pipe 17.
Return to 0 If there are a large number of objects to be cooled as in this embodiment, and each cooling object independently selects the operating state, there will be a large number of load conditions.

次に、以上のような構成、動作をなす極低温液化冷凍装
置の制御方法について説明する。被冷却体20a〜20
nの冷凍負荷の測定法としては、例えば、被冷却体20
a〜20nから戻る低温ガス流量に液化ガス潜熱を乗す
ることによって可能であり、冷凍負荷信号27として設
定器28に取り込み、冷凍負荷に対応した膨張機中間圧
力設定信号29を膨張機入口弁制御器34に出力すると
共に、高圧ガス流量設定信号30をJT弁制御器31に
出力する。JT弁制御器31は高圧ガス流量信号32と
流量設定信号30によってJT弁制御信号33を出力し
JTTiB2制御する。膨張機人口弁制御器34は膨張
機中間圧力信号35と圧力設定信号29によって膨張機
入口弁制御信号36によって膨張機人口弁12を制御す
る。
Next, a method of controlling the cryogenic liquefaction refrigeration system having the above configuration and operation will be explained. Cooled objects 20a to 20
As a method for measuring the refrigeration load of n, for example, the object to be cooled 20
This is possible by multiplying the low temperature gas flow rate returned from a to 20n by the latent heat of the liquefied gas, which is input into the setting device 28 as the refrigeration load signal 27, and the expander intermediate pressure setting signal 29 corresponding to the refrigeration load is used to control the expander inlet valve. At the same time, a high pressure gas flow rate setting signal 30 is output to the JT valve controller 31. The JT valve controller 31 outputs a JT valve control signal 33 based on the high pressure gas flow rate signal 32 and the flow rate setting signal 30 to control JTTiB2. The expander artificial valve controller 34 controls the expander artificial valve 12 with the expander inlet valve control signal 36 in accordance with the expander intermediate pressure signal 35 and the pressure setting signal 29.

以上の運転制御方法を第2図により更に説明すると、例
えば、aに対応する冷凍負荷を受けた場合には、bに対
応する液化能力も発揮できるように、膨張機中間圧力と
高圧ガス導入量を制御することになる。ただし、被冷却
体の負荷条件と極低温液化冷凍装置の能力の関係で最大
の能力を発揮する必要のない場合(例えば、負荷調整を
ヒータで行っている極低温液化冷凍装置においてヒータ
が投入されている場合)には、第1図のbではなく、例
えばb′の条件に設定信号を修正する機能を持たせるこ
とによって、消費動力を低減した効率的運転制御が可能
となる。
To further explain the above operation control method with reference to Fig. 2, for example, when receiving a refrigeration load corresponding to a, the expander intermediate pressure and high pressure gas introduction amount are adjusted so that the liquefaction capacity corresponding to b is also exhibited. will be controlled. However, if it is not necessary to demonstrate the maximum capacity due to the relationship between the load condition of the object to be cooled and the capacity of the cryogenic liquefaction refrigeration system (for example, if the heater is turned on in a cryogenic liquefaction refrigeration system that uses a heater to adjust the load), In this case, for example, by adding a function to modify the setting signal to the condition b' instead of b in FIG. 1, efficient operation control with reduced power consumption becomes possible.

以上の説明では、冷凍負荷によって制御する場合につい
て説明したが、直接的には低温戻りガス流量で制御する
ことが可能であることは明らかである。又、液化負荷に
よって制御を行うことも可能である。
In the above explanation, the case where control is performed using the refrigeration load has been explained, but it is clear that control can be directly performed using the flow rate of the low-temperature return gas. It is also possible to perform control based on the liquefaction load.

以上、詳述したように、本実施例によれば、被冷却体の
多様な負荷条件に対応し、極低温液化冷凍装置を適正な
運転状態に容易に保持でき、円滑、効率的な運転制御が
できる。さらに、高圧ガス流量制御を行うため、高圧ガ
スの流し過ぎに伴う低圧ラインの圧力上昇を防止でき、
冷凍温度を安定して保持できると共に、パルス的に被冷
却体から低温戻りガス流量が増大した時に発生する膨張
機過冷却を防止できる。さらに、直接的制御は、応答が
早く安定性の高い、弁による圧力と流量制御によるため
信頼性が向上する効果がある。
As described in detail above, according to this embodiment, the cryogenic liquefaction refrigeration equipment can be easily maintained in an appropriate operating state in response to various load conditions of the object to be cooled, and the operation can be controlled smoothly and efficiently. Can be done. Furthermore, since high pressure gas flow rate control is performed, pressure rise in the low pressure line due to excessive flow of high pressure gas can be prevented.
The freezing temperature can be maintained stably, and the expander overcooling that occurs when the flow rate of low-temperature return gas from the object to be cooled increases in a pulsed manner can be prevented. Furthermore, direct control has the effect of improving reliability because it relies on pressure and flow rate control using valves, which have a quick response and high stability.

〔発明の効果〕〔Effect of the invention〕

本発明は1以上説明したように、被冷却体の負荷に対応
し、直列に二段配設された膨張機の中間圧力を膨張機入
口弁で制御し、JT弁で極低温液化冷凍装置に導入する
高圧ガスの流量を制御することで、被冷却体の負荷条件
が多様であっても装置を円滑、効率的に運転できるとい
う効果がある。
As explained above, the present invention corresponds to the load of the object to be cooled, controls the intermediate pressure of the expanders arranged in two stages in series with the expander inlet valve, and controls the cryogenic liquefaction refrigeration system with the JT valve. By controlling the flow rate of the high-pressure gas introduced, the device can be operated smoothly and efficiently even if the load conditions of the object to be cooled are diverse.

4、図面の簡単な説明     ゛ 温合図は本発明を実施した極低温液化冷凍装置の−例を
示す系統図、第を図は極低温液化冷凍装置の特性の一例
を示す特性図である。
4. Brief Description of the Drawings The temperature diagram is a system diagram showing an example of a cryogenic liquefaction refrigeration system embodying the present invention, and the second figure is a characteristic diagram showing an example of the characteristics of the cryogenic liquefaction refrigeration system.

1−−−一=−圧縮機、llaないし1ie−−−−一
熱交換器、12−’−−−−膨張機入口弁、13−−−
−−− J T弁、14a、14b−−一−−膨張機、
20a、20n−−−−一被冷却体、28−−−−−一
般定器、31 、34−−−−−一制御器4/図 jl、j4−一一ψ1j印各
1--1=-compressor, lla to 1ie--1 heat exchanger, 12-'--expander inlet valve, 13--
--- JT valve, 14a, 14b ---- Expander,
20a, 20n----1 object to be cooled, 28----general regulator, 31, 34-----1 controller 4/Fig. jl, j4-11 ψ1j mark each

Claims (1)

【特許請求の範囲】[Claims] 1、ガスを圧縮する圧縮機と、圧縮された高圧ガスを逆
転温度以下に冷却する熱交換器と、逆転温度に冷却され
た前記高圧ガスを膨張させて液化ガスを生成するジュー
ル・トムソン弁と、該弁を流れる前記高圧ガスを冷却す
るための寒冷を生成する直列に二段配設された膨張機と
、該膨張機に流れるガス量を制御する膨張機入口弁とを
備えた極低温液化冷凍装置において、被冷却体の負荷に
対応し、前記膨張機の中間圧力を前記膨張機入口弁で制
御し、前記ジュール・トムソン弁で前記極低温液化冷凍
装置に導入する前記高圧ガスの流量を制御することを特
徴とする極低温液化冷凍装置の運転制御方法。
1. A compressor that compresses gas, a heat exchanger that cools the compressed high-pressure gas to below the reversal temperature, and a Joule-Thomson valve that expands the high-pressure gas cooled to the reversal temperature to generate liquefied gas. , a cryogenic liquefaction system comprising: an expander arranged in two stages in series to generate refrigeration for cooling the high-pressure gas flowing through the valve; and an expander inlet valve that controls the amount of gas flowing to the expander. In the refrigeration system, the intermediate pressure of the expander is controlled by the expander inlet valve in accordance with the load of the object to be cooled, and the flow rate of the high-pressure gas introduced into the cryogenic liquefaction refrigeration system is controlled by the Joule-Thompson valve. A method for controlling the operation of a cryogenic liquefaction refrigeration system.
JP62316285A 1987-12-16 1987-12-16 Operation control method of cryogenic refrigeration refrigeration system Expired - Fee Related JP2510637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316285A JP2510637B2 (en) 1987-12-16 1987-12-16 Operation control method of cryogenic refrigeration refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316285A JP2510637B2 (en) 1987-12-16 1987-12-16 Operation control method of cryogenic refrigeration refrigeration system

Publications (2)

Publication Number Publication Date
JPH01159568A true JPH01159568A (en) 1989-06-22
JP2510637B2 JP2510637B2 (en) 1996-06-26

Family

ID=18075405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316285A Expired - Fee Related JP2510637B2 (en) 1987-12-16 1987-12-16 Operation control method of cryogenic refrigeration refrigeration system

Country Status (1)

Country Link
JP (1) JP2510637B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549664A (en) * 1978-10-02 1980-04-10 Hitachi Ltd Method of controlling cooling of liquefaction refrigerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5549664A (en) * 1978-10-02 1980-04-10 Hitachi Ltd Method of controlling cooling of liquefaction refrigerator

Also Published As

Publication number Publication date
JP2510637B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
EP3553435B1 (en) Raw material gas liquefying device and method of controlling this raw material gas liquefying device
KR100991859B1 (en) A fluid cooling system and a method for cooling a fluid using the same
JP2841955B2 (en) Supercritical helium cooling device and operating method thereof
CN115096013A (en) Device and method for realizing rapid cooling of helium cryogenic refrigerator
JPH01159568A (en) Method of controlling operation of cryogenic liquefying refrigerator
JPH06265230A (en) Method and device for controlling operation of liquefaction-refrigerating device
JP2873388B2 (en) Refrigerator and method for adjusting refrigeration capacity
JP2005003314A (en) Superconducting electromagnet cooling device
JP2574823B2 (en) Operation control method of cryogenic refrigeration refrigeration system
JPH01150759A (en) Method of controlling cryogenic liquefying refrigerator
JP2574815B2 (en) Cryogenic refrigeration equipment
JPH01269875A (en) Liquefaction control method and device for liquefying and refrigerating equipment
CN114923295B (en) Variable working condition adjusting method for two-stage series-connection intermediate heat exchange turbine expander
JPH01127860A (en) Method of controlling auxiliary cold source of cryogenic liquefying refrigerator
JPS6179954A (en) Cryogenic liquefying refrigerator
JPH06101918A (en) Cryogenic refrigerator
JPH0250381B2 (en)
JPH01150755A (en) Method of controlling operation of cryogenic refrigerator
JPH01127862A (en) Method of controlling expansion valve in cryogenic refrigerator
JPH06123506A (en) Precooling device for refrigeration load arranged in liquefying refrigerating plant
JPH01150757A (en) Method and device for precooling cryogenic refrigerator
JPH0379623B2 (en)
JPH0339234B2 (en)
JPS6179953A (en) Method of controlling cryogenic liquefying refrigerator
JPS58195756A (en) Method of operating cryogenic liquefying refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees