JPS629171A - He liquefying refrigerator - Google Patents

He liquefying refrigerator

Info

Publication number
JPS629171A
JPS629171A JP14564285A JP14564285A JPS629171A JP S629171 A JPS629171 A JP S629171A JP 14564285 A JP14564285 A JP 14564285A JP 14564285 A JP14564285 A JP 14564285A JP S629171 A JPS629171 A JP S629171A
Authority
JP
Japan
Prior art keywords
gas
liquid
container
cryogenic
cryogenic container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14564285A
Other languages
Japanese (ja)
Inventor
正明 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14564285A priority Critical patent/JPS629171A/en
Publication of JPS629171A publication Critical patent/JPS629171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、被冷却物を極低温に保持するに際して使用さ
れる液体Heの発生及び供給製蓋に関し、詳細には、1
台のHe液化冷凍装置で極低温保持作用だけでなく供給
用液体Heの製造及び被冷却物の予冷を合わせて遂行す
ることのできる様なHe液化冷凍装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lid for generating and supplying liquid He used to maintain an object to be cooled at an extremely low temperature.
The present invention relates to a He liquefaction refrigeration system capable of not only maintaining cryogenic temperatures but also producing liquid He for supply and precooling objects to be cooled.

[従来の技術] 材料の極低温強度試験設備等の様に被冷却物を極低温に
保持する必要のある設備においては、極低温環境をつく
る為にHe液化冷凍装置が用いられている。即ち該設備
では被冷却物を極低温容器に入れておき、He液化冷凍
装置で製造した液体Heを上記極低温容器に供給し、被
冷却物を液体He中に浸漬することにより極低温保持の
目的を達成する。
[Prior Art] In equipment that requires keeping objects to be cooled at a cryogenic temperature, such as cryogenic strength testing equipment for materials, He liquefaction refrigeration equipment is used to create a cryogenic environment. That is, in this equipment, the object to be cooled is placed in a cryogenic container, liquid He produced by a He liquefaction refrigerator is supplied to the cryogenic container, and the object to be cooled is immersed in the liquid He to maintain the cryogenic temperature. Achieve your purpose.

ところで極低温容器内から被冷却物を取り出す必要がな
ければ問題は無いのであるが、上記極低温設備では被冷
却物の取り換えあるいは検査の為にしばしば極低温容器
を開放する必要があり、そのたびに極低温容器内だけで
なく極低温容器内に開口するHeガス流路が外気によっ
て汚゛染されてしまう、もしHeガス中に空気が混入し
てしまうと、該混入空気の凍結による流路閉塞等の問題
を引き起こすので、いったん極低温容器を開放した後は
He液化冷凍装置の全系統をクリーニングする必要があ
り、この作業の為に多大の労力と時間を費すことになる
By the way, there is no problem if there is no need to take out the object to be cooled from inside the cryogenic container, but in the cryogenic equipment mentioned above, it is often necessary to open the cryogenic container to replace or inspect the object to be cooled, and each time In addition, not only the inside of the cryogenic container but also the He gas flow path opening into the cryogenic container is contaminated by outside air.If air is mixed into the He gas, the flow path will be damaged due to freezing of the mixed air. This may cause problems such as clogging, so once the cryogenic container is opened, it is necessary to clean the entire system of the He liquefaction refrigeration system, which requires a great deal of effort and time.

そこで上記問題の解決法として再凝縮型のHe液化冷凍
装置が種々提案されており(特公昭53−22979号
、特開詔52−6257号、特開昭56−138655
号等)、これを用いることによりHeガス流路の汚染を
防止している。即ち上記再凝縮型のHe液化冷凍装置は
、極低温容器内に再凝縮器を設置してHe液化冷凍装置
から該再凝縮器に向かう閉回路を形成し、該閉回路内に
液体Heを流すことによって極低温容器内のHeガスを
凝縮させ被冷却物を極低温に保持するものであり、He
液化冷凍装置内のHeは再凝縮器内を閉回路的に流れて
いるので、極低温容器を開放することがあっても外気と
接触するおそれがなくHeを清浄な状態に維持すること
ができる。
Therefore, various recondensing type He liquefaction refrigeration equipment have been proposed as a solution to the above problem (Japanese Patent Publication No. 53-22979, Japanese Patent Application Publication No. 52-6257, Japanese Patent Application Publication No. 56-138655).
By using this, contamination of the He gas flow path is prevented. That is, the recondensation type He liquefaction refrigeration system has a recondenser installed in a cryogenic container, forms a closed circuit from the He liquefaction refrigeration system to the recondenser, and flows liquid He into the closed circuit. This condenses the He gas in the cryogenic container and keeps the object to be cooled at a cryogenic temperature.
Since the He in the liquefaction refrigeration equipment flows in a closed circuit in the recondenser, even if the cryogenic container is opened, there is no risk of contact with the outside air and the He can be maintained in a clean state. .

しかるに上記再凝縮型He液化冷凍装置においては、液
体Heは再凝縮器内を流れるだけで極低温容器内へは供
給されないので、極低温容器として使用開始あるいは再
使用に5たって、極低温容器内へ液体Heを注入しよう
とするときには、他のHe液化冷凍機の助けを借りなけ
ればならないという欠点があった。即ちこの間の事情を
更に詳しく説明すると、極低温容器内の被冷却物を取り
換えるに際しては、He液化冷凍装置の運転をいったん
停止すると共にヒーター等で極低温容器を加熱し、容器
内の液体Heを気化させて系外のガスバッグ等へ導入書
貯留する0次いで容器を開放して被冷却物を取り出した
後新たな被冷却物を装入しく初回運転時においては該容
器内へ被冷却物を装入し)て極低温運転を開始するが、
開始に当たっては、まず液体N2等を容器内に導入して
容器及び被冷却物を予冷した後、液体N2と液体Heを
置換する。このとき液体Heが必要となるが、前記He
液化冷凍装置は液体He供給機能を備えていないので他
のHe液化冷凍機で液体Heを製造し供給しなければな
らない。こうして容器を閉鎖し、前記He液化冷凍装置
を運転して再凝縮器内に液化Heを流すことによって容
器内の気化Heを凝縮させ容器及び被冷却物を極低温に
保持する。
However, in the recondensing He liquefaction refrigeration system described above, liquid He only flows through the recondenser and is not supplied into the cryogenic container. When trying to inject liquid He into the tank, there was a drawback that it was necessary to seek help from another He liquefaction refrigerator. To explain the circumstances during this time in more detail, when replacing the object to be cooled in the cryogenic container, the operation of the He liquefaction refrigeration system is temporarily stopped, the cryogenic container is heated with a heater, etc., and the liquid He in the container is replaced. Vaporize it and store it in a gas bag, etc. outside the system.Next, open the container and take out the object to be cooled, then charge a new object to be cooled.During the first operation, put the object to be cooled into the container. ) and start cryogenic operation.
At the start, liquid N2 and the like are first introduced into the container to pre-cool the container and the object to be cooled, and then liquid N2 and liquid He are replaced. At this time, liquid He is required, but the
Since the liquefaction refrigeration system does not have a liquid He supply function, liquid He must be produced and supplied by another He liquefaction refrigeration machine. The container is thus closed, and the He liquefaction refrigeration system is operated to flow liquefied He into the recondenser, thereby condensing the vaporized He in the container and maintaining the container and the object to be cooled at an extremely low temperature.

上記説明から理解できる様に、再凝縮型He液化冷凍装
置においては、極低温設備の運転開始又は再開に際して
他のHe液化冷凍機を稼動させることが必要であり、ま
た容器並びに被冷却物の予冷や容器からのHe回収とい
う操作についても別系統のラインを準備しておかなけれ
ばならないという設備的な無駄が大きかった。
As can be understood from the above explanation, in the recondensing He liquefaction refrigerator, it is necessary to operate another He liquefaction refrigerator when starting or restarting operation of the cryogenic equipment, and it is also necessary to pre-cool the container and the objects to be cooled. A separate line had to be prepared for the operation of recovering He from a container or a container, which was a huge waste of equipment.

[発明が解決しようとする問題点] 本発明はこうした事態に着目し研究を重ねた結果完成さ
れたものであって、(1)予冷、(2)液体Heの製造
・供給並びに(3)極低温の保持のすべてを1台の装置
で行なうことができる様な再凝縮型のHe液化冷凍装置
を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been completed as a result of repeated research focusing on these situations. The present invention aims to provide a recondensing type He liquefaction refrigeration device that can perform all low-temperature maintenance with one device.

[問題点を解決するための手段] 上記目的を達成した本発明のHe液化冷凍装置は、再凝
縮型の極低温容器を併設したHe液化冷凍装置において
、He液化冷凍装置の高圧側ラインに設けたジュールト
ムソン弁の下流に流路切換機構を設け、液化Heの供給
先を前記極低温容器に設けた再凝縮器と該極低温容器内
の液化He貯留部との間で切換えできるように構成した
点に要旨を有するものである・ [作用] 再凝縮型He液化冷凍装置においては、前述の如く段階
的に予冷したHeガスをジュールトムソン弁に通して液
化させた後、これを極低温容器内に配設した再凝縮用熱
交換器へ送り、該熱交換器内における液体Heの蒸発潜
熱によって極低温容器内を極低温に保持するものであり
、Heガスはジュールトムソン弁通過によって液体He
に変換される。そこで本発明者らは、この液体Heを再
a縮器用の冷媒として供給するだけでなく、極低温容器
内へも供給できる様にすれば、運転開始又は再開期にお
ける液体He製造装置としても利用できるのではないか
と考えた。本発明はこうした知見を生かし、再凝縮型H
e液化冷凍装置の高圧側ラインに設けたジュールトムソ
ン弁の下流に流路切換機構を設け、ジュールトムソン弁
において生成した液体Heを再凝縮用熱交換器及び極低
温容器内の液体He貯留部のいずれへも供給することが
できる様にしたのである・ 上記構成を採ることにより冷奴の流れを所望方向へ切換
えることができ、冷凍運転の開始憎備作業中は液体He
を極低温容器の液体He貯留部、供給し貯留することが
できる。こうして所定量の液体Heが極低温容器内へ注
入された後は、流路νJ換機構を切換えて液体Heを再
凝縮用熱交換器に供給し、再凝縮型He液化冷凍装置と
しての運転を継続すればよい、かくして従来必要であっ
た他のHe液化冷凍機が省略され、1台の再凝縮型He
液化冷凍装置によって液体Heの製造、極低温容器等の
極低温保持等を併せて行なうことができる様になった。
[Means for Solving the Problems] The He liquefaction refrigeration system of the present invention, which achieves the above object, is a He liquefaction refrigeration system equipped with a recondensing type cryogenic container, which is installed in the high-pressure side line of the He liquefaction refrigeration system. A flow path switching mechanism is provided downstream of the Joule-Thompson valve, and the liquefied He supply destination can be switched between the recondenser provided in the cryogenic container and the liquefied He storage section in the cryogenic container. [Operation] In the recondensing type He liquefaction refrigeration system, the He gas that has been precooled in stages as described above is liquefied by passing through the Joule-Thomson valve, and then transferred to a cryogenic container. He gas is sent to a recondensing heat exchanger installed inside the container, and the inside of the cryogenic container is kept at an extremely low temperature by the latent heat of vaporization of the liquid He in the heat exchanger.
is converted to Therefore, the present inventors proposed that if this liquid He could be supplied not only as a refrigerant for the recondenser but also into the cryogenic container, it could be used as a liquid He production device during the start-up or restart period. I thought it might be possible. The present invention takes advantage of this knowledge and makes use of recondensed H
A flow path switching mechanism is provided downstream of the Joule-Thompson valve installed in the high-pressure side line of the e-liquefaction refrigeration system, and the liquid He generated in the Joule-Thompson valve is transferred to the recondensing heat exchanger and the liquid He storage section in the cryogenic container. By adopting the above configuration, it is possible to switch the flow of cold tofu to the desired direction, and during the start-up or preparation of refrigeration operation, liquid He
can be supplied and stored in the liquid He storage section of the cryogenic container. After a predetermined amount of liquid He is injected into the cryogenic container, the flow path νJ switching mechanism is switched to supply liquid He to the recondensing heat exchanger, and operation as a recondensing type He liquefaction refrigeration system is started. In this way, another He liquefaction refrigerator that was previously required is omitted, and only one recondensing type He
With the liquefaction refrigeration system, it has become possible to simultaneously produce liquid He and maintain the cryogenic temperature in cryogenic containers.

[実施例] 第1図は本発明に係るHe液化冷凍装置の一例を示すフ
ロー説明図で、10は主圧縮機、7a〜7fは熱交換器
、8a、8bは膨張機、9はジュールトムソン弁(以下
JT弁という)、6は流路切換機構(3方弁)、17は
極低温容器、4は再凝縮器、18は被冷却物、12はガ
スバッグ、13は回収用圧縮機を夫々示す。
[Example] Fig. 1 is a flow explanatory diagram showing an example of a He liquefaction refrigeration system according to the present invention, in which 10 is a main compressor, 7a to 7f are heat exchangers, 8a and 8b are expanders, and 9 is a Joule-Thomson. valve (hereinafter referred to as JT valve), 6 is a flow path switching mechanism (3-way valve), 17 is a cryogenic container, 4 is a recondenser, 18 is an object to be cooled, 12 is a gas bag, and 13 is a recovery compressor. Show each.

第1図において、He液化冷凍装置Sは、再凝縮型He
液化冷凍措置Saを基本構成とし、これにHe回収系統
sbを付設している。再S縮型He液化冷凍装置Saに
おける主圧縮機10の吐出側には高圧カス管路5aを経
由して熱交換器7a〜7fの高圧側ラインHに接続して
いる。高圧側ラインHは熱交換器7bと70の間並びに
熱交換器7dと7eの間で夫々分岐され、膨張機8a、
8bに接続されると共に膨張機8a、8bの吐出側は夫
々熱交換器7cと7dの間並びに熱交換器7eと7fの
間の低圧ラインLに接続している。また熱交換器7fと
再凝縮器4の間の高圧ライン側にはJT弁9が介設され
、さらにその下流側に3方弁6が設置されている。尚熱
交換器7aには予冷用の液体N2供給ライン2oを引き
込んでいる。この様な書架1ii型He液化冷凍装置S
aに対し、3方弁6から管路3が分岐され、その端部は
極低温容器17の液体He貯留部に臨んで開口されてい
る。一方He回収系統sbはガスバッグ12の下流側に
順に回収用圧縮機13及びガス精製器16が配置され、
回収用圧縮器13とガス精製器16の間で流路が分岐さ
れ分岐端には回収粗ガス溜14が配置されている。そし
てガスバッグ12のガス導入側に極低温容器17の気相
から引出された回収He配管1a、lbが接続され、ガ
ス精製器16のガス排出側は高圧ガス管5aに接続され
ている。尚上記装置には図示する如くストップ弁15a
、15b、15dおよび補圧弁15cが夫々各配管に介
設されている。
In FIG. 1, the He liquefaction refrigeration system S is a recondensing type He
The basic configuration is a liquefaction freezing system Sa, to which a He recovery system sb is attached. The discharge side of the main compressor 10 in the re-shrinking type He liquefaction refrigeration system Sa is connected to the high-pressure side line H of the heat exchangers 7a to 7f via a high-pressure waste pipe line 5a. The high pressure side line H is branched between heat exchangers 7b and 70 and between heat exchangers 7d and 7e, and expanders 8a,
8b, and the discharge sides of expanders 8a and 8b are connected to a low pressure line L between heat exchangers 7c and 7d and between heat exchangers 7e and 7f, respectively. Further, a JT valve 9 is interposed on the high pressure line side between the heat exchanger 7f and the recondenser 4, and a three-way valve 6 is further installed downstream thereof. A liquid N2 supply line 2o for pre-cooling is drawn into the heat exchanger 7a. Such a bookshelf type 1II He liquefaction refrigerator S
A pipe line 3 is branched from the three-way valve 6, and its end is opened facing the liquid He storage section of the cryogenic container 17. On the other hand, in the He recovery system sb, a recovery compressor 13 and a gas purifier 16 are arranged in order downstream of the gas bag 12,
A flow path is branched between the recovery compressor 13 and the gas purifier 16, and a recovery crude gas reservoir 14 is disposed at the branched end. The recovered He pipes 1a and lb drawn out from the gas phase of the cryogenic container 17 are connected to the gas introduction side of the gas bag 12, and the gas discharge side of the gas purifier 16 is connected to the high pressure gas pipe 5a. The above device is equipped with a stop valve 15a as shown in the figure.
, 15b, 15d and a pressure compensating valve 15c are respectively provided in each pipe.

次に上記の様に構成されるHe液化冷凍装置Sの運転方
法を説明する。尚運転は極低温容器及び被冷却物の予冷
、極低温容器内への液体He貯留、再凝縮冷凍運転(極
低温保持)、He回収の4つの工程に分けられるので以
下各工程に説明を展開する。
Next, a method of operating the He liquefaction refrigeration system S configured as described above will be explained. The operation is divided into four steps: pre-cooling of the cryogenic container and the object to be cooled, storage of liquid He in the cryogenic container, recondensation freezing operation (maintaining cryogenic temperatures), and recovery of He, so each step will be explained below. do.

(+) 8i低温容器及び被冷却物の予冷まず始めにH
e液化冷凍装詮の液化運転を下記の手順で開始する。ス
ト−2プ弁15a、15b。
(+) First, pre-cool the 8i low-temperature container and the objects to be cooled.
Start the liquefaction operation of the e-liquefaction refrigeration system using the following procedure. Stop-2 stop valves 15a, 15b.

15d及びJT弁9を何れも閉鎖しておき、液体窒素配
管20から液体窒素を供給して熱交換器7aの予冷を行
なう。次いで圧縮器10を起動し、昇圧した高圧Heガ
スを高圧ガス管路5aを通して熱交換器7a〜7fへ供
給する。熱交換器7a〜7fに入った高圧Heガスは膨
張機8a。
15d and the JT valve 9 are both closed, and liquid nitrogen is supplied from the liquid nitrogen pipe 20 to pre-cool the heat exchanger 7a. Next, the compressor 10 is started, and the pressurized high-pressure He gas is supplied to the heat exchangers 7a to 7f through the high-pressure gas pipe 5a. The high pressure He gas that has entered the heat exchangers 7a to 7f is sent to an expander 8a.

8bに入りここで等エントロピー膨張して寒冷を発生し
つつ、膨張後のHeガスは低圧ガス管路2aを通して熱
交換器7e〜7aを通過する過程で高圧ガス管5aを流
れる高圧Heガスを冷却した後圧縮alOに戻る。
8b, where it expands isentropically and generates refrigeration, while the expanded He gas cools the high pressure He gas flowing through the high pressure gas pipe 5a in the process of passing through the low pressure gas pipe 2a and the heat exchangers 7e to 7a. After that, return to compressed alO.

この操作をしばら<m続することによって、真空容器1
9内における熱交換器7a〜7e等の機器が冷却される
By continuing this operation for a while, the vacuum container 1
Equipment such as heat exchangers 7a to 7e in 9 is cooled.

低温側膨張機8bの出口側温度が所定温度以下まで降下
すると、JT弁9を開いて、低温となった高圧Heガス
の一部を大気圧まで膨張させ、膨張により更に降温した
Heガスは低圧Heガス管路5bから3方弁6へ送る。
When the temperature on the outlet side of the low-temperature side expander 8b falls below a predetermined temperature, the JT valve 9 is opened to expand a portion of the low-temperature high-pressure He gas to atmospheric pressure, and the He gas whose temperature has further decreased due to expansion is returned to the low-pressure It is sent to the three-way valve 6 from the He gas pipe 5b.

このとき3方弁6は、極低温容器17の液体He貯留部
(勿論この時点では液体Heは溜っていない)を臨む様
に開口した管路3側が開放されており、該管路3を通し
て送り込まれる低温Heガスによって極低温容器17及
び被冷却物18の予冷が行なわれる。この予冷に先立っ
てストップ弁15a及び15dを開とし回収圧縮fi1
3も起動しておき、極低温容器17内で予冷に供された
Heガスは、He回収管路1aからストップ弁15a及
びガスバッグ12を経て回収圧縮機13方向へ吸引し、
該圧縮機13で圧縮する。そして更にガス精製器16で
不純物を除去した後、精製された高圧Heガスはストッ
プ弁15dから高圧Heガス管路5aへ戻される。
At this time, the three-way valve 6 is open on the side of the pipe 3 that faces the liquid He storage part of the cryogenic container 17 (of course, liquid He is not stored at this point), and the pipe 3 side is opened so that the liquid He is fed through the pipe 3. The cryogenic container 17 and the object to be cooled 18 are precooled by the low-temperature He gas. Prior to this pre-cooling, the stop valves 15a and 15d are opened, and the recovery compression fi1
3 is also activated, and the He gas that has been pre-cooled in the cryogenic container 17 is sucked from the He recovery pipe 1a through the stop valve 15a and the gas bag 12 toward the recovery compressor 13.
It is compressed by the compressor 13. After impurities are further removed by the gas purifier 16, the purified high-pressure He gas is returned to the high-pressure He gas pipe 5a from the stop valve 15d.

極低温容器17内の温度が所定の温度(例えば70〜8
0K)以下になった後は、ストップ弁15aを閉、スト
ップ弁15b及び補圧弁15bを開とし、熱交換器7f
〜7a中を通るHe回回収管路l円内回収Heガスを流
すことによってその寒冷を回収し、極低温容器17内を
更に降温させる。
When the temperature inside the cryogenic container 17 reaches a predetermined temperature (for example, 70 to 8
0K) or less, close the stop valve 15a, open the stop valve 15b and the compensating valve 15b, and close the heat exchanger 7f.
The cold is recovered by flowing the recovered He gas through the He recovery pipe l circle passing through 7a, and the temperature inside the cryogenic container 17 is further lowered.

(2)極低温容器内への液体He貯留 上記の操作を続けるうち装ご全体及び循環H。(2) Liquid He storage in cryogenic container Continuing the above operations as a whole and circulating H.

ガスの温度は徐々に降下してい<、JTTe3入口側温
度が所定の温度(約7K)まで降下すると、JTTe3
出口側には液体Heが生成しはじめ、極低温容器17内
には液体Heが溜りはじめる。尚未液化のガス分は、H
e回収管路1bから熱交換器7f〜7aを経た後、回収
圧縮器13゜ガス精製装置16を経て圧縮器10の吸込
側に戻り循環する。循環ガスの一部液化による圧縮器1
0系統のガス不足は、不純ガス溜14から適宜補給され
る。
The gas temperature is gradually decreasing. When the JTTe3 inlet temperature drops to a predetermined temperature (about 7K),
Liquid He begins to be generated on the outlet side, and liquid He begins to accumulate inside the cryogenic container 17. The unliquefied gas content is H
e After passing through the heat exchangers 7f to 7a from the recovery pipe 1b, the gas passes through the recovery compressor 13 and the gas purification device 16, and returns to the suction side of the compressor 10 for circulation. Compressor 1 with partial liquefaction of circulating gas
If the gas in the 0 system is insufficient, it is replenished from the impure gas reservoir 14 as appropriate.

(3)再凝縮冷凍運転 極低温容器17内に、被冷却物18が十分浸漬するまで
液体Heが貯留された後は、3方弁6を切換えて液体H
eの供給先を再凝縮器4の方向とし、これにより極低温
容器17内の蒸発Heガスを再擬縮して液体Heの液面
を一定に保つ、再凝縮器4内で蒸発したHeガスは、低
圧He管路2aから熱交換器7f〜7aを順次通過し、
高圧Heガスを冷却しつつ自らは加温されて圧111m
10の吸込側へ返送される。
(3) Recondensation refrigeration operation After liquid He is stored in the cryogenic container 17 until the object to be cooled 18 is sufficiently immersed, the three-way valve 6 is switched to
The He gas evaporated in the recondenser 4 is supplied to the recondenser 4, thereby recondensing the evaporated He gas in the cryogenic container 17 and keeping the level of liquid He constant. passes through the heat exchangers 7f to 7a sequentially from the low-pressure He pipe 2a,
While cooling the high-pressure He gas, it is heated to a pressure of 111 m
10 is returned to the suction side.

s[ato、管路5a、5b、熱交換器7a〜7f、再
凝縮器4.管路2a、2bを流れるHeは閉回路で循環
するので、極低温容器17内の不純物を含むHeガスが
該循環系に混入する恐れがなく、長期間安定に運転を継
続することができる。この様な閉回路辻転になると系内
に冷媒ガス不足を生じることがなくなるので、ストー/
プ弁15dは閉じておく、また補圧弁15cは、極低温
容器17内の圧力が所定値を超えたときに、一部のHe
ガスを弁15bを介して回収系に送って循環系統の異常
昇圧を防ぐ役目を果たし、同圧力が所定圧力より低い場
合は閉じている。
s[ato, pipes 5a, 5b, heat exchangers 7a to 7f, recondenser 4. Since the He flowing through the pipes 2a and 2b circulates in a closed circuit, there is no fear that He gas containing impurities in the cryogenic container 17 will enter the circulation system, and stable operation can be continued for a long period of time. With this kind of closed circuit rotation, there will be no shortage of refrigerant gas in the system, so there will be no stall or
The compensating valve 15d is closed, and the compensating valve 15c closes some of the He when the pressure inside the cryogenic container 17 exceeds a predetermined value.
The valve 15b serves to send gas to the recovery system through the valve 15b to prevent abnormal pressure rise in the circulation system, and is closed when the pressure is lower than a predetermined pressure.

(4)He回収運転 冷凍運転を停止する場合におけるHeの回収は、圧縮機
lOを停止した後ストップ弁15aを開、ス)−/プ弁
15bを閉とし、極低温容器17に設けたヒータ(図示
せず)で液体Heを加熱蒸発サセ、HeガスをHe回収
管路1aからストー/プ4p l 5 aを経てガスバ
ッグ12に回収する。この場合、He回収管路1aの適
所に加熱器を設けておき、Heガスの昇温を助けること
も有効である。
(4) He recovery operation When stopping the refrigeration operation, recovery of He is performed by stopping the compressor lO, opening the stop valve 15a, closing the stop valve 15b, and using the heater installed in the cryogenic container 17. (not shown), the liquid He is heated and evaporated, and the He gas is recovered from the He recovery pipe 1a to the gas bag 12 via the stop/pipe 4p15a. In this case, it is also effective to provide a heater at a suitable location in the He recovery pipe 1a to help raise the temperature of the He gas.

尚図示した装置におけるガスバッグ12、He回収圧縮
機13.不純ガス溜14.ガス精製器16等のガス回収
系は、必ずしも各He液化冷凍装置毎に配備しておかな
ければならない訳ではなく、他の装置と兼用する様にし
たものであっても勿論かまわない。
It should be noted that the gas bag 12, He recovery compressor 13. Impure gas reservoir 14. A gas recovery system such as the gas purifier 16 does not necessarily have to be provided for each He liquefaction refrigeration device, and may of course be used in combination with other devices.

本発明は以上の様に構成されており、He冷凍運転の開
始期における設備の予冷、極低温容器内への液体Heの
貯留及び可染1ii型He冷凍運転の各工程を1台の装
置で連続して行なうことができ、予冷の為の付属設備を
省略できる他、窒素予冷に伴う従来の難点をすべて解決
することができ、更には液体Heの注入に要する他の設
備も省略し得ることになった。
The present invention is configured as described above, and each step of pre-cooling equipment at the start of He freezing operation, storage of liquid He in a cryogenic container, and dyeable type 1II He freezing operation is performed by one device. It can be carried out continuously, the accessory equipment for pre-cooling can be omitted, all the conventional difficulties associated with nitrogen pre-cooling can be solved, and other equipment required for injection of liquid He can also be omitted. Became.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
れば次の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects can be summarized as follows.

(1)液化Heの供給先を極低a容器内に設けた再凝縮
器と極低温容器内の液化He貯留部との間で切換えでき
る様に構成されているので1台の装置で極低温容器およ
び被冷却物の予冷、液化H8の製造及び冷凍運転を行な
うことができ、設備が著しく簡素化される。しかもこれ
らの操作を連続しテ行なうことができるので操作性が良
く、全自動化も容易である。
(1) The structure is such that the supply destination of liquefied He can be switched between the recondenser installed in the ultra-low a container and the liquefied He storage section in the cryogenic container, so one device can be used at extremely low temperatures. Pre-cooling of the container and objects to be cooled, production of liquefied H8, and freezing operation can be performed, and the equipment is significantly simplified. Moreover, since these operations can be performed continuously, operability is good and full automation is easy.

(2)流路切換機構をJT弁の下流側に設けているので
、切換に伴う圧力変動が少なくHeの洩れ等のトラブル
も生じ難い。
(2) Since the flow path switching mechanism is provided on the downstream side of the JT valve, pressure fluctuations caused by switching are small and troubles such as He leakage are less likely to occur.

(3)予冷乃至冷凍運転の為の冷媒としてHeだけを使
用する構成であるから、窒素を予冷用に使用する従来装
置にみられる様な問題は一切生じない。
(3) Since only He is used as a refrigerant for pre-cooling and freezing operations, there are no problems encountered with conventional devices that use nitrogen for pre-cooling.

(4)予冷乃至冷凍運転工程で生じるHeガスはすべて
回収して循環使用することができるので、Heのロスが
殆ど生じない。
(4) Since all the He gas generated during the pre-cooling and freezing operation steps can be recovered and recycled, there is almost no loss of He.

(5)例えば冷凍遅転時における急激な熱負荷によって
極低温容器内の液体Heiが減少した場合でも・必要に
応じて波路切換機構を切換えることによって該容器内へ
液体Heを補給することができる。
(5) For example, even if the liquid He in the cryogenic container decreases due to a sudden heat load during slow freezing, liquid He can be replenished into the container by switching the wave path switching mechanism as necessary. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略フロー図である。 la、lb・・・He回収管路 3・・・分岐管路    4・・・再凝縮器6・・・3
方弁(流路切換機構) 7a〜7f・・・熱交換器  8a、8b・・・膨張機
9・・・JT弁     10・・・圧縮機12・・・
ガスバッグ   13・・・He回収圧縮機IG・・・
He精製器   17・・・極低温容器18・・・被冷
却物
FIG. 1 is a schematic flow diagram illustrating an embodiment of the present invention. la, lb...He recovery pipe 3...branch pipe 4...recondenser 6...3
Direction valve (flow path switching mechanism) 7a to 7f... Heat exchanger 8a, 8b... Expander 9... JT valve 10... Compressor 12...
Gas bag 13... He recovery compressor IG...
He purifier 17...Cryogenic container 18...Object to be cooled

Claims (1)

【特許請求の範囲】[Claims] 再凝縮型の極低温容器を併設したHe液化冷凍装置にお
いて、He液化冷凍装置の高圧側ラインに設けたジュー
ルトムソン弁の下流に流路切換機構を設け、液化Heの
供給先を前記極低温容器に設けた再凝縮器と該極低温容
器内の液化He貯留部との間で切換えできるように構成
したことを特徴とするHe液化冷凍装置。
In a He liquefaction refrigeration system equipped with a recondensing type cryogenic container, a flow path switching mechanism is provided downstream of a Joule-Thomson valve installed in the high-pressure side line of the He liquefaction refrigeration system, and the liquefied He is supplied to the cryogenic vessel. 1. A He liquefaction refrigeration system, characterized in that it is configured to be able to switch between a recondenser provided in the cryogenic container and a liquefied He storage section in the cryogenic container.
JP14564285A 1985-07-02 1985-07-02 He liquefying refrigerator Pending JPS629171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14564285A JPS629171A (en) 1985-07-02 1985-07-02 He liquefying refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14564285A JPS629171A (en) 1985-07-02 1985-07-02 He liquefying refrigerator

Publications (1)

Publication Number Publication Date
JPS629171A true JPS629171A (en) 1987-01-17

Family

ID=15389729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14564285A Pending JPS629171A (en) 1985-07-02 1985-07-02 He liquefying refrigerator

Country Status (1)

Country Link
JP (1) JPS629171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275260A (en) * 1989-04-14 1990-11-09 Sumitomo Heavy Ind Ltd Cryogenic cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275260A (en) * 1989-04-14 1990-11-09 Sumitomo Heavy Ind Ltd Cryogenic cooling device

Similar Documents

Publication Publication Date Title
KR100761974B1 (en) Natural gas liquefaction apparatus capable of controlling load change using flow control means of a working fluid
US5193349A (en) Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures
US3323315A (en) Gas liquefaction employing an evaporating and gas expansion refrigerant cycles
WO2006051622A1 (en) Cryogenic liquefying refrigerating method and device
CA2969978C (en) System and method for improving the liquefaction rate in cryocooler- based cryogen gas liquefiers
KR20090025514A (en) A bog re-liquefaction system for lng carrier
AU2022308303A1 (en) Facility and method for the liquefaction of hydrogen
JPS629171A (en) He liquefying refrigerator
US20230304731A1 (en) Facility and method for refrigerating a fluid
JP2000274852A (en) Method and apparatus for controlling helium liquefying device
JPH07243712A (en) Liquid helium supplementing apparatus for cryostat
JP2617172B2 (en) Cryogenic cooling device
JP2574815B2 (en) Cryogenic refrigeration equipment
JPH0579717A (en) Helium refrigerator
JPS61252473A (en) He liquefying refrigerator
JPS6233262A (en) He liquefying refrigerator
JPH0689956B2 (en) Small He liquefaction refrigeration system
KR101938180B1 (en) Boil-Off Gas Reliquefaction System for Vessel and Method of Starting the Same
JPS62280571A (en) Method and device for precooling liquefying refrigerator
Lashmet et al. A closed-cycle cascade helium refrigerator
JPH0721358B2 (en) Cryogenic liquefier
JPS6317360A (en) Cryogenic refrigerating method
JPS61250482A (en) Method of preventing heat intrusion of he liquefying refrigerator
JPH0788980B2 (en) Helium refrigerator
JPH0411784B2 (en)